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Abstract. We study approximation algorithms, integrality gaps, and
hardness of approximation, of two problems related to cycles of “small”
length k in a given graph. The instance for these problems is a graph
G = (V, E) and an integer k. The k-Cycle Transversal problem is to find
a minimum edge subset of E that intersects every k-cycle. The k-Cycle-

Free Subgraph problem is to find a maximum edge subset of E without
k-cycles.
The 3-Cycle Transversal problem (covering all triangles) was studied by
Krivelevich [Discrete Mathematics, 1995], where an LP-based 2-approxi-
mation algorithm was presented. The integrality gap of the underlying
LP was posed as an open problem in the work of Krivelevich. We re-
solve this problem by showing a sequence of graphs with integrality gap
approaching 2. In addition, we show that if 3-Cycle Transversal admits a
(2−ε)-approximation algorithm, then so does the Vertex-Cover problem,
and thus improving the ratio 2 is unlikely. We also show that k-Cycle

Transversal admits a (k−1)-approximation algorithm, which extends the
result of Krivelevich from k = 3 to any k. Based on this, for odd k we
give an algorithm for k-Cycle-Free Subgraph with ratio k−1

2k−3
= 1

2
+ 1

4k−6
;

this improves over the trivial ratio of 1/2.
Our main result however is for the k-Cycle-Free Subgraph problem with

even values of k. For any k = 2r, we give an Ω
(

n
−

1
r
+ 1

r(2r−1)
−ε
)

-approxi-

mation scheme with running time ε−Ω(1/ε)poly(n). This improves over
the ratio Ω(n−1/r) that can be deduced from extremal graph theory. In
particular, for k = 4 the improvement is from Ω(n−1/2) to Ω(1/n−1/3−ε).
Similar results are shown for the problem of covering cycles of length
≤ k or finding a maximum subgraph without cycles of length ≤ k.

1 Introduction

In this work, we study approximation algorithms, integrality gaps, and hardness
of approximation, of two problems related to cycles of a given “small” length k
(henceforth k-cycles) in a graph. The instance for each one of these problems is
an undirected graph G = (V, E) and an integer k. The goal is:
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k-Cycle Transversal:
Find a minimum edge subset of E that intersects every k-cycle.

k-Cycle Free Subgraph:
Find a maximum edge subset of E without k-cycles.

Note that k-Cycle Transversal and k-Cycle-Free Subgraph are complementary
problems, as the sum of their optimal values equals |E| = m; hence they are
equivalent with respect to their optimal solutions. However, they differ substan-
tially when considering approximate solutions. Also note that for k = O(log n)
the number of k cycles in a graph can be computed in polynomial time, c.f.,
[3], and that it is polynomial for any fixed k. The k-Cycle Transversal problem
is sometimes referred to as the “k-cycle cover” problem (as one seeks to cover
k-cycles by edges). We adapt an alternative name, to avoid any mixup with an
additional problem that has the same name – the problem of covering the edges
of a given graph with a minimum family of k-cycles.

We will also consider problems of covering cycles of length ≤ k or finding
a maximum subgraph without cycles of length ≤ k. We will elaborate on the
relation of these problems to our problems later. Most of our results extend
to the case when edges have weights, but for simplicity of exposition, we con-
sider unweighted and simple graphs only. We will also assume w.l.o.g. that G is
connected.

1.1 Previous and related work

Problems related to k-cycles are among the most fundamental in the fields of
Extremal Combinatorics, Combinatorial Optimization, and Approximation Al-
gorithms, and they were studied extensively for various values of k. See for
example [5, 1, 2, 17, 4, 8, 10, 12, 11, 13, 14, 16, 15, 6] for only a small sample of pa-
pers on the topic. 3-Cycle Transversal was studied by Krivelevich [12]. Erdös et
al. [6] considered 3-Cycle Transversal and 3-Cycle-Free Subgraph and their con-
nections to related problems. Pevzner et al. [18] studied the problem of finding a
maximum subgraph without cyles of lengt ≤ k in the context of computational
biology, and suggested some heuristics for the problem, without analyzing their
approximation ratio. However, most of the related papers studied k-Cycle-Free

Subgraph in the context of extremal graph theory, and address the maximum
number of edges in a graph without k-cycles (or without cycles of length ≤ k).
This is essentially the k-Cycle-Free Subgraph problem on complete graphs. In this
work we initiate the study of k-Cycle-Free Subgraph in the context of approxi-
mation algorithms on general graphs.

As the state of the art differs substantially for odd and even values of k, we
consider these cases separately. But for both odd and even k, note that k-Cycle

Transversal is a particular case of the problem of finding a minimum transversal
in a k-uniform hypergraph (which is exactly the Hitting-Set problem). Thus a
simple greedy algorithm which repeatedly removes a k-cycle until no k-cycles
remain, has approximation ratio k.



