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1. INTRODUCTION

A set of k balls B1, . . . , Bk in a Euclidean space is said to cover a collection of lines
if every line intersects some ball. We consider the following problem: Given a set
of n lines ℓ1, . . . , ℓn in R

d, find k balls of minimum radius which cover the lines.
We refer to this problem as the “k-center problem” (for lines). Loosely speaking,

our main result is an Õ(nd)-time 2-approximation algorithm for this problem for
the cases k = 2, 3.

This question is motivated by the challenge of coping with incomplete data in
statistics. The usual starting point for statistical theory, learning theory, or estima-
tion for control, is an input set consisting of a list of empirically gathered data points
in R

d. One of the serious gaps between statistical theory and practice, however, lies
with incompletely-specified data. Essentially, the issue is that a high-dimensional
data point is not specified by one “measurement” but by many, and that some of
those measurements may be missing.

From a geometric viewpoint, a data item for which some measurements are miss-
ing is simply an affine subspace. In some cases this subspace is axis-parallel, for
example in data obtained from sliding-bar surveys; however, in others it need not
be. The latter appears for example in the context of sensor networks, where the
individual data gathered may not have a mutually consistent orientation. In this
work, we address one dimensional affine subspaces (i.e., lines, not necessarily axis-
parallel), corresponding to a single degree of freedom in our ignorance of each item.
Hence the bearing of the k-center problem on statistical inference.

The statistical literature on this subject is not on the same rigorous footing
typical of other statistical literature. Incomplete data is coped with either by
filling in missing entries in various ways, computing correlations only from available
entries, or as a last resort (often the default in statistical packages), discarding
incomplete items. Heuristics for filling in entries include “hot deck imputation”
which substitutes for the missing entry the corresponding entry of the most similar
data item; “mean substitution” in which the missing data is replaced with the
sample mean; or replacing a missing element using a learning algorithm or criterion
(EM, max likelihood). See [Little and Rubin 2002; Allison 2002]. This very heuristic
state of affairs appears to be unavoidable since probabilistic inference requires some
kind of external information about the correlations between the present and missing
data. Quoting from [Allison 2002]: “...it is essential to keep in mind that these
methods, like all the others, depend on certain easily violated assumptions for their
validity. Not only that, there is no way to test whether the most crucial assumptions
are satisfied.” Under these circumstances, it is natural to use aggregate geometric
information about the data to dictate the imputations—as has always been the case
with regression in statistics. Our work suggests a particular method of imputation:
given a “data line,” find a ball intersecting it, and choose the point on the line
closest to the center of that ball. We introduced this notion in our earlier work on
the 1-center problem for lines [Gao et al. 2008]; the present work progresses to the
much more difficult task of clustering, necessary for the analysis of inhomogeneous
data.

Of course, we consider the problem of clustering lines to be a very natural one
in computational geometry. Relevant literature is reviewed later.

Algorithmic results. The complexity of the task at hand increases rapidly with
k. Indeed, the k-center problem for lines is at least as hard as the k-center problem
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for points in Euclidean space, which cannot be approximated up to a factor of
1.822 in polynomial time unless P = NP [Feder and Greene 1988]. There are
simple polynomial-time algorithms for every fixed k, but the primary motivation
for the problem lies in handling huge data sets in high dimensional Euclidean space.
Therefore in order to be applicable in our applications, we focus on approximation
algorithms whose running time is quasilinear in n and d, and try to make k as
large as possible under this restriction. (Notice that a quasilinear time algorithm
in n and d is almost the best one can hope for. The input size for n lines in
d dimensional space is Ω(nd) so any algorithm dealing with these lines will have
running time Ω(nd).) Throughout the paper, we do not restrict the size of d (i.e.,
it may be the case that d is a function of n). We have found that it is not too hard
to solve the case k = 2 but that k = 3 is challenging and has required, besides some
nontrivial use of data structures, a new Helly-type theorem. It is an open question
whether there is a quasilinear-time algorithm for k = 4. Our algorithmic results
can be summarized in the following theorem. Given a set of lines L, let r be the
minimum radius k-clustering of L. An α-approximation algorithm for the k-center
problem returns a k-clustering of L of radius αr.

Theorem 1.1. For a set of n lines L in R
d and constant ε > 0, the (2 + ε)-

approximate k-center problem can be solved in (randomized) time O (nd log 1/ε + n logn log 1/ε)

for k = 2; and O
(

nd log 1/ε + n log2 n log 1/ε
ε

)

for k = 3.

A few remarks are in place. Notice that the approximation ratio appearing in
the theorem is slightly larger than 2. This ε slackness is crucial for our analysis
and follows (among other reasons) from our use of an approximate Helly-type the-
orem described below. An approximation ratio better than 2 can be obtained at
the price of an increased running time which is exponential in d (but still quasi-
linear in n). Such exponential time algorithms follow from an easy extension of
Theorem 1.1 or from standard “coreset” based techniques (discussed later in the
Introduction). We present these algorithms in Section C of the Appendix. The
algorithm of Theorem 1.1 is randomized (and succeeds with any constant proba-
bility approaching 1). The only part of our algorithm which is randomized is that
described in Appendix B. Finally, we would like to note that the major obstacle in
extending Theorem 1.1 to values of k greater than 3 lies in obtaining an extension
of Theorem 1.3 (below) to higher dimension.

A Helly type theorem for “crosses”. Our 3-center result in Theorem 1.1 is
dependent on a new result in discrete geometry which may be of independent inter-
est: an extension of Helly’s theorem to certain non-convex sets. Helly’s Theorem
is one of the classical results in discrete geometry [Helly 1923]. It states that if
every d + 1 convex sets in a set S of convex sets in R

d have non-empty intersection
then all of the sets in S have non-empty intersection. Equivalently, if all the convex
sets in S have empty intersection, then there is a subset S′ ⊂ S (a witness) of size
d + 1 which also has empty intersection. In general, Helly’s theorem establishes
the locality of certain properties of convex sets. Over the years the basic Helly
theorem has spawned numerous generalizations and variants, e.g., [Eckhoff 1993;
Wenger 2004]. These Helly-type theorems usually have the following format: if
every m members of a family of objects have property P then the entire family has
property P . In this work we study a certain extension of Helly theorem to objects
that are not convex, but are limited unions of convex sets. The sets we study are
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“crosses”: the union of two axis-parallel strips in the plane. We remark that in
existing literature, e.g., [Eckhoff 1993; Wenger 2004], Helly-type theorems exist for
certain special cases which involve the union of convex sets. But these do not apply
to our case of crosses.

Unfortunately—but not surprisingly—Helly’s theorem fails badly for crosses. In
Section 3 (Lemma 3.1) we show that a set of n crosses may have empty intersection,
yet every n − 1 of the crosses intersect.

Thus we slightly relax the property required from the witness S ′. Instead of
requiring an empty intersection, we require that slight contractions of the crosses
in S′ have empty intersection. As this work addresses approximation algorithms
for the 3-center problem, it turns out that such an approximate Helly-type theorem
suffices for our needs. A few definitions, followed by our extension of Helly’s theorem
to crosses, are given below.

Let I and J be two intervals in R
1. A cross S = I †J defined by I and J is the set

of points {(p, q) ∈ R
2| p ∈ I or q ∈ J}. The ε-contraction of an interval I = [a, b] is

I−ε = [a + ε(b− a), b− ε(b− a)]. The ε-contraction S−ε of the cross S is I−ε † J−ε.

Theorem 1.2. Let S = {S1, . . . , Sn} where each Si is a cross. If ∩n
i=1Si = ∅

then there is a subset S′ of S of size 4
ε + 4 s.t. ∩

S∈S ′S−ε = ∅.
Theorem 1.2 is a key tool for our approximation algorithm for the case k = 3.

More specifically, in the algorithm we design we will need to find the set S ′ that
acts as a witness for the event ∩n

i=1Si = ∅ in an efficient manner. Accordingly we
prove the following Theorem.

Theorem 1.3. The witness set S′ in Theorem 1.2 can be found in time O
(

n log2 n + log2 n
ε

)

.

Further, the set S′ can be dynamically maintained in (amortized) time O
(

log2 n
ε

)

per update, under insertion and deletion of crosses.

Our contribution. To summarize, the contribution of this paper consists of: (i)
An extension of the classical Helly theorem to a setting in which the Helly theorem
does not hold, yet it holds with an ε-contraction of the objects. This is the first
Helly theorem of this type. In the later work of [Langberg and Schulman 2007], a
more general study of ε-contractions and the Helly number of sets of non-convex
sets (and additional related problems) is addressed. (ii) The algorithmic application

of this Helly result in a Õ(nd)-time 2-approximation k-clustering algorithm for lines
in high-dimensional space, for the case k = 2, 3. For this algorithm the new Helly
theorem plays a critical role in removing the ‘curse of dimensionality’. This is a
new technique with potentially more applications in high dimensional space.

Related work. Clustering and shape fitting problems on points have been actively
studied in recent years. For the k-center problem on points in R

d, efficient approxi-
mation algorithms with running time polynomially dependent on d are available. A
simple greedy algorithm [González 1985; Hochbaum and Shmoys 1985; 1986] finds
a 2-approximation and can be implemented in optimal time O(nd log k) [Feder and
Greene 1988]. A recent result using coreset based techniques achieves a (1 + ε)-

approximation algorithm with running time kO(k/ε2)dn [Bǎdoiu et al. 2002]. These
algorithms for points in R

d do not generalize to the case of incomplete data (i.e.,
lines). A major difficulty in such a generalization lies in the lack of a triangle in-
equality when considering lines. The problem is not that the triangle inequality is
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slightly violated, but that no relaxation of it holds. No matter how far apart lines
a and c are, there is always a line b that intersects both.

Nevertheless, in a previous work of ours [Gao et al. 2008], we addressed the 1-
center problem (i.e., the case k = 1 in which we are to find a single ball intersecting
all input lines). From a computational point of view, the 1-center problem sig-
nificantly differs from the 2 and 3-center problems considered in this work. The
1-center problem is a convex optimization problem and therefore fundamentally
easier than the cases of k-center for k ≥ 2. What is in common is the statistical
motivation and specifically the notion that the region of intersection of a line with
a ball is a useful imputation of the missing data on that line.

