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Abstract

Let X be a space and F a family of 0, 1-valued functions on
X. Vapnik and Chervonenkis showed that if F is “simple”
(finite VC dimension), then for every probability measure µ
on X and ε > 0 there is a finite set S such that for all f ∈ F ,∑
x∈S f(x)/|S| = [

∫
f(x)dµ(x)]± ε.

Think of S as a “universal ε-approximator” for inte-
gration in F . S can actually be obtained w.h.p. just by
sampling a few points from µ. This is a mainstay of com-
putational learning theory. It was later extended by other
authors to families of bounded (e.g., [0, 1]-valued) real func-
tions.

In this work we establish similar “universal ε-
approximators” for families of unbounded nonnegative real
functions — in particular, for the families over which one
optimizes when performing data classification. (In this case
the ε-approximation should be multiplicative.)

Specifically, let F be the family of “k-median functions”

(or k-means, etc.) on Rd with an arbitrary norm %. That

is, any set u1, ..., uk ∈ Rd determines an f by f(x) =

(mini %(x − ui))α. (Here α ≥ 0.) Then for every measure

µ on Rd there exists a set S of cardinality poly(k, d, 1/ε)

and a measure ν supported on S such that for every f ∈ F ,∑
x∈S f(x)ν(x) ∈ (1± ε) · (

∫
f(x)dµ(x)).

1 Introduction

We study numerical integration, the problem of evalu-
ating f̄ :=

∫
f dµ, where

(a) f is drawn from a family of nonnegative real-valued
functions F on a metric space X = (X, %); the only
access we need to f is the ability to evaluate it at
points of our choosing.

(b) µ is a probability measure on X. (In many cases
µ has finite support of cardinality n, but this
assumption plays no role in our core contributions.)

Our results pertain to families F of functions,
described below, that are of importance in clustering
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(classification) and optimization. For these families, we
prove a theorem of the following type, where ε is any
small positive real; k is a parameter of complexity of the
family F ; and X is Rd with any norm % :

For any probability measure µ there is a measure
ν with | support(ν)| ≤ poly(d, k, 1/ε) such that for all
f ∈ F , ∫

f dν ∈ (1± ε)
∫
f dµ.

(Here 1± ε denotes the interval [1− ε, 1 + ε].)

The context for our work lies in strands of research in
numerical analysis, statistics and computer science:

(1) Numerical integration (or quadrature). A typi-
cal scenario: (a) X is Euclidean Rd. (b) µ is Lebesgue
measure restricted to [0, 1]d, or to a ball, or µ is
some other canonical measure such as Gaussian measure
about the origin. (c) The family F is either very re-
stricted (multivariate polynomials, trigonometric func-
tions, etc.) or else subject only to a “tameness” condi-
tion (Lipschitz or order of continuity).

Under such conditions, various methods (familiar
ones include Newton-Cotes, Gaussian or Clenshaw-
Curtis quadrature in one dimension [26], but see also
results in high dimension [38]) ensure the existence
of measures ν with small (carefully chosen) support
such that for all f ∈ F , either

∫
f dν =

∫
f dµ or∫

f dν ∈
∫
f dµ ± ε, depending on whether F is of the

“restricted” or merely “tame” variety.
In this literature the support of ν is simply called

the set of evaluation points.
(2) Vapnik-Chervonenkis (VC) Theory in statistics

and learning theory. A typical scenario: (a) X can be
very general but frequently is Euclidean Rd or Hamming
{0, 1}d. (b) µ is an unknown and arbitrary probability
measure on X; we (the learners) have access to µ only
by sampling from it. (c) The range of the functions
in F is {0, 1}, or a bounded-cardinality finite set, or
a bounded interval of R; in the first case, F is simple
in the sense that it has bounded VC Dimension, while
in the latter cases, an appropriate generalization of VC
dimension (there are several such) is bounded for F .

Under such conditions, various theorems [37, 32,
22, 8, 36, 31, 7, 24, 5, 6, 2, 4] (and see [33, 35] for
related works) ensure that an “empirical measure” ν



obtained by selecting a small random sample from µ
and fixing the uniform measure on those points, has
(with high probability) the property that for all f ∈ F ,∫
f dν =

∫
f dµ± ε.

