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Abstract—In this work we consider the communication of in-
formation in the presence of a delayed adversarial jammer. In the
setting under study, a sender wishes to communicate a message
to a receiver by transmitting a codeword x = (x1, . . . , xn) over
a communication channel. The adversarial jammer can view the
transmitted symbols xi one at a time, but must base its action
(when changing xi) on xj for j ≤ i − ∆n, where ∆ ∈ [0, 1] is
a delay parameter. In this work, we study codes for a class of
delayed adversaries, and for any delay ∆ > 0 present a single
letter characterization of the achievable communication rate in
the presence of such adversaries.

I. INTRODUCTION

In this paper we study a class of communication channels
whose output y is the result of an adversary maliciously tam-
pering with the channel input x. The adversary is constrained
in two ways: (a) it must satisfy certain causality or delay
conditions and (b) it must satisfy certain power constraints.
For (a), we restrict our adversary to only see the channel
input after a delay equal to a fraction of the total transmission
time. For (b), we allow the adversary to tamper with at most
a predefined fraction of the input symbols transmitted over
time. For example, for binary channels with modulo-2 additive
adversarial interference, for a delay parameter ∆ ∈ [0, 1], in a
total block-length of n channel uses, the adversary must base
its action at time i on the channel input up to time i − ∆n.
Moreover, for a parameter p ∈ [0, 1] the total number of
symbols that can be tampered with is assumed to be bounded
from above by pn.

In this work for a class of communication problems (includ-
ing, for instance the modulo-2 additive adversarial interference
problem mentioned above) we present single letter characteri-
zations of the communication capacity in the presence of such
adversaries. Roughly speaking, if randomization at the encoder
is allowed, we show that for the problems in our class, for
any ∆ > 0 the capacity is equal to that of a certain discrete
memoryless channel (DMC) induced by an adversary whose
actions are i.i.d. and independent of the channel input. It is
known [6] that for ∆ = 0 this is not true.

Communication schemes that protect data transmission
against adversarial jammers have been studied in many dif-
ferent fields of electrical engineering and computer science.
Much of classical coding theory is based on minimum distance
considerations and provides guarantees against all errors of

Authors are in alphabetical order. Work supported in part by ISF grant
480/08, RGC GRF grants 412608 and 412809, RGC AoE grant on Institute of
Network Coding, established under the University Grant Committee of Hong
Kong, CUHK MoE-Microsoft Key Laboratory of Humancentric Computing
and Interface Technologies, and the Bharti Centre for Communication in IIT
Bombay, India.

up to a given Hamming weight. Another way to see this is
that the errors are generated adversarially (in a worst-case
manner) with respect to both the code and the actual codeword
transmitted. The information-theoretic framework for these
questions is the theory of arbitrarily varying channels (AVCs)
[1] with constraints [2]. In terms of delay, the AVC literature
has considered the case where the adversary has no knowledge
of the transmitted codeword, can see the codeword strictly
causally, or has access to the full codeword prior to deciding
its actions [3]. The works most closely related to this one
are [4]–[8], which study causally delayed binary adversarial
channels and channels with large alphabets.

There are many phenomena which can cause delay in
the adversary’s observations. There may be delay due to
physical distance and the difference in signal propagation
times. Computational overhead can also cause delay between
when the signal is received and when the adversary can take
action based on the information (see [9], [10] for a perspective
on coding against computationally limited adversaries). If data
transmission is packetized, then delay can be induced by the
packet size itself.

In this paper we consider a class of channels in which the
adversary may opt to do nothing, in which case yi = xi,
or can impose a permutation π so that yi = π(xi). We
call such channels permutation channels, and for a subset of
permutation channels we give a tight characterization of the
rate region. The subset we study includes for example additive
channels in which the alphabet is assumed to have an algebraic
structure and the errors imposed by the channel are added onto
the information transmitted. Our coding techniques are fairly
general and we believe they can be extended to a much broader
class of channels. The details are deferred to the full version
of this paper.