In our prior work [Gao et al. 2008] we also required a certain modification of
Helly’s theorem. The two contributions are unrelated. In the prior work we had
a situation in which Helly’s theorem already applied (affine subspaces of R

d) and
needed a version in which the Helly number depended not on the ambient dimension
d but on the dimension of the affine subspaces. In the current work we have
a situation in which Helly’s theorem does not apply and indeed would be false.
However, we develop a version which is true when multiplicative contractions are
considered.

There is an interesting literature on Helly-type theorems that involve the union
of two or more convex sets (in our case we are considering the union of two axis
parallel strips). For a nice survey on Helly type theorems in general see Eckhoff

[Eckhoff 1993] or Wenger [Wenger 2004]. Let Cd
k be the family of all sets in R

d

that are the union of at most k convex sets. The intersection of members in Cd
k

are not necessarily in Cd
k, and in general, it is not hard to verify that, subfamilies

of Cd
k do not have finite Helly number (i.e., there is not a finite witness for empty

intersection). Nevertheless, it was shown independently by Matoušek [Matoušek
1997] and Alon and Kalai [Alon and Kalai 1995] that if S is a finite subfamily of

Cd
k such that the intersection of every subfamily of S is in Cd

k, then S has finite

Helly number. Let Kd
k be the family of all sets in R

d that are the union of at most

k pairwise disjoint convex sets. As before Kd
k does not have finite Helly number.

Helly type theorems for subfamilies S of Kd
k such that the intersection of every

subfamily of S is in Kd
k have been studied. Grunbaum and Motzkin [Grunbaum

and Motzkin 1961] showed that for k = 2 the Helly number of such S is 2(d + 1),
and for general k conjectured it to be k(d+1) (which is tight). The case k = 3 was
proven by Larman [Larman 1968], and the general case by Morris [Morris 1973].
An elegant proof (based on the notion of LP-type problems) was presented by
Amenta [Amenta 1996] and recently generalized to a topological setting in [Kalai
and Meshulam 2008]. The results above do not apply for crosses. Further, our
results on crosses do not depend on a restriction on the intersections of subfamilies
of S.

In a recent paper, [Demouth et al. 2008] study the following approximate Helly
type theorem. Given a set system F of convex sets and a convex set U , approxi-
mately cover U by a small subset F ′ of F . In [Demouth et al. 2008], a family of
sets approximately covers a set U if it covers all but an ε fraction of its volume.
Bounds on the size of F ′, which depend only on ε and the fatness of the sets in F
are presented. More related to our problem, [Demouth et al. 2008] also consider the
scenario in which both U and F consist of axis parallel squares in R2. Although
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the problems studied in [Demouth et al. 2008] differ from the ones studied in this
work, one may find some resemblance between their proof techniques.

We would like to note that there has been work on “clustering points with k
lines” [Agarwal and Procopiuc 2000; Agarwal et al. 2003; Har-Peled and Varadara-
jan 2002], where one finds a set of lines L such that the set of cylinders with radius
r about these lines covers all the input points S. The problem we study in this
paper can be phrased as “clustering lines with k points”. There is no obvious
duality between the problems, and they appear unrelated beyond their superficial
similarity.

Comparison with coreset based techniques. In the study of approximate
clustering, one of the powerful algorithmic techniques used is to devise a “coreset”.
For a set of data elements S, a coreset S′ ⊆ S is a small subset of representative
points such that the optimization problems on S′ is a good approximation to the
optimal solution on S, e.g. [Agarwal et al. 2005]. Precisely, a subset S′ is a (1+ ε)-
coreset of S if (1+ε)µ(S′) ≥ µ(S), where µ is a monotonic measure function. Thus
one can apply brute-forth algorithms on the small coreset S′ and obtain efficient
approximation algorithms for the optimization problems on S.

The proof techniques used in this work differ substantially from those based on
coresets. It is thus natural to ask whether coreset based techniques apply to the
clustering of incomplete data. In Theorem 1.1 we obtain a quasi-linear algorithm
with approximation ratio ≃ 2 for the 2, 3 clustering of lines. In the Appendix B, we
show that a weaker ratio of 58 (with a comparable running time) can be obtained
using standard coreset based techniques. This algorithm works for any constant k.
The design and analysis of the algorithm presented in Appendix B was motivated
by the remarks of an anonymous referee. An efficient coreset based algorithm with
an approximation ratio that matches that of Theorem 1.1 seems beyond reach.

Organization. The remainder of this work is organized as follows. In Section 2 we
give a high level description of our 2- 3-center algorithms, and state the main Lem-
mas that need to be proven to obtain the running time specified in Theorems 1.1.
In Section 3 we present our Helly type theorem for crosses (Theorem 1.2) and its
dynamic implementation (Theorem 1.3). Our 3-center algorithm is strongly based
on the results of this section. Finally, in Section 4 we prove the Lemmas specified
in Section 2. We present the proofs of some of our claims in the Appendix. In
addition, a constant approximation algorithm based on coresets for the k-center
problem on lines, together with two independent (1 + ε) approximation algorithms
which run in time quasilinear in n but exponential in d and log 1/ε are presented
in Sections B and C of the Appendix.

2. PRELIMINARIES AND HIGH-LEVEL DESCRIPTION OF ALGORITHM

Given a set of n lines L = {ℓ1, · · · , ℓn} in R
d, we consider the problem of finding

k balls with minimum radius such that each line is covered by at least one ball.
The optimal k-clustering radius of L is denoted by rk(L), and is referred to as the
intersecting radius (in this work we assume all balls have the same radius). The
centers are defined as the intersecting k-centers (or just centers for short). We
denote by Br(c) a ball centered at a center c with radius r in R

d. We denote by
d(., .) the Euclidean distance function. The distance between two points p, q is also
written as |pq|. The distance from a point p to a set Q, d(p, Q), is defined as the
minimum distance from p to any point in Q.
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Decision vs. general problem. Most of the following paper discusses a variant
of the k-center problem, that has the flavor of a decision problem: Namely, given a
set of lines L and a radius r, find a k-clustering of L of radius at most r or report
that r < rk(L). We refer to this problem as the decision k-center problem. Given a
set of lines L and a radius r, an α-approximation to the decision k-center problem
will find a k-clustering of L of radius at most αr or report that r < rk(L).

Any approximation algorithm for decision k-center is also an approximation al-
gorithm for k-center once rk(L) is given as part of the input. Thus, to turn our
algorithm into one for the k-center problem we need to compute the value of rk(L);
or a good estimate to rk(L). We use the results of a coreset based algorithm (pre-
sented in Section B) to efficiently obtain a constant approximation r to the optimal
radius rk(L) for the k-center problem on L. Now, using a standard binary search,
we can run our algorithms for decision k-center at most log 1/ε times (to obtain a
1 + ε approximation to the radius). The running time of the algorithm will have
a multiplicative factor of O(log 1/ε) of the running time of the decision version
k-center. The algorithm of Section B is randomized, and it is the only source of
randomness in our overall algorithm for k-clustering.

Problem structure. For a set of lines L, assume that there are k centers ci,
i = 1, . . . , k, with intersecting radius r. Also assume that there are k lines, say
ℓ1, . . . , ℓk with the property that they belong to the clusters corresponding to the
centers c1, . . . , ck. Namely, the k lines satisfy d(ℓi, ci) ≤ r. We call these lines
representative lines. Consider the projection ĉi of ci onto ℓi. By the triangle
inequality, ĉi’s are the centers of a k-cluster for L of radius 2r. In this paper
we actually look for centers that stay on the lines of L and focus on 2 or 2 + ε-
approximation to the decision k-center problem. The reason for this is that the
centers on L have some special structures we can exploit.

Consider a representative line ℓi, 1 ≤ i ≤ k. We define a set of intervals on ℓi, one
interval per line ℓ ∈ L. For each line ℓj in L we define the interval Ii

j on ℓi, where

Ii
j consists of points on ℓi that are close to ℓj , defined to be within distance 2r from

ℓj . Namely Ii
j = {p ∈ ℓi|d(p, ℓj) ≤ 2r}. We call the interval Ii

j the 2r proximity

interval of ℓj on ℓi. Notice that any point pi on ℓi for which pi ∈ Ii
j covers ℓj with

radius at most 2r. We denote by L(pi) the set of lines covered by pi with radius
2r. For each line ℓj ∈ L(pi) it holds that pi ∈ Ii

j . There are at most n proximity
intervals on each line ℓi. Taking the arrangement of these intervals, we get at most
2n different regions, called canonical regions, such that each region is an interval
and any point pi in a region covers the same set of lines with radius 2r. Thus we
are looking for a set of k centers pi, 1 ≤ i ≤ k, with pi ∈ ℓi such that collectively
they cover all the lines in L. There are only a finite number of choices for pi as we
only need to choose one from each canonical region. The challenge is that we do
not know the representative lines ℓi and we need to find the centers pi efficiently.

We start by describing a naive 2-approximation algorithm for the decision k-
center problem. For L of size n, the naive 2-approximation algorithm we present for
decision k-center will run in time proportional to n2kd. The (2 + ε)-approximation
algorithms we describe for k = 2 and k = 3 (for the k-center problem) achieve time

Õ(nd) and are considerably more involved, however it is easiest to explain them
after the description of the naive algorithm.
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2.1 The naive algorithm for the decision k-center problem

Consider a k-clustering of L and a given radius r, we want to check whether we
can find k centers such that any line is within distance 2r from them. The naive
algorithm we present has two steps. In the first step we find the k representative
lines, ℓ1, . . . , ℓk that belong to different clusters. In fact, we exhaustively search
each and every subset of lines of size k. For each choice of a subset of k lines, we
run the second step to look for the cluster centers on these lines ℓi. The second
step is guaranteed to succeed given a valid set of representative lines. If the second
step fails, then we go back to step 1 to try another set of representative lines.