Odd k: For k-Cycle Transversal, an improvement over the trivial ratio of k was
obtained for k = 3 by Krivelevich [12]. Let Ck(G) denote the set of k cycles in
G, and let τ∗(G) denote the optimal value of the following LP-relaxation for
k-Cycle Transversal:

min
∑

e∈E xe (1)

s.t.
∑

e∈C xe ≥ 1 ∀C ∈ Ck(G)

xe ≥ 0 ∀e ∈ E

Theorem 1 (Krivelevich [12]). 3-Cycle Transversal admits a 2-approximation
algorithm, that computes a solution of size at most 2τ∗(G).

For odd values of k, k-Cycle-Free Subgraph admits an easy 1/2-approximation
algorithm, as it is well known that any graph G has a subgraph without odd
cycles (namely, a bipartite subgraph) containing at least half of the edges (such
a subgraph can be computed in polynomial time). In fact, the problem of com-
puting a maximum bipartite subgraph is exactly the Max-Cut problem, for which
Goemans and Williamson [9] gave an 0.878-approximation algorithm. Note how-
ever that the solution found by the Goemans-Williamson algorithm has size at
least 0.878 times the size of an optimal subgraph without odd cycles at all, and
the latter can be much smaller than the optimal subgraph without k-cycles only.

Even k: For k-Cycle Transversal with even values of k we are not aware of any
improvements over the trivial ratio of k. For k-Cycle-Free Subgraph with even k, it
is no longer the case that G has a k-cycle free subgraph containing at least half of
the edges. The maximum number ex(n, C2r) of edges in a graph with n nodes and
without cycles of length k = 2r has been extensively studied. This is essentially
the 2r-Cycle-Free Subgraph problem on complete graphs. This line of research in
extremal graph theory was initiated by Erdös [5]. The first major result is known
as the “Even Circuit Theorem”, due to Bondy and Simonovits [4], states that
any undirected graph without even cycles of length ≤ 2r has at most O(rn1+1/r)
edges. This bound was subsequently improved. To the best of our knowledge,
the currently best known upper bound on ex(n, C2r) due to Lam and Verstraëte

[15] is 1
2n1+1/r + 2r2

n. We note that the best lower bounds on ex(n, C2r) are as

follows. For r = 2, 3, 5 it holds that ex(n, C2r) = Θ(n1+1/r). For other values of
r, the existence of a 2r-cycle-free graph with Θ(n1+1/r) has not been established,

and the best lower bound known is ex(n, C2r) = Ω
(

n1+ 2
3k−3+ε

)

where ε = 0

if r is odd and ε = 1 if r is even; we refer the reader to [16] for a summary
of results of this type. All this implies that on complete graphs (a case which
was studied extensively), the best known ratios for 2r-Cycle-Free Subgraph are:

constant for r = 2, 3, 5, and Ω
(

n− 1
r
+ 2

6r−3+ε

)

otherwise. For general graphs, the

bound ex(n, C2r) = O
(

n1+1/r
)

implies an Ω(n−1/r)-approximation by taking a
spanning tree of G as a solution. In particular, for k = 4, the approximation
ratio is Ω(1/

√
n), and no better approximation ratio was known for this case.



1.2 Our results

Our main result is for the k-Cycle-Free Subgraph problem on even values of k. It
can be summarized by the following theorem:

Theorem 2. For k = 2r, k-Cycle-Free Subgraph admits an Ω
(

n− 1
r
+ 1

r(2r−1)
−ε
)

-

approximation scheme with running time ε−Ω(1/ε)poly(n). In particular, 4-Cycle-

Free Subgraph admits an Ω(1/n−1/3−ε)-approximation scheme.

For dense graphs, we obtain better ratios that are close to the ones known for
complete graphs. Proof of the following statement will appear in the full version
of this paper.

Theorem 3. Let G = (V, E) be a graph with n nodes and at least εn2 edges.
Then G contains a 2r-cycle-free subgraph with at least ε · ex(n, C2r) edges.

On the negative side, the only hardness of approximation result we obtain
(again proof will appear in the full version of this paper) is APX-hardness. Thus
for even values of k there is a large gap between the upper and lower bounds we
present. Resolving this large gap is an intriguing question left open in our work.

Our next results are for odd k. Krivelevevich [12] posed as an open question
if his (upper) bound of 2 on the integrality gap of LP (1) is tight for k = 3.
We resolve this question, and in addition show that the ratio 2 achieved by
Krivelevich for k = 3 is essentially the best possible.

Theorem 4.

(i) If 3-Cycle Transversal admits a 2 − ε approximation ratio for some positive
universal constant ε < 1/2, then so does the Vertex-Cover problem.

(ii) For any ε > 0 there exist infinitely many undirected graphs G for which the
integrality gap of LP (1) with k = 3 is at least 2− ε.