II. CHANNEL MODEL

We generally model the channel as an arbitrarily varying
channel (AVC) {W (y|x, z) : z ∈ Z} with finite input, output,
and state alphabets X , Y , and Z respectively. The state zi ∈ Z
at time i is chosen by an adversary who wishes to prevent
reliable communication across the channel. Over a block of n
symbols with input x ∈ Xn and state z ∈ Zn, the probability
of an output sequence y ∈ Yn is given by Wn(y|x, z) =∏n
i=1W (yi|xi, zi) . Exponentials and logarithms are base 2

unless otherwise specified.
The encoder (Alice) wishes to transmit a message m ∈

[2nR] at rate R using a code of block-length n to a receiver
(Bob) over the channel. To do this, Alice uses an encoding
map Φ : [2nR] → Xn. In this paper we consider the case



where the encoding map Φ is stochastic and we will write
it as Φ : [2nR] × [2nS ] → Xn, where [2nS ] represents nS
bits corresponding to private random coins at the encoder. We
stress that the encoder randomness is neither shared with the
receiver Bob nor the adversary governing the channel states.
In particular, Bob uses a decoding map Ψ : Yn → [2nR] to
decode the message sent by Alice.

We assume that the adversary knows the pair (Φ,Ψ) used
by Alice and Bob, and may also eavesdrop on the channel
with delay in order to choose its input z. More formally, for
a delay parameter ∆ ∈ [0, 1], an adversarial strategy A with
delay ∆ is a sequence of maps Ai : X (i−∆n)+ → Z , where
for i ≤ ∆n there is no dependence on X . In particular, the
ith adversarial action Ai depends only on the channel inputs
x1, . . . , xi−∆n.1 For instance, if ∆ = 0 then the adversary can
base zi on the current input symbol xi, and if ∆ = 1 then the
adversary must choose its action without knowledge of any
input symbols.

Any distribution on Z is called an action profile. We
write Tz for the type of a sequence z. In this paper we
constrain the actions of the adversary by insisting that its
empirical action profile Tz in each length-n block be from
an admissible action set Q, that is, an open convex set of
probability distributions. A special case of this is the cost-
constrained AVC [2], [11]. Given a code (Φ,Ψ) we say an
adversarial strategy A is admissible under Q if for all m and
s it holds that T (A(Φ(m, s))) ∈ Q. Let A(Q) denote the set
of all admissible adversarial strategies. For example, for binary
alphabets with yi = xi ⊕ zi and an adversary constrained to
flip no more than pn bits, Q is all distributions (1− q, q) on
Z with q ≤ p.

The maximal error for a code (Φ,Ψ) and
adversarial strategy A is given by ε(A) =
maxm∈[2nR] P (Ψ(Y) 6= m | Φ(m, ·),A), where the
probability is taken over the randomness in the encoder
and channel. The maximal error for a code (Φ,Ψ) and the
set of adversarial strategies is ε(Q) = maxA∈A(Q) ε(A).

We say a rate R is achievable for maximal error under
stochastic encoding against adversaries with delay ∆ if for
every δ > 0 there exists a blocklength n and a code (Φn,Ψn)
whose maximal error ε(Q) ≤ δ. The supremum of achievable
rates is the capacity C∆(Q).

A. Permutation channels

In this paper we consider what we call permutation channels
in which X = Y and Z is a subset of permutations on X .
Under an action/state vector z ∈ Zn we have ∀i : yi = zi(xi).

A special example of a permutation channel is a modulo-
additive channel in which Z = X = Y = {0, 1, . . . , |X | − 1}
and yi = xi + zi mod |X |. In this case the permutations
are all cyclic shifts over X . For the binary channel |X | = 2,
there is only one shift in Z which is not the identity. A natural
constraint is that the Hamming weight of the adversary’s input
z satisfy wH(z) < pn for some fixed p.

1Here we assume that the adversarial strategy is deterministic. As our proofs
take a worst case analysis over our adversarial model, our assumption is
w.l.o.g.