In the second step of the algorithm, we have a set of representative lines ℓ1, . . . , ℓk.
Again, denote by ci the optimal center and ĉi the projection of ci on ℓi. We now
describe an inductive procedure which finds the points pi ∈ ℓi that cluster L with
radius 2r. For the first point p1, we exhaustively test p1 in every canonical region.
One of the canonical regions contain the projection ĉ1 of the optimal center c1.
When p is in the same canonical region as ĉ1, the remaining lines L \ L(p1) can
be (k − 1)-clustered with radius 2r by the points ĉ2, . . . , ĉk that lie on ℓ2, . . . , ℓk

respectively. So, once p1 is found, we can recurse and find pi for i = 2, . . . , k.
The running time of the algorithm is roughly n2k, and it results with a 2-

approximation for the k-center problem. This can easily be improved to run in
time ≃ nk, by deleting Step 1 above and performing the second step on sets of lines
ℓ1, . . . , ℓk that are not fixed in advance but rather vary according to the points
pi picked in the iterations. Namely, the points p1, . . . , pi under consideration will
define a set of lines Li covered by p1, . . . , pi, and one can define ℓi+1 to be any
line not in Li. However, such an algorithm slightly deviates in structure from the
efficient algorithm we describe in the upcoming section.

2.2 The 2-center problem

The naive algorithm described above is expensive computationally since we use
exhaustive search in both of the steps. There are a few opportunities that we can
speed up the algorithm. We explain an efficient algorithm for the simple case of
the 2-center problem, as an appetizer for the more involved case of k = 3 described
later. Throughout this section we will assume the given set of lines L does not have
a 1-clustering of radius 2r with a center on a line in L (otherwise such a clustering
can be found in time O(nd) as in [Gao et al. 2008]).

Our algorithm follows the same outline as the naive algorithm and has two steps.
In the first step, we look for 2 representative lines ℓ1, ℓ2, each from a different
cluster. In the second step, we find centers pi on ℓi to cluster L with radius 2r.

Lemma 2.1 (Step 1). Let L be a set of n lines in R
d. Let c1, c2 be the centers

and r the radius of a 2-clustering for L. If L does not have a 1-clustering of radius
2r with center on a line in L, then one can find in time O(nd) two pairs of lines
(ℓ1

1, ℓ
1
2), and (ℓ2

1, ℓ
2
2) s.t. either d(ℓ1

j , cj) ≤ r for j = 1, 2 or d(ℓ2
j , cj) ≤ r for j = 1, 2.

Proof. Let ℓ1 be an arbitrary line. In the r radius 2-clustering, ℓ1 is covered
by a center point, say c1. d(c1, ℓ1) ≤ r. Set ℓ1

1 = ℓ2
1 = ℓ1. For ℓj 6= ℓ1 let

Ij = {p ∈ ℓ1|d(p, ℓj) ≤ 2r}. By our assumption the intervals Ij have empty
intersection (otherwise L would have a 1-clustering of radius 2r with center on
ℓ1). Thus, by Helly’s theorem, there exists a pair of intervals Ij , Ij′ with empty
intersection. Let ℓj and ℓj′ be their corresponding lines and set ℓ1

2 = ℓj and ℓ2
2 = ℓj′ .
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It follows that either d(c1, ℓ
1
2) > r or d(c1, ℓ

2
2) > r (otherwise Ij and Ij′ would

intersect). Thus either d(c2, ℓ
1
2) ≤ r or d(c2, ℓ

2
2) ≤ r. One of the pairs, {ℓ1

1, ℓ
1
2},

{ℓ2
1, ℓ

2
2} qualifies as a pair of representative lines.

We remark that we make use of the Helly theorem in the contrapositive – if a set
of convex sets in R

d does not have a common intersection, there must be a small
witness set of size d+1 that does not have a common intersection. With the above
Lemma we get a pair of candidate representative lines in linear time, at least one
of them is a valid set of representative lines. In particular, the proximity intervals
Ij can be build in time O(nd). Let Ij = [pj , qj ]. We consider the case in which the
pj ’s and qj ’s are finite (a similar analysis can be given otherwise). The intervals Ij

intersect if and only if minj qj ≥ maxj pj . Thus, by identifying the interval Ij with
minimum qj and that with maximum pj we complete the implementation of Step
1 in linear time.

For Step 2, assume we have representative lines ℓ1 and ℓ2. We will look for two
points p1 ∈ ℓ1 and p2 ∈ ℓ2 that altogether cover L with radius 2r. For that, we
consider points p1 in each canonical region defined by the arrangement of proximity
intervals I1

j of ℓj on ℓ1. The point p1 covers the set of lines in L(p1) with radius

2r. Then we ask the question whether the set of lines L̄(p1) = L \ L(p1), not
covered by p1 with radius 2r, can be covered by a point p2 on ℓ2 with radius 2r.
An immediate observation is that the subsets L̄(p1) corresponding to points p1 in
adjacent canonical regions differ in at most a single line, thus one may benefit by
checking whether L̄(p1) has a good 1-clustering in a dynamic manner. In the next
Lemma, we design a dynamic data structure which will update and answer the
desired queries in time O(d + log n).

Lemma 2.2 (Step 2). Let ℓ2 be a line and r a given radius. There exists a
dynamic data structure on a set of lines L of size at most n which answers queries
of the form “Is there a 1-cluster of L with center on ℓ2 of radius at most r” with
the following properties: (i) Insert line: time O(d + log n). (ii) Delete line: time
O(log n). (iii) Constructive query: if answer is positive returns appropriate center
on ℓ2, query time O(log n).

Proof. Assume w.l.o.g. that ℓ2 lies on a main axis in R
d. Namely, we can

associate with each point on ℓ2 a number p in R
1. Let ℓj be a line. Let I2

j =

{p ∈ ℓ2|d(p, ℓj) ≤ r} = [pj , qj ] ⊂ R
1. As before, we consider the case in which the

pj ’s and qj ’s are finite (a similar analysis can be given otherwise). We maintain a
dynamic data structure for the intersection of I2

j over ℓj ∈ L which returns a point
in the intersection of the intervals in case they intersect. This suffices as L has a
1-cluster with center on ℓ2 of radius at most r if and only if the intervals I2

j for

ℓj ∈ L intersect. The intervals I2
j intersect if and only if minj qj ≥ maxj pj . Thus

it suffices to maintain the values minj qj and maxj pj dynamically. This can be
achieved by two heaps.

With Step 1 and Step 2 together, we have an algorithm for the decision 2-center
problem of n lines. Namely, for the representative lines obtained in Step 1, we slide
a candidate center p1 on ℓ1. For each canonical region that p1 visits, we check
whether there is a 1-center of radius 2r with the center p2 on the line ℓ2 to cover
the rest of the lines. This is done using the dynamic algorithm explained in Step
2. The total running time is O(nd + n logn).
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2.3 Overview for the 3-center problem

The 3-center problem is significantly more complex than the 2-center problem. Our
solution involves a new Helly theorem for crosses (presented in Section 3). In the
following, we first establish the connection of the 3-center problem with our new
Helly theorem on crosses.

For the approximate decision 3-center problem on a set of lines L and a given
radius r, we look for centers on the lines with intersecting radius (2 + ε)r. The
general proof paradigm follows that of the 2-center case. First we assume that the
lines L can not be clustered by 2 centers with radius (2 + ε)r. Otherwise we can
run the 2-center algorithm in Section 2.2. We start with Step 1 in which we find a
set of representative line triplets {(ℓi

1, ℓ
i
2, ℓ

i
3)} with the property that for one such

triplet it holds that the corresponding lines belong to different clusters in some r
radius 3 clustering of L. We start with the same algorithm used in the first step
for the 2-center problem and identify two pairs of lines (ℓ1, ℓ2), (ℓ

′
1, ℓ

′
2) with at least

one pair belonging to different clusters. In the following assume that ℓ1, ℓ2 belong
to different clusters. Almost as before, for every other line ℓj 6∈ {ℓ1, ℓ2}, define the
proximity interval of radius (2 + ε)r on them, denoted as I1

j and I2
j respectively.

This is the point in which “crosses” come in.

Consider the set of crosses S = {Sj} defined by Sj = I1
j †I2

j . When defining Sj

we view the intervals I1
j and I2

j as subsets of R
1 via some mapping of ℓ1 and ℓ2 to

R
1. Thus, in this rough overview, it is easiest to imagine that ℓ1 coincides with the

x-axis and that ℓ2 coincides with the y-axis. Let p1 be a point on ℓ1, p2 be a point
on ℓ2, and let p = (p1, p2). Our main observation in this modeling is that when
p stabs a cross Sj, it holds that the line ℓj is covered by either p1 or p2 (or both)
with radius (2+ε)r. Now, since L cannot be covered by any two centers p1, p2 with
radius (2 + ε)r, this implies that the n − 2 crosses {Sj} cannot be stabbed by any
point p = (p1, p2) with pi ∈ ℓi. Equivalently, the crosses do not have a common
intersection. Now, recall our Helly theorem for crosses (Theorem 1.2). If the crosses
S do not have common intersection, there is a small witness set S′ of size O(1/ε)
such that the contracted crosses do not have a common intersection. Each such
contracted cross corresponds to a certain line ℓj . With a few computations, we can
show (in Section 4) that one such line ℓj cannot share a cluster with neither ℓ1 or
ℓ2. This implies a small set of triplets as desired: {(ℓ1, ℓ2, ℓj)}Sj∈S ′ .

For Step 2, assume we have already obtained the representative lines (ℓ1, ℓ2, ℓ3).
As before, we consider a point p1 in each of the canonical regions of ℓ1, and would
like to ask whether the remaining lines (not covered by p1) denoted by L̄(p1) can
be covered by two other centers p2 ∈ ℓ2, p3 ∈ ℓ3. Here we use the concept of crosses
once more. Namely, we identify with each line ℓj , its proximity intervals I2

j on ℓ2

and I2
j on ℓ3, and the corresponding cross Sj = I2

j †I3
j . It now holds that the lines

in L̄(p1) can be covered by a center p2 on ℓ2 and p3 on ℓ3 iff their corresponding
crosses have a common intersection point. So the question is, can one efficiently
find such a point (that stabs all these crosses) if one exists or declare that none
such points exist? As before, when p1 moves to an adjacent canonical region on ℓ1,
there is only a slight change of a single line in L̄(p1). Thus at most 1 cross is added
or removed from the corresponding cross set for each shift of p1. In our proofs, we
show using our Helly theorem for crosses, that the question specified above can be
answered very efficiently, even in a dynamic scenario in which the cross set over
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goes local changes.
In the next section we present the proofs for the Helly theorem on crosses. Then

we will explain the details of the 3-center algorithm. In this work we do not address
the k-center problem for k ≥ 4. We have noticed that the case of k ≥ 4 can be dealt
with in a similar manner given theorems analogous to Theorems 1.2 and 1.3 which
address crosses in higher dimensions (not only in R

2). However, this currently
remains out of reach.