We note that Theorem 4 holds also for any k ≥ 4. We also extend the 2-
approximation algorithm of Krivelevich [12] for 3-Cycle Transversal to arbitrary
k which is odd, and use it to improve the trivial ratio of 1/2 for k-Cycle-Free

Subgraph.

Theorem 5. For any odd k the following holds:

(i) k-Cycle Transversal admits a (k − 1)-approximation algorithm.

(ii) k-Cycle-Free Subgraph admits a
(

1
2 + 1

4k−6

)

-approximation algorithm.

Some remarks are in place: Theorem 5 is valid also for digraphs, for any value
of k. Our results can be used to give approximation algorithms for the problem of
covering cycles of length ≤ k, or finding a maximum subgraph without cycles of
length ≤ k. For k = 3 we have for both problems the same ratios as in Theorem 5.
For k ≥ 4, the problem of covering cycles of length ≤ k admits a k-approximation
algorithm (via the trivial reduction to the Hitting Set problem). For the problem
of finding a maximum subgraph without cycles of length ≤ k, we can show



the ratio Ω(n−1/3−ε) for any k. For k ≥ 6 this follows from extremal graph
theory results mentioned, while for k = 4, 5 this is achieved by first computing
a bipartite subgraph G′ of G with at least |E|/2 edges, and then applying on G′

the algorithm from Theorem 2 for 4-cycles.

1.3 Techniques

The proof of Theorem 2 is the main technical contribution of this paper. Our
algorithm for k-Cycle-Free Subgraph with k = 2r consists of two steps. In the
first step we identify in G a subgraph G′ which is an almost regular bipartite
graph with the property that G and G′ have approximately the same optimal
values. The construction of G′ can be viewed as a preprocessing step of our
algorithm and may be of independent interest for other optimization problems
as well. In the second step of our algorithm, we use the special structure of G′ to
analyze the simple procedure that first removes edges at random from G′ until
only few k-cycles remain in G′, and then continues to remove edges from G′

deterministically (one edge per cycle) until G′ becomes k-cycle free.
The proof of Theorem 4(i) gives an approximation ratio preserving reduction

from Vertex-Cover on triangle free graphs to 3-Cycle Transversal. It is well known
that breaking the ratio of 2 for Vertex-Cover on triangle free graphs is as hard as
breaking the ratio of 2 on general graphs. The proof of Theorem 4(ii) uses the
same reduction on graphs G that on one hand are triangle free, but on the other
have a minimum vertex-cover of size (1− o(1))n. Such graphs exist, and appear
in several places in the literature; see for example [7].

The proof of part (i) of Theorem 5 is a natural extension of the proof of
Krivelevich [12] of Theorem 1. Part (ii) simply follows from part (i).

Theorems 2, 4, and 5, are proved in Sections 2, 3, and 4, respectively.

2 Proof of Theorem 2

In what follows let opt(G) be the optimal value of the k-Cycle-Free Subgraph

problem on G. We start by a simple reduction which shows that we may assume
that our input graph G is bipartite, at the price of loosing only a constant in
the approximation ratio. Fix an optimal solution G∗ to k-Cycle Free Subgraph.
Partition the vertex set V of G randomly into two subsets, A and B, each of size
n/2, and remove edges internal to A or B. In expectation, the fraction of edges
in G∗ that remain after this process is 1/2. With probability at least 1/3 the
fraction of edges in G∗ that remain is at least 1/4; here we apply the Markov
inequality on the fraction of edges inside A and B.

Assuming that the input graph G is bipartite, our algorithm has two steps.
In the first step, we extract from G a family G of subgraphs Gi = (Ai + Bi, Ei),
so that either: one of these subgraphs has a “θ-semi-regularity” property (see
Definition 1 below) and a k-cycle-free subgraph of size close to opt(G) or we
conclude that opt(G) is small. In the latter case, we just return a spanning tree
in G. In the former case, it will suffice to approximate k-Cycle-Free Subgraph on
Gi ∈ G, which is precisely what we do in the second step of the algorithm.



Definition 1. A subset A of nodes in a graph is θ-semi-regular if ∆A ≤ θ · dA

where ∆A and dA denote the maximum and the average degree of a node in A,
respectively. A bipartite graph with sides A, B is θ-semi-regular if each of A, B
is θ-semi-regular.

We will prove the following two statements that imply Theorem 2.

Lemma 1. Let k = 2r. For any bipartite instance G of k-Cycle-Free Subgraph

there exists an algorithm that in ε−O(1/ε)poly(n) time finds a family G of at most
2ε−2/ε subgraphs of G so that at least one of the following holds:

(i) G contains an n2ε-semi-regular bipartite subgraph Gi of G so that opt(Gi) =
Ω(ε2/ε)opt(G).

(ii) opt(G) = O
(

nε−2/ε
)

.