B. The random adversary

A simple adversarial strategy is to generate z i.i.d. from
some distribution Q ∈ Q. Since Q is in the interior of open set
Q, with high probability, for sufficiently large n the realization
of z satisfies the constraints on the adversarial empirical action
profile. We call this a random adversary. A random adversary
induces an average channel

WQ(y|x) =
∑
z∈Z

W (y|x, z)Q(z). (1)

For a given input distribution P , we can calculate the mutual
information I(P,WQ) between X and Y with distribution
P (x)WQ(y|x). It can be directly verified that the capacity
of the channel in the presence of such random adversaries is

C(Q) = max
P (x)

min
Q∈Q

I(P,WQ). (2)

The minimization over all of Q is justified by the continuity
of mutual information; we can approach any point on the
boundary of Q by a suitable sequence.

C. Uniformizable admissible action set Q

We denote the set of channels (as in (1)) the adversary can
induce by using action profiles from Q by WQ, i.e., WQ =
{WQ|Q ∈ Q}. If for a given set Q, the uniform distribution
Pu on X achieves the maximum in (2), we call Q (and the
channel set corresponding to Q) uniformizable. Our results
in this paper will be presented for the class of channels for
which Q is uniformizable. For example, the additive modulo-
channel mentioned above has a corresponding set Q which
is uniformizable. Additional examples are deferred to the full
version of this paper.

The reader familiar with the literature on arbitrarily varying
channels (AVCs) will note that the quantity in (2) is also the
randomized coding capacity for the AVC [11]. For the class of
permutation channels, (2) is also the same as the deterministic
coding capacity under average error [2].

III. MAIN RESULTS

Our main result is a characterization of the capacity for
uniformizable permutation channels whose adversaries have
positive delay ∆. In particular, we show that the capacity is
the same as under the worst-case random adversary satisfying
the constraints.

Theorem 1 (Uniformizable permutation channels). Consider
a uniformizable permutation channel with adversarial con-
straints Q. Then for ∆ > 0 we have C∆(Q) = C(Q), where
C(Q) is defined in (2).

Corollary 1 (Binary ∆-delay). For p ≤ 1/2, consider the
binary modulo-additive channel where Q = {(q, 1− q) : q <
p} imposes a constraint on the fraction of “additions of 1” in
z. Then for ∆ > 0 we have C∆(Q) = 1−H(p).



IV. ANALYSIS

In this section we prove Theorem 1. Let (P,Q) denote a
saddle-point in the max-min expression (2), so that Q is a
minimizing random adversarial strategy and P is a maximizing
input distribution. (Recall that we assume throughout that P =
Pu is uniform2.) Let Pn be the natural product probability
distribution over Xn. Without loss of generality we assume
that the delay ∆ is rational.

In our proof we use strong typicality and we need the
following facts about strongly typical sequences. For a vec-
tor x ∈ X k and x ∈ X , let Nx(x) denote the num-
ber of times x appears in x and recall Tx is the type
of x. For a distribution P with minx P (x) > 0, the ε-
typical set is T (ε,k)(P ) = {x ∈ X k : ‖Tx − P‖∞ ≤
ε}. The size of the typical set T (0,k)(P ) is [12, p. 39]:
|{x : Tx = P}| = exp (k(H(P ) + o(1))). From [13] we have
that if ‖P − P ′‖∞ < ε then |H(P )−H(P ′)| = O(ε log ε−1),
so we have |T (ε,k)(P )| ≤ exp

(
k(H(P ) +O(ε log ε−1))

)
. We

denote the set of all types of sequences of length k by Tk(X ).
We now show that C∆(Q) ≥ C(Q) (the achievability

part of the proof). The converse proof C∆(Q) ≤ C(Q) is
straightforward and deferred to the full version of this paper
due to space limitations.

A. The code

For any given ∆ we choose an integer N such that ∆ >
1/N and prove the achievability for delay 1/N . So, without
loss of generality, we consider a normalised delay of the form
∆ = 1/N and we then consider code-lengths n which are
multiples of N . Our code divides the total block length of n
into chunks of size k = ∆n and let ` = 1/∆ be the number of
chunks. By assumption, both ` and k are integral. Let xj , zj ,
and yj denote the j-th chunks of the codeword x, adversary’s
sequence z, and the output y respectively. We assume the
secret s ∈ [2nS ] to consist of ` parts s1, s2, . . . , s` ∈ [2kS ].
For an input distribution P , rate R, and secret size S, we
define the following random variable Φ taking values in the
set of (stochastic) codes.