3. HELLY THEOREM FOR CROSSES

In this section we prove Theorems 1.2 and 1.3. Recall that the ε multiplicative
contraction of an interval I = [a, b] is I−ε = [a + ε(b − a), b − ε(b − a)], for ε > 0.
For ε > 0, we have Iε = [a − ε(b − a), b + ε(b − a)] which is actually multiplicative
expansion. We use superscript ε to denote the expansion (contraction) of an inter-
val, a cross, or a set of crosses. It is useful to note that for any interval I it holds
that (I−ε)

ε
1−2ε = (Iε)−

ε
1+2ε = I. Here, and throughout, we assume ε > 0.

Proof. (of Theorem 1.2) To simplify notation we will prove the following
theorem which implies Theorem 1.2: Let S = {S1, . . . , Sn} where each Si is a
cross. If ∩n

i=1S
ε
i = ∅ then there is a subset S ′ of S of size 4

ε + 4 s.t. ∩
S∈S ′S = ∅.

We will iteratively construct a small subset S′ of S with empty intersection.
Initially, let S ′ be the empty set. With each intermediate set S′ we associate a set
B (for bad) which is the intersection of the elements of S′. Initially B = R

2 and we
would like B to be ∅.

We start by giving some notation (depicted in Figure 1 (i) and (ii)). Let Si =
Ii † Ji where Ii = [xi, yi] and Ji = [ui, vi]. The cross Si defines four regions:
Ai = {(p, q) | p < xi and p > vi}, Bi = {(p, q) | p > yi and p > vi}, Ci =
{(p, q) | p > yi and p < ui}, and Di = {(p, q) | p < xi and p < ui}. Similar
definitions are given for the sets Sε

i . In such cases the defining parameters will be
enhanced with the symbol ()ε. Let A be the union of the sets Ai in S, B the union
of the sets Bi in S, and C and D defined with respect to Ci and Di. Let a, b, c,
and d be the boundary of A, B, C, D respectively. Let ab be the intersection point
of a and b. Similarly, let cd be the intersection of c and d. As ∩n

i=1Si = ∅, in both
cases since the curves are x and y-monotone the intersection exists and is at most
a horizontal or vertical line. In what follows we assume that the intersection is a
single point, similar proof can be given otherwise.

We now start to construct S′. We start by finding two crosses Si and Sj such
that Ai ∪Bj covers the half plane above the point ab. Assume that the point ab is
on a vertical portion of the boundary a and on a horizontal portion of the boundary
b (other cases can be dealt with in a very similar manner). We take Si to be the
cross defining the boundary of A at the point ab, and Sj to be the cross defining
the boundary of B at the point ab. It is not hard to verify that Si and Sj have the
properties desired.

In a similar manner we find two additional crosses Si′ and Sj′ such that Ci′ ∪Dj′

cover the half space below the point cd. Let S ′ = {Si, Sj , Si′ , Sj′}. If the point ab
is below the point cd then we are done (namely the set B corresponding to S′ is
empty). Otherwise assume ab is to the right and above of cd (other cases can be
dealt with in a similar manner). Notice that all points in B are in the horizontal
strip defined by the points between ab and cd. We will now start adding sets to S′

as to shrink the size of B.
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Fig. 1. (i) A cross defined by the intervals [xi, yi] and [ui, vi], together with the regions
Ai, Bi, Ci and Di. (ii) The boundaries a and b and the intersection point ab. The dotted
rectangles correspond to the center of each cross. (iii) Find the cross Sε

i such that ab is
in Cε

i and yε
i is minimal; Find the cross Sε

j such that cd is in Aε
j and xε

j is maximal. (iv)
Find two crosses that shrink B along the vertical direction substantially.

Consider the point ab = (α0, β0). It is not in the intersection of the sets in Sε

(as they have empty intersection). Thus there is at least one cross Sε
i such that

ab lies in one of the four regions: Aε
i , Bε

i , Cε
i , or Dε

i . It is not hard to verify that
ab can only be in Cε

i . For example assume ab is in Dε
i . Since cd is to the left and

below ab, the region Dε
i includes in its interior the point cd which contradicts the

fact that cd is on the boundary of D. A similar argument can be given for Aε
i and

Bε
i .
Let Sε

i be the cross for which ab is in Cε
i and yε

i is minimal. Similarly let Sε
j be

the cross for which cd = (γ0, δ0) is in Aε
j and xε

j is maximal. Let (α1, β1) = (yi, β0)

and (γ1, δ1) = (xj , δ0). Now by adding Si and Sj to S ′ we study the corresponding
set B. We consider two cases: if α1 < γ1 then B = ∅ and we are done. Otherwise,
it can now be seen that B is included in the rectangle defined by the points (α1, β1)
(the upper right corner) and (γ1, δ1) (the lower bottom corner). See Figure 1 (iii).

We now turn to proceed in several iterations in which the size of the rectangle
including B gets smaller and smaller. In each iteration we add two sets to S′

for so called vertical progress and two sets for horizontal progress. In general, the
analysis of each iteration is similar to that described above. We will now define a
single iteration giving vertical progress. Iterations giving horizontal progress are
analogous.

Consider the point (α1, β1). It is not in the intersection of the sets in Sε (as they
have empty intersection). Thus there is at least one cross Sε

i such that (α1, β1) is
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in one of the four regions Aε
i , Bε

i , Cε
i , or Dε

i . It is not hard to verify that (α1, β1)
can only be in Aε

i . If (α1, β1) is in Cε
i , then Sε

i should have been chosen in previous
steps since its y value is smaller (recall that we chose the cross defining (α1, β1) to
have minimal y value). If (α1, β1) is in Bε

i , Bε
i includes in its interior the point ab

which contradicts the fact that ab is on the boundary of B. A similar argument
can be given for the last case.

Now let Si be the cross for which (α1, β1) is in Aε
i and vε

i is minimal. Similarly
we find a set Sj for which (γ1, δ1) is in Cε

j and uε
j is maximal. Let (α2, β2) = (α1, vi)

and (γ2, δ2) = (γ1, uj). It is now not hard to verify that by adding Si and Sj to S′

the corresponding set B is either empty and we are done (if δ2 > β2) or included
in the rectangle defined by the pair of points (α2, β2) and (γ2, δ2). The crucial
thing to notice is that the size of the rectangle B has shrunken significantly.
Namely vi is significantly smaller than β1 and uj is significantly larger than δ1. To
show that vi is significantly smaller than β1 notice that our definitions imply that
uε

i ≤ ui ≤ δ0 (otherwise the set Di corresponding to Si would include the point
cd in its interior). Now consider two cases: if vε

i is significantly smaller than β1

then so is vi, otherwise vε
i − uε

i is large with respect to β0 − δ0 and we can show
that vε

i − vi (the gap obtained by shrinking the cross) is also large with respect to
β0 − δ0. See Figure 1 (iv). Basic calculations show that we are guaranteed that
β1 − vi = β1 − β2 is at least ε

4 (β0 − δ0). Similarly we have that uj − δ1 = δ2 − δ1

is at least ε
4 (β0 − δ0). All in all, we obtain (1 − ε

2 )(β0 − δ0) > β2 − δ2. Thus, in
this iteration we have made progress of ε

2 in our goal to shrink the size of B. The
progress was made is in the vertical axis of the rectangle B. One can analogously
now make ε

2 progress in the horizontal axis of B also. Namely one can add two

sets to S ′ and obtain a corresponding set B contained in a rectangle defined by the
points (α3, β3) and (γ3, δ3) where (1 − ε

2 )(α0 − γ0) > α3 − γ3.
We continue such iterations in a similar manner, in which each iteration will

include both horizontal and vertical progress. To be precise, we make vertical
progress with respect to the point (αi, βi) only if β0−βi ≤ (β0− δ0)/2, and vertical
progress with respect to the point (γi, δi) only if δi − δ0 ≤ (β0 − δ0)/2. A similar
condition holds for horizontal progress w.r.t. the points (αi, βi) and (γi, δi). The
progress made will always be of magnitude ε

2 times (β0−δ0) for vertical phases and
(α0−γ0) for horizontal phases. For example, in the next iteration, in which we define
the boundaries (α4, β4) and (γ4, δ4) of B, it will hold that (1−2· ε

2 )(β0−δ0) > β4−δ4.

This follows from the fact that the cross Si added to S′ corresponding to (α3, β3)
has ui ≤ δ0 and the cross Sj added to S′ corresponding to (γ3, δ3) has vj ≥ β0.

All in all, with m iterations we obtain a subset S′ with a corresponding set B
which is included in a rectangle defined by the points (α, β) and (γ, δ) for (1 −
mε
2 )(β0 − δ0) > β − δ and (1 − mε

2 )(α0 − γ0) > α− γ. Hence taking m to be 2
ε will

yield a subset S ′ of size at most 4
ε + 4 as desired.

Corollary 3.1. Let S = {S1, . . . , Sn} where each Si is a cross. If ∩n
i=1Si 6= ∅,

then running the algorithm specified in the proof of Theorem 1.2 will result in a
point p ∈ ∩n

i=1Si
ε.

Proof. We use the same notation as in the proof of Theorem 1.2. Given S, the
algorithm of Theorem 1.2 must fail to produce S ′ such that ∩

s∈S ′S = ∅. This will

happen only if (i) The boundaries a or b do not intersect. (ii) The boundaries c
and d do not intersect. (iii) For some iteration, one of the points (αi, βi) or (γi, δi)

ACM Journal Name, Vol. V, No. N, May 2009.



14 · Jie Gao, Michael Langberg, Leonard Schulman

is in ∩n
i=1S

ε
i . In all cases above a point in ∩n

i=1Si
ε is implied.

We now prove Theorem 1.3 stated in the Introduction. Theorem 1.3 addresses
an efficient implementation of the algorithm described in Theorem 1.2.

Proof. (of Theorem 1.3) We use the same notation as in Theorem 1.2. Since
Theorem 1.2 is constructive, we will explain here the data structures we use as well
as how they support the operations. To prove the 3-clustering result in Theorem 1.1,
we will be interested in dynamic data structures that support insertion and deletion
of crosses (which will correspond to lines in the clustering instance), thus such data
structures are presented and analyzed.

