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1 PROBLEM DEFINITION

An independent set in an undirected graph G = (V,E) is a set of vertices that induce a subgraph
which does not contain any edges. The size of the maximum independent set in G is denoted by
α(G). For an integer k, a k-coloring of G is a function σ : V → [1 . . . k] which assigns colors to
the vertices of G. A valid k-coloring of G is a coloring in which each color class is an independent
set. The chromatic number χ(G) of G is the smallest k for which there exists a valid k-coloring
of G. Finding χ(G) is a fundamental NP-hard problem. Hence, when limited to polynomial time
algorithms, one turns to the question of estimating the value of χ(G) or to the closely related
problem of approximate coloring.

Problem 1 (Approximate coloring).
Input: Undirected graph G = (V,E).
Output: A valid coloring of G with r · χ(G) colors, for some approximation ratio r ≥ 1.
Objective: Minimize r.

Let G be a graph of size n. The approximate coloring of G can be solved efficiently within
an approximation ratio of r = O

(
n(log log n)2

log3 n

)
[12]. This holds also for the approximation of α(G)

[8]. These results may seem rather weak, however it is NP-hard to approximate α(G) and χ(G)
within a ratio of n1−ε for any constant ε > 0 [14, 9, 21]. Under stronger complexity assumptions,
there is some constant 0 < δ < 1 such that neither problem can be approximated within a ratio of
n/2logδ n [17, 21]. This chapter will concentrate on the problem of coloring graphs G for which χ(G)
is small. As will be seen, in this case the approximation ratio achievable significantly improves.

1.1 Vector coloring of graphs

The algorithms achieving the best ratios for approximate coloring when χ(G) is small [15, 3, 13, 1]
are all based on the idea of vector coloring, introduced by Karger, Motwani and Sudan [15] 1.

Definition 1. A vector k-coloring of a graph is an assignment of unit vectors to its vertices, such
that for every edge, the inner product of the vectors assigned to its endpoints is at most (in the
sense that it can only be more negative) −1/(k − 1).

The vector chromatic number −→χ (G) of G is the smallest k for which there exists a vector
k-coloring of G. The vector chromatic number can be formulated as follows:

1Vector coloring as presented in [15] is closely related to the Lovász θ function [19]. This connection will be
discussed shortly.
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−→χ (G) Minimize k
subject to: 〈vi, vj〉 ≤ − 1

k−1 ∀(i, j) ∈ E

〈vi, vi〉 = 1 ∀i ∈ V

Here, assume that V = [1, . . . , n] and that the vectors {vi}n
i=1 are in Rn. Every k-colorable graph is

also vector k-colorable. This can be seen by identifying each color class with one vertex of a perfect
(k−1)-dimensional simplex centered at the origin. Moreover, unlike the chromatic number, a vector
k-coloring (when it exists) can be found in polynomial time using semidefinite programming (up
to an arbitrarily small error in the inner products).

Claim 1 (Complexity of vector coloring [15]). Let ε > 0. If a graph G has a vector k-coloring then
a vector (k + ε)-coloring of the graph can be constructed in time polynomial in n and log(1/ε).

One can strengthen Definition 1 to obtain a different notion of vector coloring and the vector
chromatic number.

−→χ 2(G) Minimize k
subject to: 〈vi, vj〉 = − 1

k−1 ∀(i, j) ∈ E

〈vi, vi〉 = 1 ∀i ∈ V

−→χ 3(G) Minimize k
subject to: 〈vi, vj〉 = − 1

k−1 ∀(i, j) ∈ E

〈vi, vj〉 ≥ − 1
k−1 ∀i, j ∈ V

〈vi, vi〉 = 1 ∀i ∈ V

The function −→χ 2(G) is referred to as the strict vector chromatic number of G and is equal to the
Lovász θ function on Ḡ [19, 15], where Ḡ is the complement graph of G. The function −→χ 3(G) is
referred to as the strong vector chromatic number. An analog to Claim 1 holds for both −→χ 2(G)
and −→χ 3(G). Let ω(G) denote the size of the maximum clique in G, it holds that: ω(G) ≤ −→χ (G) ≤
−→χ 2(G) ≤ −→χ 3(G) ≤ χ(G).

2 KEY RESULTS

In what follows, assume that G has n vertices and maximal degree ∆. The Õ(·) and Ω̃(·) notation
are used to suppress polylogarithmic factors. We now state the key result of Karger, Motwani and
Sudan [15]:

Theorem 1 ([15]). If −→χ (G) = k then G can be colored in polynomial time using min
{

Õ(∆1−2/k) ,

Õ(n1−3/(k+1))
}

colors.