1) Generate the codeword chunks {Xj(m, sj) ∈ X k : j ∈
[`], m ∈ [2nR]}, sj ∈ [2kS ]} i.i.d. according to P k.

2) To encode the message-secret pair (m, s) ∈ [2nR] ×
[2nS ], we set X(m, s) = (X1(m, s1), . . . ,X`(m, s`)).

For a fixed realization Φ of Φ with codewords {x(m, s)}, the
decoder Bob decodes using the following procedure.

1) Let ε > 0. For each feasible type Q ∈ Q∩Tn(Z) and for
each decomposition of Q into ~Q = Q1, Q2, . . . , Q` ∈
Tk(Z) such that Q = 1

`

∑`
j=1Qj , Bob defines a set of

lists Lj( ~Q). The initial list is defined to be L0( ~Q) =
[2nR]. For each j = 1, 2, . . . , `, the list Lj( ~Q) is the
set of messages m ∈ Lj−1( ~Q) such that there exists an
sj ∈ [2kS ] such that

a) The chunk xj(m, sj) ∈ T (ε,k)(P ).

2We note that a significant portion of our analysis holds for general P ,
and thus we leave P as a parameter throughout our proofs. Our need for a
uniform P appears solely in Lemma 2 in Section IV-B.

b) (xj(m, sj),yj) ∈ T (|Z|ε,k)(P ×WQj
) where WQj

is given by (1).
2) If

⋃
~Q∈(Tk(Z))l,Q∈Q Ll( ~Q) = {m̂} then Bob declares

m̂ as the transmitted message. If the set is empty or
contains more than one messages then he declares an
error.

We now prove that setting R to be C(Q) − δ, S to be
δ/2, and ε such that ε = O(δ2) our encoding/decoding
scheme succeeds with high probability. More precisely, we
show that with high probability over our encoder construc-
tion, the resulting code (Φ,Ψ) allows communication with
high probability. In Lemma 1 we show that the transmitted
codeword, adversarial input, and channel output satisfy some
joint typicality conditions with high probability. In Lemma 2
we show that the size of the lists excluding the correct message
go to 0 with high probability. In Lemma 3 we show that the
true message is in some list with high probability.

B. Technical lemmas
We now need a few technical lemmas to show that the

random code Φ satisfies certain structural properties which
prove useful in the proof of the main theorems. Define Φn,k

as a random variable with the distribution of the code Φ in a
single chunk, with k = ∆n. That is, Φn,k assigns to a pair
(m, sj) ∈ [2nR] × [2kS ] an i.i.d. codeword X(m, sj) ∈ X k
according to P k. The following lemma shows that w.h.p. over
the code Φn,k in a particular chunk (say j), the transmitted
message m survives in the output list Lj if it is in the input
list Lj−1 and if the decoder’s assumed action profile and the
true action profile of the adversary are the same in that chunk.
The proof is a direct application of concentration inequalities
and is omitted.

Lemma 1. Let 0 < ε < 1. Let the block-length n be
sufficiently large, and k = Θ(n). Then with probability greater
than 1− exp(− exp(k(S − 2ε2))), the realization of the code
Φn,k satisfies, for all Q ∈ Tk(Z), all adversarial actions
z ∈ Zk of type Q and all messages m,

P
(

(x(m, s),y) 6∈ T (|Z|ε,k)(P ×WQ)
)
≤ exp(−kε2/2),

(3)

where the probability is taken over the secret randomness
s ∈ [2kS ] of the encoder. Here y = z(x(m, s)) denotes the
received vector when x(m, s) is transmitted and the adversary
acts by z.

For x ∈ X k and ε > 0 define the set

D(x, Q, ε) =
{
y : (x,y) ∈ T (|Z|ε,k)(P ×WQ)

}
. (4)

Let z(x) denote the output y formed by applying permutation
maps z to an input x.