Lemma 2. k-Cycle-Free Subgraph on bipartite θ-semi-regular instances G =

(A + B, E) and k = 2r admits an Ω

(

(

θr(|A||B|)
r−1

r(2r−1)

)−1
)

-approximation

ratio in (randomized) polynomial time.

Let us show that Lemmas 1 and 2 imply Theorem 2 for bipartite graphs. We
first compute the family G as in Lemma 1. Then, for each Gi ∈ G we compute a
k-cycle-free subgraph Hi of Gi using the algorithm from Lemma 2, with θ = n2ε.
Let H be the largest among the subgraphs Hi computed. If H has more than n
edges, we output H . Else, we return a spanning tree in G.

2.1 Reduction to θ-semi-regular graphs (Proof of Lemma 1)

Let G = (A+B, E) be a bipartite connected graph, let ε > 0 be a small constant,
let n = |A| + |B|, and let θ = nε. For simplicity of exposition we will assume
that θ and ℓ = 1/ε are integers.

We define an iterative process which partitions a subgraph G′ = (A′+B′, E′)
of G with A′ ⊆ A and B′ ⊆ B into at most ℓ = 1/ε subgraphs so that at
least one of the sides in each subgraph is θ-semi-regular. Specifically, the family
F(G′, A) is defined as follows. Partition the nodes in A′ into at most ℓ sets Aj ,
where Aj consists of nodes in A′ of degree in the range

[

θj , θj+1
)

. The family
F(G′, A) consists of the graphs Gj = G′ − (A′ −Aj) (namely, Gj is the induced
subgraph of G′ with sides Aj and B). Note that Aj is a θ-semi-regular node set
in Gj , but Gj may not be θ-semi-regular. In a similar way, the family F(G′, B)
is defined. Since the the union of the subgraphs in F(G′, A) is G′, and since
|F(G′, A)| = 1/ε, there exists G′′ ∈ F(G′, A) so that opt(G′′) ≥ ε · opt(G′);
a similar statement holds for F(G′, B). For a family G of subgraphs of G let
F(G, A) =

⋃{F(G′, A) : G′ ∈ G} and F(G, B) =
⋃{F(G′, B) : G′ ∈ G}.

Define a sequence of families of subgraphs of G as follows. G0 = {G}, G1 =
F(G0, A), G2 = F(G1, B), and so on. Namely, Gi = F(Gi−1, A) if i is odd and
Gi = F(Gi−1, B) if i is even. The following statement is immediate.

Claim. There exists a sequence of graphs {Gi = (Ai + Bi, Ei)}2ℓ
i=0 so that for

every i: Gi ∈ Gi, Gi ⊆ Gi−1, and opt(Gi) ≥ ε · opt(Gi−1).



We now study the structure of the graphs Gi. We show that the average
degree in Gi is rapidly decreasing when i is increasing, until one of the Gi’s is
θ2-semi-regular.

Claim. For every i, either Gi+2 is θ2-semi-regular, or at least one of the following
holds:
• if i is even then dAi+2 < dAi+1/θ, where dAi

is the average degree of Ai in Gi;
• if i is odd then dBi+2 < dBi+1/θ, where dBi

is the average degree of Bi in Gi.

Proof. Suppose that i is even; the proof of the case when i is odd is similar.
In Gi+1 ∈ Gi+1, the maximum degree ∆Ai+1 of Ai+1 is at most θ times the
average degree dAi+1 of Ai+1. If Gi+2 is not θ2 regular, then ∆Ai+2 ≥ θ2 · dAi+2 .
However, the maximum degree in Ai+2 is ∆Ai+2 ≤ ∆Ai+1 ≤ θdAi+1 . This implies
that dAi+2 ≤ dAi+1/θ.

All in all, we conclude that for some i ≤ 2/ε, Gi is θ2-semi-regular and
satisfies opt(Gi) ≥ εiopt(G); or G2/ε has constant average degree and satisfies

opt(G2/ε) ≥ ε2/εopt(G). The latter implies that opt(G) = O(ε−2/εn).

2.2 Algorithm for θ-semi-regular graphs (Proof of Lemma 2)

Let G = (A + B, E) be a bipartite θ-semi-regular graph. Let dA be the average
degree of nodes in A, and dB be the average degree of nodes in B. Let m =
dA|A| = dB|B| =

√

dAdB |A||B| be the number of edges in G. Our algorithm
builds on the following two results (the first is by A. Naor and Verstraëte [17]).

Theorem 6 ([17]). The maximum number of edges in a bipartite graph G =
(A + B, E) without cycles of length k = 2r is:

(2r − 3)
[

(|A||B|)
r+1
2r + |A|+ |B|

]

if r is odd

(2r − 3)
[

|A| 12 |B|
r+2
2r + |A|+ |B|

]

if r is even

Lemma 3. The number of k-cycles in G is at most mθ2r−1dr−1
A dr−1

B .