As mentioned above, the use of vector coloring in the context of approximate coloring was
initiated in [15]. Roughly speaking, once given a vector coloring of G, the heart of the algorithm in
[15] finds a large independent set in G. In a nutshell, this independent set corresponds to a set of
vectors in the vector coloring which are close to one another (and thus by definition cannot share
an edge). Combining this with the ideas of Wigderson [20] mentioned below yields Theorem 1.

We proceed to describe related work. The first two theorems below appeared prior to the work
of Karger, Motwani and Sudan [15].

Theorem 2 ([20]). If χ(G) = k then G can be colored in polynomial time using O(kn1−1/(k−1))
colors.

Theorem 3 ([2]). If χ(G) = 3 then G can be colored in polynomial time using Õ(n3/8) colors. If
χ(G) = k ≥ 4 then G can be colored in polynomial time using at most Õ(n1−1/(k−3/2)) colors.
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Combining the techniques of [15] and [2] the following results were obtained for graphs G with
χ(G) = 3, 4 (these results were also extended for higher values of χ(G)).

Theorem 4 ([3]). If χ(G) = 3 then G can be colored in polynomial time using Õ(n3/14) colors.

Theorem 5 ([13]). If χ(G) = 4 then G can be colored in polynomial time using Õ(n7/19) colors.

The currently best known result for coloring a 3-colorable graph is presented in [1]. In their
algorithm, [1] use the strict vector coloring relaxation (i.e. −→χ 2) enhanced with certain odd cycle
constraints.

Theorem 6 ([1]). If χ(G) = 3 then G can be colored in polynomial time using O(n0.2111) colors.

To put the above theorems in perspective, it is NP-hard to color a 3-colorable graph G with
4 colors [16, 11] and a k-colorable graph (for sufficiently large k) with k

log k
25 colors [17]. Under

stronger complexity assumptions (related to the Unique Games Conjecture [18]) for any constant
k it is hard to color a k-colorable graph with any constant number of colors [6]. The wide gap
between these hardness results and the approximation ratios presented in this section has been a
major initiative in the study of approximate coloring.

Finally, the limitations of vector coloring are addressed. Namely, are there graphs for which
−→χ (G) is a poor estimate of χ(G)? One would expect the answer to be “yes” as estimating χ(G)
beyond a factor of n1−ε is a hard problem. As will be stated below, this is indeed the case (even when
−→χ (G) is small). Some of the results that follow are stated in terms of the maximum independent
set α(G) in G. As χ(G) ≥ n/α(G), these results imply a lower bound on χ(G). Theorem 7 (i)
states that the original analysis of [15] is essentially tight. Theorem 7 (ii) presents bounds for the
case of −→χ (G) = 3. Theorem 7 (iii) and Theorem 8 present graphs G in which there is an extremely
large gap between χ(G) and the relaxations −→χ (G) and −→χ 2(G).

Theorem 7 ([10]). (i) For every constant ε > 0 and constant k > 2, there are infinitely many
graphs G with −→χ (G) = k and α(G) ≤ n/∆1− 2

k
−ε (here ∆ > nδ for some constant δ > 0). (ii)

There are infinitely many graphs G with −→χ (G) = 3 and α(G) ≤ n0.843. (iii) For some constant c,
there are infinitely many graphs G with −→χ (G) = O( log n

log log n) and α(G) ≤ logc n.

Theorem 8 ([7]). For some constant c, there are infinitely many graphs G with −→χ 2(G) ≤ 2
√

log n

and χ(G) ≥ n/2c
√

log n.

Vector colorings, including the Lovász θ function and its variants, have been extensively stud-
ied in the context of approximation algorithms for problems other than Problem 1. These include
approximating α(G), approximating the Minimum Vertex Cover problem, and combinatorial opti-
mization in the context of random graphs.

3 APPLICATIONS

Besides its theoretical significance, graph coloring has several concrete applications that fall under
the model of conflict free allocation of resources (see for example [5, 4]).

4 OPEN PROBLEMS

By far the major open problem in the context of approximate coloring addresses the wide gap
between what is known to be hard and what can be obtained in polynomial time. The case of
constant χ(G) is especially intriguing, as the best known upper bounds (on the approximation
ratio) are polynomial while the lower bounds are of constant nature. Regarding the vector coloring
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paradigm, a majority of the results stated in Section 2 use the weakest from of vector coloring
−→χ (G) in their proof, while stronger relaxations such as −→χ 2(G) and −→χ 3(G) may also be considered.
It would be very interesting to improve upon the algorithmic results stated above using stronger
relaxations, as would a matching analysis of the limitations of these relaxations.

5 EXPERIMENTAL RESULTS

None is reported.

6 DATA SETS

None is reported.

7 URL to CODE

None is reported.

8 CROSS REFERENCES

Exact Algorithms for Coloring, Max Cut, Randomized Rounding, and Sparsest Cut.

9 RECOMMENDED READING
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