The next lemma shows that with overwhelming probability
over the code Φn,k in a single chunk, the realization of
the code is such that with high probability over the secret,
the decoder’s list size (excluding the transmitted message)
will decrease by a certain amount. The decoder for chunk j
assumes a particular action profile Qj that is not necessarily
the empirical type of the adversary action zj . We do a single



chunk analysis and omit the chunk index in the subscript in
the lemma. Let L ⊆ [2nR] \ {m} denote the initial list of the
decoder for the chunk excluding the transmitted message m.
Since the output of a permutation channel is a deterministic
function of the input and adversary’s action, for each secret s
the output Y only depends on X(m, s) and z. The decoder,
assuming an action profile Q, sets the new list as

L′ = L′(m, s, z, Q)
= {m′ ∈ L : ∃s′ s.t. z(X(m, s)) ∈ D(X(m′, s′), Q, ε)}

Lemma 2. Let L ( [2nR] be a set of messages, and ε >
0 sufficiently small. Then for sufficiently large n, and k =
θ(n), with probability greater than 1−exp (− exp(kS/2)), the
realization of the code Φn,k satisfies, for every m ∈ [2nR]\L,
Q ∈ Tk(Z), z ∈ Zk,

P (|L′| ≤ |L| exp (k(3S/2− I(X;Y ))))

≥ 1− 2−k(S/2−
√
ε)

where the probability is taken over the secret randomness s ∈
[2kS ] of the encoder. Here I(X;Y ) is computed with respect
to the distribution P ×WQ.

Proof: In what follows we use the notation defined above.
Note that Q represents the action profile assumed by the
decoder and Tz need not equal Q. Let H(X), H(X|Y ), and
I(X;Y ) be computed with respect to P×WQ unless otherwise
noted. From [12], [13] we see that

|D(x, Q, ε)| ≤ exp
(
k(H(Y |X) +O(|Z|ε log(|Z|ε)−1))

)
.

Consider generating all codewords X(m′, s′) for m′ ∈ L
and all secrets s′ via Φn,k using the distribution Pn = Pnu .
Let us consider a fixed encoded message m. The code can be
viewed as the union of the two sub-codes F = {X(m′, s) :
m′ 6= m, m′ ∈ L, s ∈ [2kS ]} and G = {X(m, s) : s ∈
[2kS ]}.

Let us also fix an action vector z and a secret s. Since
any component of z is a permutation and the components of
X(m, s) are uniformly i.i.d., the components of z(X(m, s))
are uniformly iid over the output distribution induced by WTz .
So for a given realization of F, and for any m′ 6= m, s′, we
have

PG(z(X(m, s)) ∈ D(x(m′, s′), Q, ε))
≤ exp

(
k(−H(Y ) +H(Y |X) +O(|Z|ε log(|Z|ε)−1))

)
= exp

(
−k(I(X;Y )−O(|Z|ε log(|Z|ε)−1))

)
. (5)

Here the probability is taken over G, in particular over
X(m, s).

Taking the union bound over s′, we have, for each message
m′ 6= m the probability that there is a codeword x(m′, s′) ∈ F
(for some s′) such that z(X(m, s)) ∈ D(x(m′, s′), Q, ε) is
bounded from above by exp (−k (I(X;Y )− S − γ)), where
γ = O(|Z|ε log(|Z|ε)−1). This immediately implies that the
expected list size for a given F satisfies

EΦn,k [|L′| |F] ≤ |L|2kS2−kI(X;Y )2kγ . (6)

Denote the right side of (6) by L̄.

Note that L′ depends on the transmitted message m, a fixed
secret s in that chunk, the codeword X(m, s), the sequence
z, the assumed type Q, and the remainder of the codebook
F = {X(m′, s′) : m′ 6= m, s′ ∈ [2kS ]}, but not on the
codewords G = {X(m, s′) : s′ 6= s}. For every s ∈ [2kS ]
define a variable

Bm,z,Q(s) = 1
(
|L′(m, s, z, Q)| ≥ L̄2k(S/2−γ)

)
. (7)

Now, for fixed m, z,Q, and conditioned on a fixed F, the
value of Bm,z,Q(s) depends only on X(m, s). In particular,
there is a subset E ⊆ X k, s.t. Bm,z,Q(s) = 1 if and only
if X(m, s) ∈ E. Since {X(m, s) : s ∈ [2kS ]} are i.i.d.,
{Bm,z,Q(s) : s ∈ [2kS ]} are also i.i.d. (here we stress that
we are conditioning on F).