Proof. Consider picking k = 2r distinct nodes in G, r from A and r from B,
uniformly at random. Denote the nodes a1, a2, . . . , ar ∈ A and b1, . . . , br ∈ B.
We analyze the probability that (a1, b1, a2, b2, . . . , ar, br, a1) is a k cycle in G. In
our analysis, our random choices are made according to the order of the cycle
at hand, i.e., we first pick a1, then b1, then a2, and so on. As a1 has degree at
most θdA, the probability that b1 is adjacent to a1 is at most θdA/|B|. Similarly,
as b1 has degree at most θdB , the probability that a2 is adjacent to b1 is at
most θdB/|A|. Continuing this line of argument, it is not hard to verify that the
probability that (a1, b1, a2, b2, . . . , ar, br, a1) is a k cycle in G is at most

θ2r−1 dr
Adr−1

B

|A|r−1|B|r .

The number of k-tuples (a1, b1, a2, b2, . . . , ar, br) in G is bounded by |A|r|B|r.
Thus the number of k-cycles in G is at most θ2r−1dr

Adr−1
B |A| = mθ2r−1dr−1

A dr−1
B .



We now present our algorithm for k-Cycle Free Subgraph. In our analysis, we
assume w.l.o.g. that |A| ≥ |B|. We also assume that |A| and |B| are sufficiently
large with respect to θ. Namely we assume that |A||B| ≥ (16θ)2. Otherwise,
the subgraph consisting of a single edge adjacent to v for each node v ∈ A, will
suffice to yield an approximation ratio of Ω(1/θ) which will equal Ω(n−2ε) in
our final setting of parameters. Theorem 6 implies that

opt(G) ≤ 4r((|A||B|) r+1
2r + |A|)

for any r. We now consider two cases: the case in which (|A||B|) r+1
2r ≥ |A|

and thus opt(G) ≤ 8r(|A||B|) r+1
2r ; and the case in which (|A||B|) r+1

2r ≤ |A| and
thus opt(G) ≤ 8r|A|. In the later case, the subgraph consisting of a single edge
adjacent to v for each node v ∈ A will suffice to yield an approximation ratio of

Ω(1/r). We now continue to study the case in which opt(G) ≤ 8r(|A||B|) r+1
2r .

Consider the following random process in which we remove edges from G.
Each edge will be removed from G independently with probability p to be defined
later. Denote the resulting graph by H . Denote by q = 1−p the probability that
an edge is not removed.

Claim. As long as mq ≥ 16, with probability at least 1
2 the subgraph H satisfies:

• The number of edges in H is at least mq/2.
• The number of k cycles in H is at most 4q2rmθ2r−1dr−1

A dr−1
B .

Proof. The expected number of edges in H is mq ≥ 16. Thus, using the Cher-
noff bound, the number of edges in H is at least half the expected value with
probability ≥ 3/4. In expectation, the number of k-cycles in H is at most
q2rmθ2r−1dr−1

A dr−1
B . With probability at least 3/4 (Markov) the number of k-

cycles in H will not exceed 4 times this expected value.

We now set q such that the number of k-cycles in H is at most 1
2 the number

of edges in H . Namely, we set q to satisfy 4q2rmθ2r−1dr−1
A dr−1

B ≤ mq/4. Then:

q−1 = 16
1

2r−1 θ(dAdB)
r−1
2r−1 .

With this setting of parameters and our assumption that |A||B| ≥ 16θ2, we have
that mq ≥ 16 and Claim 2.2 holds. Thus, we may remove an additional single
edge from each remaining k-cycle in H to obtain a k-cycle-free subgraph with at
least mq/4 edges. This is the graph our algorithm will return. To conclude our
proof, we now analyze the quality of our algorithm.

We consider 2 cases. Primarily, consider the case that m ≤ 8r(|A||B|) r+1
2r .

This implies that (|A||B|dAdB)
1
2 ≤ 8r(|A||B|) r+1

2r , which in turn implies that

dAdB ≤ 64r2(|A||B|) 1
r . Using the fact that opt(G) ≤ m we obtain in this case

an approximation ratio of

mq

4opt(G)
≥

q

4
= Ω

(

1

θ(dAdB)
r−1
2r−1

)

≥ Ω

(

1

θ(64r2|A||B|)
r−1

r(2r−1)

)

= Ω

(

1

θ(|A||B|)
r−1

r(2r−1)

)

.



The second case is analyzed similarly. Assuming m ≥ 8r(|A||B|) r+1
2r we get

that dAdB ≥ 64r2(|A||B|) 1
r . Using the fact that opt(G) ≤ 8r(|A||B|) r+1

2r we
obtain in this case an approximation ratio of

mq

4opt(G)
≥

(|A||B|dAdB)
1
2

32r(|A||B|)
r+1
2r · 16

1
2r−1 θ(dAdB)

r−1
2r−1

= Ω

(

(dAdB)
1

2(2r−1)

θr(|A||B|)
1
2r

)

= Ω

(

1

θr(|A||B|)
r−1

r(2r−1)

)

.