The algorithm presented in Theorem 1.2 can be described in two phases. In the
first phase we find the points ab and cd. In the second phase we iterate over points
(αi, βi) and (γi, δi): for each such point we find a cross that does not include the
point. The crosses we find satisfy certain minimality properties. In what follows
we describe a dynamic data structure that allows to maintain the contours a, b, c,
and d and the intersection points ab and cd. For the second phase of the algorithm
we use the dynamic data structure specified in [Agarwal et al. 2005] which allows
stabbing queries for axis-parallel rectangles with the maximum/minimum value
objective function. The amortized update and query time of the dynamic structure
in [Agarwal et al. 2005] is O(log2 n).

We now explain the data structure for maintaining the boundary a of A = ∪n
i=1Ai

for A = {A1, . . . , An}. The remaining boundaries are maintained similarly. We
first show how to build the data structure for A, then we elaborate on deletion
and insertion of some Ai. We define pi = (xi, vi) as the corner point of a region
Ai. The boundary of Ai is denoted as ai. We sort all the points pi, for all i,
along the 45◦ line (that is, we project these points onto the line “x = v” and sort
the corresponding projected points, here x and v are the main axes). We build a
balanced binary search tree T with the points pi as leaves. For each internal node u
in T , denote by N(u) the set of nodes in its subtree (sorted along the 45◦ line). For
each node u in the tree, we implicitly maintain the boundary a(u) of ∪i∈N(u)Ai.
The observation is that a(u) can be simply computed from the boundaries of the
children w and v of u, i.e., a(w), a(v). Throughout, we will assume the value of
w is smaller than that of v with respect to the 45◦ line, for example see Figure 2
(i). In this example, a(u) is the concatenation of the first part of a(w) (up to the
intersection point) and the second part of a(v) (from the intersection point).

Storing the contour a(u) entirely at each node of our tree will involve too many
changes when considering dynamic updates. Thus at each node u we only store
the intersection of the contours of its children a(w) and a(v). If such a point does
not exist, we store one of two symbols specifying which of the contours of the
two children is lowest. For leaves we will store the corresponding point pi. When
computing the intersection point of a(w) and a(v) we use the recursively computed
information stored in the subtrees rooted at w and v.

We now show how to find the intersection of the contours of a(w) and a(v). The
intersection of the contours a(w) and a(v) is either the intersection of a(w) with the
lowest horizontal portion of a(v) or the intersection of a(v) with the rightmost ver-
tical portion of a(w). Accordingly, the basic operation we use finds the intersection
of a horizontal (alternatively vertical) line with the boundary of a(w) (alternatively
a(v)). Let ℓ be a horizontal line. One can use the subtree structure of w to search
for the intersection of ℓ and a(w). Namely, we compare the horizontal line ℓ with
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a(v)

a(u)

a(w)

a(u)

a(w)

a(v)

b

(i) (ii)

Fig. 2. (i) The data structure that maintains the boundary of A. A node u stores the inter-
section (drawn in blue) of the boundaries of its children. (ii) To search for the intersection
of a and b, we use the binary tree structures for a and b. We compare the intersections
stored at the root of each tree, based on which we recurse on the corresponding subtrees.

the intersection stored at the node w. If ℓ is above the intersection, we recurve on
the right subtree of w, otherwise we recurse on the left subtree. This binary search
costs at most O(log |N(w)|), where |N(w)| is the number of nodes in the subtree of
w. In the case described above ℓ is the lowest line of the contour a(v).

To summarize, our data structure on n crosses can be constructed in time
O(n log n). It also allows dynamic updates in time O(log2 n) under insertion and
deletion. Upon the insertion of a new region A0, we first insert the corner p0 in the
sorted list. Then we propagate the boundary update from the leaf to the root. Only
the nodes on the path from A0 to the root of the tree will be updated. The update
at each internal node may also trigger another binary search which costs O(log n).
Standard rotation mechanisms may be used here to keep the tree balanced. The
total update cost is O(log2 n) at most. Deletion can be handled in the same way.
Notice that at internal nodes we do not explicitly keep the boundary of the subtree,
but instead only an intersection of the boundaries in subtrees. Although the dele-
tion of a region A0 may suddenly increase the complexity of a (e.g., a portion of
the boundaries that was hidden by A0 now becomes suddenly exposed), the update
cost is low.

It is left to show given a data structure for a and one for b how one can find the
intersection point ab. See Figure 2 (ii). This can be achieved by traversing down
the search trees for a and b. Basically we compare the intersections stored at the
root for a and b, based on which we are able to eliminate half of the boundary of a
or b and recurse. The cost is O(log n).

We conclude that the algorithm in Theorem 1.2 can be implemented in time
O(n log2 n + log2 n/ε). Computing ab and cd can be done in time O(n log n) and
each iteration of the algorithm can be done using the stabbing query data structure
mentioned above in time O(log2 n) after a preprocessing of time O(n log2 n). As all
the data structures we considered support insertion and deletion of crosses, the wit-
ness S′ can be maintained in (amortized) time O(log2 n/ε) under such updates.

We now state two lemmas. The first shows that Theorem 1.2 does not hold with-
out the notion of contraction. The second shows that our analysis in Theorem 1.2
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is tight (up to constant factors). Both lemmas are proven in the Appendix.

Lemma 3.1. There exists a set S = {S1, . . . , Sn} of crosses such that ∩n
i=1Si = ∅

but every subset S′ of S of size n − 1 has non empty intersection.

Lemma 3.2. For any ε > 0, there exists a set S = {S1, . . . , Sn} of crosses
such that ∩n

i=1S
ε
i = ∅ but every subset S′ of S of size 1/(4ε) − 2 has non empty

intersection.

4. DECISION 3-CENTER PROBLEM

In this section we will describe the details of the algorithm that computes a (2+ε)-
approximate 3-clustering of a set of lines L in quasilinear time.

Recall that our algorithm has two steps. In the first step we aim to find a set
of representative lines that belong to different clusters. In the second step we try
to find centers on these representative lines covering all the lines. We start by
specifying Step 1 and 2 of our algorithm for decision k-center under the assumption
that we are given a radius r satisfying r3(L) ≤ r ≤ r3(L)(1 + ε). We will also
assume throughout that the set of lines L does not have a 2-clustering of radius
(2 + ε)r with centers on lines in L. We start by stating the following technical
Lemma whose proof appears in the Appendix.

Lemma 4.1. Let ℓ and ℓ1 be two lines. Let r > 0. Let I(r) = {p ∈ ℓ|d(p, ℓ1) ≤
r}. Then I(r(1 − ε)) ⊆ I(r)−ε/2 ⊆ I(r).

Lemma 4.2 (Step 1). Let L be a set of n lines in R
d. Let c1, c2, c3 be the

centers and r the radius of a 3-clustering for L. Let ε > 0 be sufficiently small.
Assume that L does not have a 2-clustering of radius (2 + ε)r with centers on lines

in L. Then one can find in time O
(

nd + n log2 n + log2 n
ε

)

, a list of triplets of

lines {(ℓi
1, ℓ

i
2, ℓ

i
3)}O(1/ε)

i=1 s.t. for some i it holds that ℓi
1, ℓ

i
2 and ℓi

3 belong to different
clusters w.r.t. the centers c1, c2 and c3 and radius r. Namely, it is the case that
d(ℓi

j , cj) ≤ r for j = 1, 2, 3.

Proof. The set of triplets we construct will be of size k = 48/ε + 8. Recall that
L can not be clustered by 2 centers on lines of L with radius (2 + ε)r. With the
same idea as in Lemma 2.1 we can find two sets of lines (ℓ1, ℓ2), (ℓ′1, ℓ

′
2) such that

at least one pair of lines do not belong to the same cluster. We set ℓi
1 = ℓ1, ℓi

2 = ℓ2

for i = 1, . . . , k/2, and ℓi
1 = ℓ′1, ℓi

2 = ℓ′2 for i = k/2 + 1, . . . , k.
We now proceed (w.l.o.g.) under the assumption that d(ℓ1, c1) ≤ r, d(ℓ2, c1) > r

and d(ℓ2, c2) ≤ r. We now look for the third line not in the same cluster as ℓ1 or
ℓ2. For any other line ℓj in L \ {ℓ1, ℓ2}. Let I1

j = {p ∈ ℓ1|d(p, ℓj) ≤ (2 + ε)r} be

defined as before. Similarly define the interval I2
j = {p ∈ ℓ2|d(p, ℓj) ≤ (2 + ε)r}.

Consider any isometric mapping φ1 of ℓ1 and φ2 of ℓ2 to the one dimensional line
R

1. Denote the image of I1
j and I2

j under these mappings as φ1(I
1
j ) and φ2(I

2
j )

respectively. Consider the cross Sj = φ1(I
1
j )†φ2(I

2
j ). We notice that the crosses Sj

corresponding to lines in L \ {ℓ1, ℓ2} have empty intersection, since L can not be
2-clustered.

Now, by Theorem 1.2 there exists a family of crosses S′ of size 24/ε + 4 such
that ∩

S∈S ′S− ε
6 = ∅. For each cross Sj ∈ S ′ corresponding to line ℓj define ℓi

3 = ℓj ,

i = j or i = 24 + j. We now claim that one of the lines ℓi
3 defined above satisfies

d(ℓi
3, c3) ≤ r.
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Consider the centers c1 and c2 and project them onto ℓ1 and ℓ2 respectively.
Denote the corresponding points p′1 and p′2. Let p1 = φ1(p

′
1) ∈ R

1 and p2 =
φ2(p

′
2) ∈ R

1. The point (p1, p2) is not included in ∩
S∈S ′S− ε

6 , thus there is at least

one cross S ∈ S ′ such that (p1, p2) 6∈ S− ε
6 . We denote this cross by S3. Let ℓ3

be the line corresponding to cross S3. Notice that ℓ3 is equal to ℓi
3 for some i.

Hence, it suffices to prove that d(ℓ3, c3) ≤ r. We will show that d(ℓ3, c1) > r and
d(ℓ3, c2) > r, this will imply d(ℓ3, c3) ≤ r.