By Markov’s inequality,

PΦn,k
(Bm,z,Q(s) = 1|F) ≤ 2−k(S/2−γ).

From the above, the conditional mean
EΦn,k

(
∑
sBm,z,Q(s)|F) is at most 2kS/2+kγ . So by the

Chernoff bound [14], PΦn,k
(
∑
sBm,z,Q(s) ≥ 2 ·2kS/2+kγ |F)

is at most exp
(
− 1

3 exp(kS/2 + kγ))
)
. Since the bound holds

for all F, we get PΦn,k

(∑
sBm,z,Q(s) ≥ 2 · 2kS/2+kγ

)
is at

most exp
(
− 1

3 exp(k(S/2 + γ))
)
.

That is, with doubly-exponential probability over Φn,k, for
at most 2 ·2kS/2+kγ secrets s the list size corresponding to m
will be larger than L̄2k(S/2−γ) = |L|2k(3S/2−I(X;Y )). Using
a union bound over all messages m, state sequences z, and
types Q, plus the facts that γ → 0 as ε → 0 and k = Θ(n)
for n sufficiently large we conclude that

PΦn,k

(
∀m, z, Q : Ps (Bm,z,Q(s) = 1) ≤ 2 · 2−kS/2+kγ

)
≥ 1− exp (− exp(kS/2)) ,

which suffices to prove our assertion for sufficiently small ε >
0 (that satisfies

√
ε > γ).

Let m be the transmitted message, and assume m ∈ L.
Our final technical lemma shows that with high probability
over the code Φn,k in a single chunk, the realization of the
code is such that with high probability over the secret, if the
decoder guesses a type Qj which happens to be equal to the
the empirical type Tz of the adversarial action z, then the list
L′ includes m. The lemma below is a direct consequence of
Lemma 1.

Lemma 3. Let L ⊂ [2nR] be a set of messages, and ε > 0.
Then for sufficiently large n, and k = θ(n), with probability
greater than 1−exp(− exp(k(S−2ε2))), the realization of the
code Φn,k satisfies, for every m ∈ L, z ∈ Zk, and Q = Tz,
P (m ∈ L′) ≥ 1 − 2 exp(−kε2/2). where the probability is
taken over the secret randomness s ∈ [2kS ] of the encoder.

C. Achievability
In order to prove the correctness of our code, we must

characterize the capabilities of the adversary. First, we assume
that the adversarial strategy can be based on the transmitted
message m. This is justified by the maximal error criterion,
which requires vanishing error probability for every message.
Second, since the adversary is delayed by k = ∆n time steps,



its action in the j-th chunk can only depend on the codewords
{xi(m, si) : i ≤ j−1}. We use the facts that the sub-codebook
Φn,k used in chunk j is drawn independently of the preceding
sub-codebooks and that the secret sj is independent of si for
i < j. This implies that zj cannot depend on sj . Furthermore,
we note that the overall type of z = z1, . . . , z` chosen by the
adversary must lie in Q.

Fix a sufficiently small δ > 0 and set R = C(Q) − δ.
Set ε > 0 so that δ > 4`

√
ε and S = δ/2. Fix an m

and let s1, s2, . . . , s` be i.i.d. and uniformly distributed on
[2∆nS ]. Let Φ1, . . . ,Φ` be the (random) sub-codes for chunks
1, . . . , `. Each of these codes is independent and distributed
identically to Φn,k. Let y = y1, . . . ,y` be the received
word. Consider the decoding process defined in Section IV-A.
Namely, fix an overall profile Q ∈ Q and decomposition
~Q = (Q1, Q2, . . . , Q`) ∈ (Tk(Z))l of Q (that satisfies
Q = 1

`

∑`
j=1Qj). There are fewer than (k + 1)|Z|` possible

values for ~Q, so the number of decompositions is at most
polynomial in n.