3 Proof of Theorem 4

Given an instance J = (VJ , EJ ) of Vertex-Cover, construct a graph G = (V, E)
for the 3-Cycle Transversal instance by adding to J a new node s and the edges
{sv : v ∈ VJ}. Clearly, every edge uv ∈ EJ corresponds to the 3-cycle Cuv =
{us, sv, uv} in G.

Suppose that J is 3-cycle-free. Then the set of 3-cycles of G is exactly {Cuv :
uv ∈ EJ}. The following statement implies that w.l.o.g. we may consider only
3-cycle transversals that consist from edges incident to s.

Claim. Suppose that J is 3-cycle-free. Let F be a 3-cycle transversal in G and
let uv ∈ F ∩EJ . Then F − uv + su is also a 3-cycle transversal in G. Thus there
exists a 3-cycle transversal F ′ ⊆ {sv : v ∈ VJ} in G with |F ′| ≤ |F |.

Proof. The only 3-cycle in G that is covered by the edge uv is Cuv. This cycle
is also covered by the edge su.

Claim. Suppose that J is 3-cycle-free. Then U ⊆ VJ is a vertex-cover in J if,
and only if, the edge set FU = {su : u ∈ U} is a k-cycle transversal in G.

Proof. We show that if U ⊆ VJ is a vertex-cover in J then FU is a 3-cycle
transversal in G. Let Cuv be a 3-cycle in G. As U is a vertex-cover, u ∈ U or
v ∈ U . Thus su ∈ FU or sv ∈ FU . In both cases, Cuv ∩ FU 6= ∅.

We now show that if FU is a 3-cycle transversal in G, then U is a vertex-cover
in J . Let uv ∈ EJ . Then Cuv is a 3-cycle in G, and thus su ∈ FU or sv ∈ FU .
This implies that u ∈ U or v ∈ U , namely, the edge uv is covered by U .

From the claims above it follows that an α-approximation for 3-Cycle Transver-

sal on G implies an α-approximation for Vertex-Cover on 3-cycle-free graphs J .
Now we prove (for completeness, as we did not find an appropriate reference):

Claim. Any approximation algorithm with ratio α ≥ 3/2 for Vertex-Cover on
3-cycle-free graphs implies an α-approximation algorithm for Vertex-Cover (on
general graphs).



Proof. Suppose that there is an α-approximation algorithm for Vertex-Cover on
3-cycle-free graphs. Let J be a general graph, and let opt(J) be the size of
its minimum vertex cover. Consider the following two phase algorithm. Phase 1
starts with an empty cover F1, and repeatedly, for every 3-cycle C in J , adds the
nodes of C to F1 and deletes them from J . Note that any vertex-cover contains
at least two nodes of C, which implies a “local ratio” of 2/3. Let J2 be the
triangle free graph obtained after Phase 1. In Phase 2 use the α-approximation
algorithm (for 3-cycle-free graphs) to compute a vertex-cover F2 of J2. The

statement follows since: opt(J) ≥ 2
3 |F1|+ opt(J2) ≥ 2

3 |F1|+ |F2|
α ≥ |F1|+|F2|

α .

We now prove part (ii) of the theorem, namely, that for k = 3 the integrality
gap of (1) is at least 2 − ε. We will use the fact that for any ε > 0, there exist
infinitely many graphs J = (VJ , EJ ) which are 3-cycle-free and have minimum
vertex-cover of size at least |VJ |(1− ε

2 ). Such graphs appear in various places in
the literature. For example see Theorem 1.2 in [7] in which 3-cycle-free graphs J
with independence number at most ε

2 |VJ | are presented. For such graph J , the
minimum k-cycle cover in the corresponding graph G has size at least |VJ |(1− ε

2 ).
On the other hand, the solution xe = 1/2 if e is incident to s and xe = 0 otherwise
is a feasible solution to LP (1) on G with value |VJ |/2. Hence the integrality gap

is at least
(1− ε

2 )

1/2 = 2− ε.

Theorem 4 easily extends to arbitrary k ≥ 4. We use the same construction
as for the case k = 3, but in addition subdivide every edge of J by k − 3 nodes
(and do not make any assumptions on J). Hence every edge uv ∈ EJ is replaced
by a path Puv of the length k − 2, and Cuv = Puv + su + sv is a k-cycle in
G. Since k ≥ 4, G has no other k-cycles, namely, the set of k-cycles in G is
{Cuv = Puv + su + sv : uv ∈ EJ}. The rest of the proof of this case is identical
to the case k = 3, and thus is omitted.