In what follows we show that d(ℓ3, c1) > r, a similar argument holds for d(ℓ3, c2) >
r. Let S3 = φ1(I

1
3 )†φ2(I

2
3 ). Recall that I1

3 = {p ∈ ℓ1|d(p, ℓ3) ≤ (2 + ε)r} and

I2
3 = {p ∈ ℓ2|d(p, ℓ3) ≤ (2 + ε)r}. As (p1, p2) 6∈ S

− ε
6

3 we have that p1 6∈ (φ1(I
1
3 ))−

ε
6

and p′1 6∈ (I1
3 )−

ε
6 . As I1

3 was defined with respect to distance (2+ε)r, by Lemma 4.1
we have that {p ∈ ℓ1|d(p, ℓ3) ≤ (2 + ε)(1 − ε

3 )r} ⊆ (I1
3 )−

ε
6 . Hence, p′1 6∈ {p ∈

ℓ1|d(p, ℓ3) ≤ (2 + ε)(1 − ε
3 )r} which implies that d(p′1, ℓ3) > (2 + ε)(1 − ε

3 )r > 2r.
We conclude that it must be the case that d(ℓ3, c1) > r otherwise d(p′1, ℓ3) ≤
d(p′1, c1) + d(ℓ3, c1) ≤ 2r. (Note that d(p′1, c1) ≤ r, since p′1 is the projection of c1

on ℓ1 and d(c1, ℓ1) ≤ r.) This concludes our existence proof. The running time of
finding the k triplets follows from the running time specified in Theorem 1.3.

Lemma 4.3 (Step 2). Let ε > 0. Let ℓ2 and ℓ3 be two lines in a set of lines L
and given r. There exists a dynamic data structure on L of size at most n which
answers queries of the form “Is there a 2-cluster of L with one center on ℓ2 and the
other on ℓ3 of radius smaller than 2r” with the following properties: (i) Insert a
line in amortized time O(d+log2 n). (ii) Delete a line in amortized time O(log2 n).
(iii) Support ε-approximate constructive query: If the optimal 2-clustering with one
center on ℓ2 and the other on ℓ3 has radius r∗ ≤ 2r(1 − ε) answer positively and
return corresponding centers (that enable a 2r radius 2-cluster). Query time of (iii)
is O(log2 n/ε).

Proof. Consider a set of lines L. For each line ℓj ∈ L we define the intervals
I2
j = {p ∈ ℓ2|d(p, ℓj) ≤ 2r} and I3

j = {p ∈ ℓ3|d(p, ℓj) ≤ 2r}. As in Lemma 4.2,
consider any isometric mapping φ2 of ℓ2 and φ3 of ℓ3 to the one dimensional line
R

1. Denote the image of I2
j and I3

j under these mappings as φ2(I
2
j ) and φ3(I

3
j )

respectively. Consider the cross Sj = φ2(I
2
j )†φ3(I

3
j ). Let S be the set of crosses

corresponding to L. As in Lemma 4.2, we want to check if the intersection of all
the crosses in S is empty or not, and if not, find a common intersection (which
will imply two centers, one on ℓ2 and the other on ℓ3, that cover L with radius
2r). In fact, we will use the algorithm in Theorem 1.2 (with the implementation of
Theorem 1.3) as a test procedure.

Now assume that r∗ ≤ 2r(1−ε). In this case we have that ∩S∈SS 6= ∅. Moreover,

by Lemma 4.1 we have that ∩S∈SS−ε/2 6= ∅. Thus the test procedure of Theo-

rem 1.2 applied to S cannot output a set S ′ such that ∩
S∈S ′S−ε/2 = ∅. However, in

this case (Corollary 3.1 ) the test procedure will find a point p = (c2, c3) ∈ ∩S∈SS.
We conclude for each line ℓj ∈ L that either d(c2, ℓj) ≤ 2r or d(c3, ℓj) ≤ 2r. As
the test procedure of Theorem 1.2, as described in Theorem 1.3, supports dynamic
updates, we conclude our lemma.

We would like to remark that although Lemma 4.3 does not answer the recursive
decision problem exactly, it still suffices to prove Theorem 1.1. Namely, let r ≥
r3(L). One may now run Step 1 of our algorithm on r and Step 2 on 2r(1 + ε)
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with approximation parameter ε/2. It is not hard to verify that this will yield an
approximate 3-clustering of radius ≤ 2r(1 + ε).

5. CONCLUSIONS AND FUTURE WORK

We have presented a new clustering algorithm for lines in Euclidean space. The
main contribution is a new Helly-type theorem and its role in enabling algorithms
with running time nearly linear in n and d, thus making the algorithms appealing
in high dimensional applications.

Much work remains for the future: devising quasilinear-time approximation for
increased (beyond 3) numbers of clusters; extending this work to flats of higher
dimension (than lines); and exploring more fully the potential of our contractive
Helly-type theorems in approximation algorithms.

Acknowledgments

The second author would like to thank Dan Feldman for sharing ideas that lead to
the proof presented in Appendix B.1.

REFERENCES

Agarwal, P., Har-Peled, S., and Varadarajan, K. R. 2005. Geometric approximation via
coresets. In Current Trends in Combinatorial and Computational Geometry. Cambridge Uni-
versity Press.

Agarwal, P. K., Arge, L., and Yi, K. 2005. An optimal dynamic interval stabbing-max data
structure? In SODA ’05: Proceedings of the sixteenth annual ACM-SIAM symposium on Dis-

crete algorithms. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA,
803–812.

Agarwal, P. K. and Procopiuc, C. M. 2000. Approximation algorithms for projective clus-
tering. In SODA ’00: Proceedings of the eleventh annual ACM-SIAM symposium on Discrete

algorithms. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 538–547.

Agarwal, P. K., Procopiuc, C. M., and Varadarajan, K. R. 2003. A (1 + ε)-approximation
algorithm for 2-line-center. Comput. Geom. Theory Appl. 26, 2, 119–128.

Allison, P. D. 2002. Missing Data. Sage Publications.

Alon, N. and Kalai, G. 1995. Bounding the piercing number. Discrete and Computational

Geometry 13, 3/4, 245–256.

Amenta, N. 1996. A short proof of an interesting Helly-type theorem. Discrete and Computational

Geometry 15, 4, 423–427.

Bǎdoiu, M., Har-Peled, S., and Indyk, P. 2002. Approximate clustering via core-sets. In STOC

’02: Proceedings of the thiry-fourth annual ACM symposium on Theory of computing. ACM
Press, New York, NY, USA, 250–257.

Demouth, J., Devillers, O., Glisse, M., and Goaoc, X. 2008. Helly-type theorems for ap-
proximate covering. In proceedings of the twenty-fourth annual Symposium on Computational

Geometry , 120–128.

Eckhoff, J. 1993. Helly, Radon, and Carathéodory type theorems. In Handbook of Convex
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Appendix

A. PROOF OF CLAIMS

Proof. (of Lemma 3.1) We define a set S of n = 2m + 1 crosses. The first m
crosses are of the form Si = Ii † Ji = [−∞, i] † [i + 2,∞], i = 1, 3, 5, . . .2m− 1. The

second m crosses are of the form Ŝi = Îi † Ĵi = [i,∞] † [−∞, i − 2], i = 2, 4, . . .2m.
The final cross is S0 = I0 † J0 = [1 + 1/2, 2m− 1/2] † [1/2, 2m + 1/2]. Please refer
to Figure 3.

It is not hard to verify that the 2m + 1 crosses have empty intersection. Or, the
union of the complement of the crosses cover R

2 completely. The boundary of the
intersection of the Si’s has a sawtooth structure and consists of the line connecting
the points: (1,−∞), (1, 3), (3, 3), (3, 5), . . . , (2m − 1, 2m − 1), (2m − 1, 2m + 1),
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(∞, 2m + 1). The boundary of the intersection of the Ŝi’s has a complementary
sawtooth structure and consists of the line connecting the points: (−∞, 0), (2, 0),
(2, 2), (4, 2), . . . , (2m − 2, 2m − 2), (2m, 2m − 2), (2m,∞). This implies that

the intersection of the Si’s and Ŝi’s consists of points (x, y) with x ≥ 2m and
y ≥ 2m + 1 or points (x, y) with x ≤ 1 and y ≤ 0. These regions do not intersect
S0. See Figure 3.

On the other hand, consider removing a single cross from S to obtain S ′. If we
remove S0, then by the discussion above S ′ has a non-empty intersection. If we
remove Si, it is not hard to verify that the point (i + 1, i + 1) is in every set in S′.

Finally, if we remove Ŝi, the point (i − 1, i − 1) is in every set in S ′.

Proof. (of Lemma 3.2) We use the construction defined above in the proof of
Lemma 3.1. Let ε > 0 be sufficiently small and let m = ⌊1/(8ε)⌋. In what follows
we will use the fact that 2mε < 1/4. We define a set S of n = 2m + 1 crosses
identical to those of Lemma 3.1.

It is not hard to verify that Sε
i is included in the cross [i−2m−1/4, i+1/4]† [i+

2−1/4, i+2+1/4+2m], that Ŝε
i is included in the cross [i−1/4, i+1/4+2m]†[i−2−

1/4−2m, i−2+1/4], and that Sε
0 ⊆ [2−1/4, 2m−1+1/4]†[2−1/4, 2m−1+1/4]. It

holds that the ε expansion of the 2m+1 crosses have empty intersection. The part
of the boundary of the intersection of the Sε

i ’s that is close to the line “x = y” has
a sawtooth structure and consists of the line connecting the points: (1 +1/4,−∞),
(1+1/4, 3−1/4), (3+1/4, 3−1/4), (3+1/4, 5−1/4), . . . , (2m−1+1/4, 2m−1−1/4),
(2m−1+1/4, 2m+1−1/4), (∞, 2m+1−1/4). The same part of the boundary of

the intersection of the Ŝε
i ’s has a complementary sawtooth structure and consists

of the line connecting the points: (−∞, 1/4), (2 − 1/4, 1/4), (2 − 1/4, 2 + 1/4),
(4 − 1/4, 2 + 1/4), . . . , (2m − 2 − 1/4, 2m − 2 + 1/4), (2m − 1/4, 2m − 2 + 1/4),

(2m − 1/4,∞). This implies that the intersection of the Sε
i ’s and Ŝε

i ’s consists
of points (x, y) with x ≥ 2m − 1/4 and y ≥ 2m + 1 − 1/4 or points (x, y) with
x ≤ 1 + 1/4 and y ≤ 1/4. These regions do not intersect Sε

0 .
On the other hand, by Lemma 3.1 removing even a single cross from S results

in non-empty intersection. As m = ⌊1/(8ε)⌋ and |S| = 2m + 1 we conclude our
assertion.