We set k = ∆n and consider a given small ε > 0.
Throughout the proof we say that a sub-code Φi is good with
respect to Li ⊆ [2nR] if for all m ∈ Li, z ∈ Zk, (i) Lemma 2
is satisfied with L = Li \ {m} for all Q ∈ Tk(Z) and (ii)
Lemma 3 is satisfied with L = Li.

Consider the decoder’s action after the first chunk. The de-
coder starts with a list L0 = L0( ~Q) = L = [2nR], and obtains
a new list L1( ~Q) (denoted by L′ in Lemma 2). The code Φ1

is good with probability 1− exp(− exp(∆nS/2)). From this
point on we assume the realization Φ1 is indeed good and treat
Φ1 as fixed. For Φ1, with probability at least 1−2−∆n(S/2−

√
ε)

over the value of s1, it holds that |L1 \ {m}| = |L1( ~Q) \
{m}| ≤ |L1( ~Q) \ {m}| ≤ 2n(R+3∆S/2−∆I(P,WQ1 )).

Now consider a random code Φ2. The number of different
values for L1( ~Q) can be bounded from above by 2nR|Y|k(k+
1)|Z|2kS , which is less than doubly-exponentially large in k.
Therefore a union bound shows that Φ2 is good (for every
such L1( ~Q) and sufficiently large n) with probability at least
1 − exp(− exp((∆nS/2) − 1)). Thus a good realization Φ2

exists (here we use the fact that the code Φ2 is independent
of the fixed code Φ1). As before, fix the code Φ2. Thus, with
probability at least 1− 2−∆n(S/2−

√
ε) over the value s2, L2 \

{m} = L2( ~Q) \ {m} satisfies

|L2( ~Q) \ {m}| ≤ 2n(R+6∆S/2−∆I(P,WQ1 )−∆I(P,WQ2 )).

We continue in a similar manner for all the chunks. Thus
with probability at least 1− ` · 2−∆n(S/2−

√
ε) over the secret

s, |L` \ {m}| = |L`( ~Q) \ {m}| is bounded from above by
2n(R+ 3`∆S

2 −∆
Pk

j=1 I(P,WQj
)).

By our choice of parameters, this probability is at
least 1 − `2−kε

2/2 (for sufficiently large n). Since mu-
tual information is convex in the channel and since
∆ = 1/`, ∆

Pk
j=1 I(X, WQj ) ≥ I

„
P, ∆

Pl
j=1 WQj

«
≥

minQ∈Q I(P, WQ). Hence |L`( ~Q) \ {m}| is at most

exp
(
−n
(
C(Q)−R− 3S

2

))
≤ exp (−n(δ − 3S/2)) .

Therefore by our setting of S = δ/2 we obtain that for
sufficiently large n, |L`( ~Q) \ {m}| < 1, so every list either
contains m or is empty. By Lemma 3, the true message is
in a list for some ~Q for a 1 − 2 exp(−kε2/2) fraction of
secrets, so the probability (over the secret) that the secret
sequence guarantees m is in L`( ~Q) for one ~Q is at least
1− 2` exp(−kε2/2).

All in all, with probability at least 1− 2` · 2−kε2/2 over the
secret s, the resulting list is either empty or contains m. Union
bounding over ~Q of the decoder we obtain our assertion.

V. CONCLUSION

Our results in this paper are limited to delays which grow
linearly with the blocklength, which contrasts with previous
results such as [7], in which results are shown for adversaries
with delay ∆ = log(n)/n. This is in part due to some
looseness in our analysis; in principle we believe it should be
possible to show the same capacity results for limited delay.
For permutation channels, our capacity region corresponds to
both the AVC capacity under stochastic encoding and maximal
error and the AVC capacity under deterministic coding and
average error. In general, these capacities are not the same;
extending our results to those cases will shed some insight
into how the adversary is weakened by the delay.
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