4 Proof of Theorem 5

To prove Theorem 5, we prove two theorems that consider a more general setting
of a family F of subgraphs of G which are not necessarily k-cycles, nevertheless
each subgraph C ∈ F is of size ≤ k. We need some definitions. Let G be a graph
and let F be a family of subgraphs (edge subsets) of G. For a subgraph H of G,
let F(H) be the restriction of F to subgraphs of H ; H is F-free if F(H) = ∅. An
edge set F that intersects every member of F is an F-transversal. We consider
the following two problems, that generalize the problems k-Cycle-Free Subgraph

and k-Cycle Transversal. The instance of the problems is a graph G = (V, E) and
a family F of subgraphs of G. The goal is:

F -Transversal: Find a minimum size F -transversal.

F -Free Subgraph: Find a maximum size F -free subgraph of G.

For F = Ck(G), we get the problems k-Cycle Transversal and k-Cycle Free

Subgraph, respectively. Let τ∗
F (H) denote the optimal value of the following LP-

relaxation for F -Transversal on H :



min
∑

e∈E(H) xe (2)

s.t.
∑

e∈C xe ≥ 1 ∀C ∈ F(H)

xe ≥ 0 ∀e ∈ E(H)

An edge of H is F-redundant if no member of F(H) contains it; e.g., if
F = Ck(G), then an edge of H is F -redundant if it is not contained in any
k-cycle of H . We prove:

Theorem 7. Suppose that any subgraph H of G admits a polynomial time algo-
rithm that: (i) Solves LP (2) for H; (ii) Finds F-redundant edges of H; (iii) Finds
an F(H)-transversal of size at most |E(H)| · (k− 1)/k. Then there exist a poly-
nomial time algorithm that finds an F(G)-transversal of size ≤ (k − 1) · τ∗

F (G).

To prove Theorem 5(ii) we connect the approximation of F -Free Subgraph

and F -Transversal by the following theorem:

Theorem 8. Suppose that for any graph G with m edges there exist a polynomial
algorithm that finds an F(G)-free subgraph of size ≥ βm, and that F -Transversal

admits an α-approximation algorithm. Then k-Cycle-Free Subgraph admits an
αβ/(α + β − 1)-approximation algorithm.

Let us now show that Theorem 7 implies Theorem 5(i) and that Theorem 8
implies Theorem 5(ii). Let G be a graph with m edges. As was mentioned, it
is not hard to find in G a subgraph with at least m/2 edges and without odd
cycles. For Theorem 5(i), it is easy to see that this setting obeys the conditions
of Theorem 7, hence we obtain a (k− 1)-approximation for F -Transversal in this
case. For Theorem 5(ii), we apply Theorem 8 with β = 1/2 and α = k − 1. The
ratio obtained is αβ/(α + β − 1) = (k − 1)/(2k − 3) = 1

2 + 1
4k−6 . We now prove

Theorems 7 and 8 (in Sections 4.1 and 4.2, respectively).

4.1 Proof of Theorem 7

The algorithm is as follows:

Initialization: H ← G; F1 ← ∅.
Phase 1:
While for an optimal solution x to (2) xe ≥ 1/(k − 1) for some e ∈ E(H) do:

F1 ← F1 + e; H ← H − e.
EndWhile
Phase 2:
- Remove all F(H)-redundant edges from H . Denote the resulting graph by H2.
- Compute an F(H2)-transversal F2 of size at most |E(H2)| · (k − 1)/k.
Return F1 ∪ F2.

Under the assumptions of the Theorem, all steps can be implemented in
polynomial time. It is also easy to see that the algorithm returns a feasible
solution. We now analyze the approximation ratio. We start with a simple claim
followed by our key Lemma.



Claim. Let H be the graph obtained after Phase 1 of our algorithm and let xe

be an optimal solution to LP (2) on H . Then xe = 0 for every F(H)-redundant
edge e in H . Thus the restriction of x to H2 is also an optimal solution to LP
(2) on H2.

Proof. Let e be an F(H)-redundant edge. Assume for sake of contradiction that
xe > 0. We can now reduce the value of the LP solution by zeroing out xe. The
new solution is still valid, as e is F(H)-redundant and thus does not appear in
the first family of constraints of (2).

Let H2 be obtained from H by removing all F(H)-redundant edges. Then
the restriction of x to H2 is an optimal solution to (2) since any LP solution for
H2 can be extended to one for H by setting xe = 0 for every F(H)-redundant
edge e.

Using the claim above, we may assume that the subgraph H2 has an optimal
solution x to (2) in which xe < 1/(k − 1) (for all e ∈ E(H2)).

Lemma 4. Let H2 be a subgraph of G without F-redundant edges and let x be
an optimal solution to LP (2). If xe < 1/(k − 1) for every e ∈ E(H2) then
τ∗
F (H2) ≥ |E(H2)|/k.