Proof. (of Lemma 4.1) We prove I(r(1 − ε)) ⊆ I(r)−ε/2 as the second inclu-
sion is immediate. The lines ℓ and ℓ1 lie in some three dimensional space. We will
assume w.l.o.g. that the line ℓ lies on the x axis (namely, a parameterized descrip-
tion of ℓ is (1, 0, 0)t) and that the line ℓ1 can be described by (a, b, 0)t+(0, 0, h) for
non negative a, b and h with a2 + b2 = 1. This implies that the minimum distance
between ℓ and ℓ1 is h and is obtained with the points (0, 0, 0) on ℓ and (0, 0, h) on
ℓ1. With this setting, it is not hard to verify that the square distance between a
point (x, 0, 0) on ℓ and the line ℓ1 is h2 + x2b2.

Let x(r) satisfy h2 + x(r)2b2 = r2. Namely, x(r) =
√

r2−h2

b2 . It follows that the

interval I(r) is equal to [−x(r), x(r)]. Thus it is left to show that x(r) − εx(r) ≥
x(r(1 − ε)) or equivalently (1 − ε)x(r) ≥ x(r(1 − ε)) (indeed this will imply that
I(r(1 − ε)) ⊂ I(r)−ε/2). The inequality (1 − ε)x(r) ≥ x(r(1 − ε)) follows directly
from the definition of x(r).
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B. A CONSTANT APPROXIMATION BASED ON CORESETS

We now present a 58-approximate k-center clustering algorithm for lines based on
the notion of coresets. We start with the following claim:

Claim B.1. Let L = {ℓ1, . . . , ℓn} be a set of n lines in R
d. For a constant k, a

2-approximate k-center clustering of L can be found in time O(dn4k+1).

Proof. We use the naive algorithm described in Section 2.1 to obtain the as-
serted running time. Let c∗1, . . . , c

∗
k be the cluster centers and r∗1 , . . . , r∗k be the

cluster radii in an optimal k-center clustering of L. Let Li be a partition of L im-
plied by this optimal clustering. Namely, for every ℓ ∈ Li it holds that d(c∗i , ℓ) ≤ r∗i .
Or in other words, the optimal 1-center of Li is exactly c∗i with radius r∗i .

Consider any set Li. Let ri ≤ r∗i be the maximum of the 1-center radius of all
triplets of lines in Li. In [Gao et al. 2008] it is shown, that for any line ℓ ∈ Li there
exists a point ci on ℓ such that the ball of radius 2ri centered at ci covers all lines
in Li.

This implies the following algorithm. For i = 1, . . . , k, exhaustively guess the
triplet {ℓi

1, ℓ
i
2, ℓ

i
3} in Li which has maximal 1-center radius out of all line triplets in

Li. For each such triplet {ℓi
1, ℓ

i
2, ℓ

i
3}, compute its optimal 1-center radius ri. Now

using the naive algorithm appearing in Section 2.1, with the radii {ri}k
i=1 and the

lines {ℓi
1}k

i=1, (exhaustively) find the centers ci. Namely, for each line ℓi
1 we define

for every line ℓj ∈ L a corresponding interval Ij = {x ∈ ℓi
1|d(x, ℓj) ≤ 2ri}. These

intervals define O(n) regions on ℓi
1, one of which corresponds to Li.

We sketch a method for finding a small coreset of lines L′ in L with the property
that the optimal k-center of L′ is a good approximation to the optimal k-center
of L. More specifically, any k-center of L′ of radius r with centers c1, . . . , ck will
imply a k-center clustering of L of radius 29r centered at c1, . . . , ck. We would like
to find the coreset in time which is quasi-linear in n = |L| and d. Once the coreset
has been found, we can find an approximate k center using Claim B.1. The proof
we present holds for any constant k.

The proof has three major steps. Let r∗ be the optimal k-center clustering radius
of L. Roughly speaking, in the first step we find a k′-center clustering of L of radius
4r∗. This clustering partitions the lines in L into k′ sets. As the lines in each such
subset P are covered by a ball of small radius, they can be perturbed so that all
lines intersect. In the second step, for each perturbed subset P̃ of lines above we

use the fact that they intersect to find a coreset P̃ ′ ⊆ P̃. Specifically, any k center

clustering of P̃ ′
of radius r will imply an approximate clustering of P̃ (with the

same k centers). These coresets will be of size exponential in k. Now taking the

final coreset to be the union of the (original) lines in P corresponding to P̃ ′
, we

obtain the desired coreset L′. Once we have a small coreset L′, we can use the
algorithm in Claim B.1 to find a 2-approxmate clustering of the coreset, and thus
a corresponding approximate clustering of L (this is the third and final step of our
algorithm). In what follows, we elaborate on the steps 1 and 2 described above.

B.1 Step 1

Let c1, . . . , ck be the cluster centers and r∗1 , . . . , r∗k be the cluster radii in an optimal
k-center clustering of L. Let r∗ = maxi r∗i . Let Li be a partition of L implied by
this optimal clustering. Namely, for every ℓ ∈ Li it holds that d(ci, ℓ) ≤ r∗i . For

ACM Journal Name, Vol. V, No. N, May 2009.



22 · Jie Gao, Michael Langberg, Leonard Schulman

every pair of lines ℓi, ℓj let xj
i be the point on ℓi that is closest to ℓj. Let X denote

the set {xj
i}ij . We now specify a technical lemma, the lemma is phrased for the set

L1 but it holds analogously for any Li.

Claim B.2. Let c1 be the cluster center of L1. Let ℓi be any line in L1. Let c′1
be the projection of c1 to ℓi. For any subset of lines L′

1 ⊆ L1, let x be the point in

{xj
i}ℓj∈L′

1

closest to c′1. The point x satisfies: ∀ℓj ∈ L′
1 , d(ℓj , x) ≤ 4d(ℓj , c1) ≤ 4r∗.

Proof. It is not hard to verify that for ℓj ∈ L′
1: d(ℓj , x) ≤ 2d(ℓj , c

′
1) ≤ 4d(ℓj, c1).

The first inequality follows from the structure of the function d(ℓj , α) when α moves

along the line ℓi. This function obtains its minimum at α = xj
i , and we use the

fact that the distance between xj
i and c′1 is larger than the distance between c′1 and

x.

We use the above observation to construct an efficient algorithm for finding k′ ≃
O(k2 log n) centers which cover the lines L within radius 4r∗. Our algorithm will
have ≃ log n iterations. In each iteration we will pick ≃ k2 centers with the property
that a significant fraction of the lines in L will be of distance 4r∗ from these centers.

We describe the first iteration in detail, the remaining iterations have a similar
structure. We start with some notation. A point xj

i is said to be good if the following
conditions hold: (a) Both ℓi and ℓj are in La for some a ∈ [k]. (b) For this value

of a, consider the projection of ca onto ℓi: c′a. We request that the point xj
i is

relatively close to c′a. Namely that at least half of the points in the set {xj
i}ℓj∈La

have distance to c′a which is greater or equal than d(xj
i , c

′
a). For a ∈ [k] let na be

the size of La. It holds that
∑

a na = n and it is not hard to verify that there are

at least
∑

a n2
a/2 ≥ n2/2k good points xj

i in X . Moreover,

Claim B.3. Let xj
i be a good point in which ℓi and ℓj are in La. Then for at

least half the lines ℓ ∈ La it holds that d(ℓ, xj
i ) ≤ 4r∗.

Proof. Consider the projection of ca onto ℓi. To obtain our assertion, we

use Claim B.2 with L′
a defined to be the lines ℓj′ ∈ La for which d(xj′

i , c′a) ≥
d(xj

i , c
′
a).

By the above, for a good point xj
i with ℓi and ℓj in La there are at least na/2

lines ℓ for which d(ℓ, xj
i ) ≤ 4r∗. Thus, the na/2 closest lines to xj

i in L satisfy

d(ℓ, xj
i ) ≤ 4r∗. Consider the set Γ of values of a for which na ≥ n/(2k). It holds

that for a good point xj
i with corresponding a in Γ, there are at least n/(4k)

lines ℓ for which d(ℓ, xj
i ) ≤ 4r∗. In the current iteration of our algorithm, we

would like to pick at least one point xj
i as above (namely, with corresponding a

in Γ). A basic calculation shows that there are at least n2/(4k) good points xj
i

with corresponding a in Γ. Thus, if we pick αk log(k log n) points xj
i uniformly

at random, for a sufficiently large constant α, with probability 1 − 1/(8k log n) we

will choose at least one point xj
i as desired. Denoting this set of αk log(k log n)

points xj
i by C, it now follows that there are at least n/(4k) lines ℓ ∈ L such that

d(ℓ, C) ≤ 4r∗. Removing the closest n/(4k) lines in L to the centers C, we move to
the next iteration where we have only n(1 − 1/(4k)) lines that are not covered by
C.
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For the remaining iterations, we consider only the set of lines not yet covered by
our set of centers, and preform the exact same random iteration and analysis. All
in all, we will need O(k log n) iterations to cover all lines (we stop once the set of
uncovered lines is of size O(log n)). The result is a set of O(k2 log n log(k log n))
centers which cover L within radius 4r∗. The running time of the algorithm is
Õ(nd). The algorithm will succeed with probability at least 1/2, however this can
be boosted using standard methods.

B.2 Step 2

In the second step of the suggested algorithm, we consider a ball B of radius r ≤ 4r∗

from the k′-center clustering of L above. Let P be the set of lines covered by B.
We find a subset of lines P ′ ⊆ P with the property that any k-center clustering of
P ′ of radius r′ implies a k-center clustering of P with the same centers and radius
5(r′ + r) + r. As this can be done for every ball B as above, taking the union of
the corresponding subsets P ′ will yield the desired coreset L′.

We start by shifting the lines in P so that they all intersect. Each line preserves
its orientation and is additively translated by a distance of at most r. This is easily
done as the lines in P are all of distance at most r from a common point.

Now consider the intersection of the set P̃ (of the shifted lines in P) and the

boundary of B. This intersection consists of 2|P̃| points (2 points for each line in

P̃). Denote the set of points on the boundary of B by Q. Roughly speaking, we
now show that a 5-multiplicative coreset Q′ for the 2k-center problem on Q implies
the coreset P ′ we are looking for. For δ > 0 and a set of points Q, a (1 + δ)-
multiplicative coreset Q′ w.r.t. the k-center problem, is a set of points for which
any cover of Q′ with any k balls of radius r1, . . . , rk implies a cover of Q with k
balls of radius (1 + δ)r1, . . . , (1 + δ)rk (the latter balls being a blown up version of
the former).