Proof. Let ν∗
F(H2) = τ∗

F (H2) denote the optimal value of the dual LP:

max
∑

C∈F yC (3)

s.t.
∑

C∋e yC ≤ 1 ∀e ∈ E(H2)

yC ≥ 0 ∀C ∈ F(H2)

Let x and y be optimal solutions to (2) and to (3), respectively. Consider two
cases, after noting that the primal complementary slackness condition is:

xe > 0 =⇒
∑

C∋e

yC = 1 (4)

Case 1: xe > 0 for every e ∈ E(H2).
In this case τ∗

F (H) ≥ |E(H2)|/k, since from (4) we get:

|E(H2)| =
∑

e∈E(H2)

1 =
∑

e∈E

∑

C∋e

yC =
∑

C∈F(H2)

|C|yC ≤
∑

C∈F(H2)

kyC = kν∗

F (H2) = kτ∗

F (H2) .

Case 2: xf = 0 for some f ∈ E(H2).
Since H2 has no F -redundant edges, there is C ∈ F(H2) so that f ∈ C. Since
xf = 0, we have

∑

e∈C−f xe ≥ 1. Since |C − f | ≤ k − 1, there exists e ∈ C − f
so that xe ≥ 1/(k − 1). A contradiction.

We now bound the value of |F1| and |F2| with respect to τ∗
F (G). We start

with some notation. Let H0 = G be the starting point of our algorithm. Let H1

be graph obtained from H0 by the removal of e1 after the first round of Phase 1.
Similarly, for the i’th round of Phase 1, let Hi be the graph obtained from Hi−1

by the removal of ei. Let H = Hℓ be the graph obtained after Phase 1 of our



algorithm (here ℓ denotes the number of rounds in Phase 1). It is not hard to
verify that τ∗

F (Hi−1) ≥ τ∗
F(Hi) + xei

. Here xei
is obtained from the optimal

solution to Hi−1. This implies that τ∗
F (G) ≥ τ∗

F (H) +
∑ℓ−1

i=1 xei
.

Now to bound |F1| and |F2|. First notice that |F1| ≤ (k − 1)
∑ℓ−1

i=1 xei
. Re-

call that H2 is the graph obtained in Phase 2 from H by removing all F(H)-
redundant edges. It also holds that, |F2| ≤ |E(H2)| · (k − 1)/k. By Lemma 4,
τ∗
F (H2) ≥ |E(H2)|/k. Hence

|F2|
τ∗
F (H2)

≤ |E(H2)| · (k − 1)/k

|E(H2)|/k
= k − 1 .

As by Claim 4.1, τ∗
F (H) = τ∗

F (H2) we have that

|F1|+ |F2| ≤ (k − 1)(τ∗
F (H) +

ℓ−1
∑

i=1

xei
) ≤ (k − 1)τ∗

F (G) ,

which concludes our proof.

4.2 Proof of Theorem 8

In what follows let opt be the optimal solution value of the F -Free Subgraph

problem on G. We choose the better result F from the following two algorithms:

Algorithm 1: Find an F(G)-free subgraph of size ≥ βm.

Algorithm 2: Find an F(G)-transversal I of size ≤ α times an optimal F(G)-
transversal, and return G− I.

Algorithm 1 computes a solution of size ≥ βm. Algorithm 2 computes a
solution of size ≥ m− α(m − opt). The worse case is when these lower bounds
coincide: βm = m−α(m− opt) which implies opt = m(α + β− 1)/α. This gives
the ratio βm

m(α+β−1)/α = αβ
α+β−1 . Formally, |F | ≥ max{βm, m − α(m − opt)}.

Consider two cases:

Case 1: βm ≥ m− α(m− opt), so opt ≤ m(α + β − 1)/α. Then

|F |

opt
≥

βm

opt
≥

βm

(α + β − 1)/α
=

αβ

α + β − 1
.

Case 2: m− α(m− opt) ≥ βm, so m/opt ≤ α/(α + β − 1). Then

|F |

opt
≥

m − α(m − opt)

opt
= α − (α − 1) ·

m

opt
≥ α − (α − 1) ·

α

α + β − 1
=

αβ

α + β − 1
.

In both cases the ratio is bounded by αβ
α+β−1 , which concludes our proof.



5 Open problems

For k-Cycle Transversal, we have ratios k − 1 for odd values of k and k for even
values of k. However, the best approximation threshold we have is 2. Closing
this gap (even for k = 4, 5) is left open.

For k-Cycle-Free Subgraph, we have ratios 2/3 for k = 3 and n−1/3−ε for
k = 4. The best approximation threshold we have is APX-hardness. Hence, we
do not even know if our ratio of 2/3 for k = 3 is tight. Our result for k = 3
actually establishes a lower bound of 2/3 on the integrality gap for the natural
LP for 3-Cycle-Free Subgraph, but the best upper bound we have is only 3/4.
Finally, in our opinion, the most challenging open question is closing the huge
gap for the case k = 4.
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