We start by considering the following mapping between balls in R
d (that do not

contain the origin) and pairs of balls in R
d. For simplicity, assume that B is centered

at the origin and has unit radius. Let β be a ball of radius rβ centered at cβ which
does not contain the origin. Let Cβ be all points p on the boundary of B for which
the line passing through p and the origin intersect β. The set Cβ consists of two

caps on the boundary of B. Notice that a line in P̃ is covered by β if and only if its
corresponding points in Q are covered by Cβ . For any δ > 0, let βδ be the (1 + δ)
expansion of the ball β, namely βδ is the ball centered at cβ of radius (1 + δ)rβ

(assume also that βδ does not contain the origin). Let Cβδ be the set corresponding

to βδ. We now define the two balls corresponding to β. The balls are defined to
satisfy two properties: first the intersection of the balls with the boundary of B is
exactly the caps in Cβ . Secondly, the intersection of the (1 + δ) expansion of the
balls with the boundary of B is exactly the caps in Cβδ . It is not hard to verify
that such a pair of balls exist. We denote these balls by Bβ and −Bβ (as one is the
symmetric image of the other with respect to the origin).

Let Q′ be a (1+ δ) multiplicative coreset for the 2k center problem on Q, and let

P̃ ′
be the set of (shifted) lines corresponding to points in Q′. We now show that

P̃ ′
is a coreset for the k-center problem on P̃ . Afterwards we will show that the

original lines (before they were shifted) corresponding to P̃ ′
are a coreset for P .

Let β1, . . . , βk be a k-center clustering for P̃ ′
of radius r1, . . . , rk accordingly, we
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show that the balls obtained by expanding βi to radius (1+δ)ri cover all of P̃ . If any
one of the expanded balls βi covers the origin, then we are done. Assume otherwise.
For i ∈ {1, 2, . . . , k} let Bβi

and −Bβi
be the balls defined above corresponding to

βi. By the discussion above, this set of 2k balls covers Q′. Thus their expansion
by a factor of (1 + δ) cover all Q. Moreover, these expanded balls correspond to
the (1 + δ) expansion of β1, . . . , βk. We conclude that the (1 + δ) expansion of the

balls βi cover P̃ .
Now consider the original lines (before shifting) P and the coreset P ′ correspond-

ing to P̃ ′
. Consider a k-center clustering for P ′ with centers c1, . . . , ck and radii

r1, . . . , rk accordingly. Then the balls of radius ri + 4r∗ centered at ci cover all

shifted lines P̃ ′
. From the above analysis, the balls of radius (ri + 4r∗)(1 + δ) cen-

tered at ci cover all shifted lines P̃ . Finally, the balls of radius (ri +4r∗)(1+δ)+4r∗

centered at ci cover the original lines P. This gives an overall ratio of 9+5δ. Fixing
δ = 4 we get the an approximation ratio of 29.

To conclude our proof, it is left to show how to efficiently find a small 5-
multiplicative (i.e., δ = 4) coreset for a given set of points P of size n.

Claim B.4. Given a set of points Q of size n, a 5-multiplicative coreset Q′ for
the k center problem of size O(kk) can be found in time O(ndkk log k).

Proof. Our proof will be inductive (on k) and follows the line of proof given
in [Agarwal et al. 2005]. Consider the simple greedy 2-approximation algorithm
of [González 1985; Hochbaum and Shmoys 1985; 1986] for the k center problem
on Q. Let Q′ be the set of points of size k + 1, and B1, . . .Bk be the k-clustering
of Q implied by [González 1985; Hochbaum and Shmoys 1985; 1986]. Let r∗ be
the optimal k-center radius of Q, and let r = r(Bi) (all balls Bi have the same
radius). In [González 1985; Hochbaum and Shmoys 1985; 1986] it is shown that
2r∗ ≥ r ≥ r∗, and that any pair of points q1, q2 ∈ Q′ satisfy d(q1, q2) ≥ r. Note
that Q′ is not a multiplicative coreset for Q. The set Q′ and the balls Bi can be
found in time O(nd log k) [Feder and Greene 1988].

For each ball Bi let Qi be the points of Q included in Bi. Let Q′
i be a 5-

multiplicative coreset for the (k − 1)-center problem on Qi. We now show that
Γ = Q′ ∪ ∪iQ′

i is a 5-multiplicative coreset for the k-center problem on Q.
Indeed, let C1, . . . , Ck by any k balls covering Γ of radius r1, . . . , rk. Consider

a ball Bi. We will show that a multiplicative blowup of the balls Ci will include
all points of Q in Bi. As C1, . . . , Ck cover the k + 1 points in Q′, the analysis of
[González 1985; Hochbaum and Shmoys 1985; 1986] implies that at least one ball
Ci has radius ≥ r∗/2. If Bi intersects all balls C1, . . . , Ck (and namely the ball Ci),
then blowing up the balls Ci by a factor of 5 will include all of Bi. Otherwise, the
points of Γ in the ball Bi are covered by (k − 1) balls in C1, . . . , Ck. These (k − 1)
balls cover Q′

i, and thus by induction we have that blowing them up by a factor of
5 will cover all points in Bi.

All in all, the size of the coreset Γ satisfies S(k) = kS(k−1)+(k+1), which implies
that |Γ| = O(kk). The construction takes time T (k) = kT (k−1)+O(nd log k) which
implies that T (k) = O(ndkk log k).

We remark that the running time of this algorithm is O(dn log n log log n) (for
constant k). In the first step, we find an O(log n log log n)-center clustering of L in
time O(dn log n log log n). In the second step, we use this clustering to find a coreset
L′ of size O(log n log log n) in time O(dn log n log log n). Finally, in the third step,
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we apply Claim B.1 to obtain an approximate k-clustering for our coreset. The
final step is done in time O(d(log n log log n)4k+1).

C. (1 + ε)-APPROXIMATE CLUSTERING

We can extend Theorem 1.1, which provides a constant-factor approximation,
to (1 + ε)-approximate clustering, but only in a runtime exponential in d (and
log 1/ε). This is impractical for the high-dimensional applications explained in the
introduction—hence relegation of this material to the Appendix. (Additionally,
the methods involved are less novel than the material in the body of the paper.)
Namely, we show

Corollary C.1. For a set of n lines L in R
d, one can solve the (1 + ε)-

approximate k-center problem in time O
(

(nd + n log n)
(

c

ε

)d−1
log 1/ε

)

and O
((

nd + n log2 n

ε

)

(

c

ε

)d−1
log 1/ε

)

for k = 2 and k = 3 respectively. Here c > 0 is a constant independent of ε, n and
d.

Once one allows an exponential (in d and log 1/ε) running time, a result similar to
that of Corollary C.1 can also be obtained directly using standard “coreset” based
techniques. However, existing coreset based techniques do not imply Theorem 1.1
which states a quasilinear running time in d and n (for our (2+ ε)-approximation).
Achieving a (1 + ε)-approximation with running time polynomial in d and 1/ε
remains open.

We now present both proofs for the (1 + ε)-approximate clustering of lines. The
first proof is based on Theorem 1.1. The second proof is based on the algorithm
presented in Section B, and does not use the result of Theorem 1.1.

C.1 Improving the approximation ratio of Theorem 1.1 using ε-nets

We now consider improving the approximation ratio of the naive algorithm from
Section 2.1 from 2 to (1 + ε). Namely, given a set of lines L and a radius r, we
would like to output a k-clustering of L of radius at most (1 + ε)r or report that
r < rk(L). Improving the approximation ratio of our 2, 3-clustering algorithms is
done in an analogous manner (and will yield Corollary C.1).

To improve the approximation ratio, we find in Step 1 a set of k lines (not

necessarily in L), say ℓ̂1, . . . , ℓ̂k, with the property that d(ℓ̂i, ci) ≤ εr, for all 1 ≤
i ≤ k. It is not hard to verify that this suffices to imply a (1 + ε)-approximation

factor. Finding a line ℓ̂1 such that d(ℓ̂1, c1) ≤ εr is done exhaustively, using an ε-net

for the unit ball Bd−1 in R
d−1. Consider a set of points Γ of size

(√
4eπ
ε

)d−1

with

the property that for any vector v ∈ R
d−1 of length ≤ 1 it holds that d(v, Γ) ≤ ε.

Such a set can be obtained by the intersection of a standard ε/
√

d grid with Bd−1.
For a line ℓi, let Bi be the set of vectors v ∈ R

d of length ≤ 1 that are orthogonal
to (the direction of) ℓi. Bi is a ball in R

d−1. Let Γi be an ε-net for Bi. Step 1
now searches over all k tuples of lines ℓ1, . . . , ℓk in L and over all k-tuples of points
γ1, . . . , γk in the corresponding sets Γ1, . . . , Γk (respectively). The resulting subset

of lines considered is ℓ̂i = ℓi + rγi = {p|p − rγi ∈ ℓi}. It is not hard to verify that

for some k tuple of lines ℓ̂1, . . . , ℓ̂k it will hold that d(ℓ̂i, ci) ≤ εr for i = 1, . . . , k.
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C.2 A proof based on coresets

The proof follows the line of proof given in Section B with two main differences
that are possible due to the fact that we allow exponential running time (in d and
log 1/ε). In Step 1 of the scheme described in Section B. we do not cover the given
lines with O(k2) ball of radius 4r∗. Rather each such ball B is covered by balls of
radius εr∗ (using standard covering techniques). Namely, as done in Section C, we

efficiently construct a set of points ΓB ∈ B of size
(

4
√

4eπ
ε

)d−1

with the property

that for any line ℓ covered by B it holds that d(ℓ, ΓB) ≤ εr∗. Once this is done

for all the 4k2 balls that cover L, we obtain a set of points Γ = ∪BΓB with the

property that Γ is a k′ = 4k2
(

4
√

4eπ
ε

)d−1

- center clustering of L with radius εr∗.

For the second step of the scheme presented in Section B, we use a (1 + ε)-
multiplicative coreset for Q instead of a 5-multiplicative one. Such a coreset can
be found in the desired running time using ideas stated in [Agarwal et al. 2005].
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