In this literature the support of ν is called an ε-net,
ε-transversal, ε-sample or ε-approximation [8, 28, 9].

(3) Approximation algorithms for clustering. A
typical scenario: (a) X is usually Euclidean (or perhaps
`1) Rd but may be also be an explicitly given finite
metric. (b) µ is usually the uniform measure on an
explicitly given finite set of n points in X. (c) F is
usually one of the following two families of nonnegative
real functions. In each, functions in F are parameterized
by k points chosen from X:
F
k-median = {fc1,...,ck}c1,...,ck∈X where fc1,...,ck(x) =

min1≤i≤k ‖x− ci‖
Fk-means = {fc1,...,ck}c1,...,ck∈X where fc1,...,ck(x) =
min1≤i≤k ‖x− ci‖2

For these families, various algorithms, some ran-
domized [20, 19, 10] and some deterministic [14], pro-
vide a measure ν of small support such that

∫
f dν ∈

(1± ε)
∫
f dµ for all f ∈ F . (This can be a crucial step

in clustering, since reduction of the size of the data set
allows us to run computationally intensive algorithms.)

In this literature the support of ν is usually called
a core-set, see e.g. [1]. We elaborate on the clustering
literature and its relation with our results in a later
section of this Introduction.

Since the terminology for ν differs between fields, we
have adopted ε-approximation as the most descriptive of
the options. Let F be a family of nonnegative functions
on a metric space X .

Definition 1. A measure ν is an ε-approximation for
a measure µ with respect to (F,X ) if

∫
f dν ∈ (1 ±

ε)
∫
f dµ for all f ∈ F . For g : (0, 1) → N

nonincreasing, (F,X ) is integrable with complexity g if
for every 0 < ε < 1 and every µ there is a ν which has
| support(ν)| ≤ g(ε) and which is an ε-approximation of
µ w.r.t. (F,X ). Finally, (F,X ) is finitely integrable if
it is integrable with complexity g for some g.

This is a multiplicative variant of the uniform Glivenko-
Cantelli condition [13, 2].

The question we are interested in is: what classes of
functions F are finitely-integrable? Or, if we consider
only measures µ of finite support n, then what classes
of functions are integrable with complexity independent
of n? We can give a partial answer to this question.

1.1 The general approach: integration by
weighted sampling. Our starting point is the obser-
vation (which has been made numerous times previously
and falls in the category of “weighted” or “importance”

sampling [11, 25, 3, 34]) that to any probability distri-
bution q on X there corresponds the following unbiased
estimator for f̄ =

∫
f dµ: Sample x from q, and set

(1.1) T = f(x)µ(x)/q(x).

T is unbiased because
∫

(f(x)µ(x)/q(x)) dq(x) =∫
f(x)µ(x) dx =

∫
f(x) dµ(x). (Technically X needs

to be finite or compact, and in the latter case, q in
the denominator is a density; nothing depends on these
niceties.)

One can, of course, use näıve sampling, i.e., q = µ;
the problem is that the standard deviation of T can
be very large, arbitrarily greater than its expectation.
And so the first hurdle we must cross is to reduce VarT ;
this presents us with a challenging design problem for
q. If we can arrange q so that VarT is not much larger
than f̄2, then by collecting a small number of samples
independently, we can obtain an estimator that is very
likely to be within a (1 ± ε) factor of f̄ . This suggests
that a plan for constructing an ε-approximator ν is
to sample repeatedly, independently from a carefully
chosen q, then let ν be the empirical measure (the
uniform distribution on the samples), and integrate
fµ/q with respect to ν.

This brings us, however, to the second and deeper
challenge: our estimator needs to simultaneously ap-
proximate f̄ for each of the infinitely many functions f
in F . So it is not enough to ensure small probability
of error for each f . This is the “uniformity” challenge
that Vapnik and Chervonenkis addressed so successfully
in certain (i.e., finite-VC-dimension) families of binary
functions. A central part of our work will be to find
a substitute argument for the case of multiplicative ap-
proximation. Without going into detail we mention that
the ideas in the existing additive-approximation exten-
sions of the VC theory do not help with the multiplica-
tive approximation problem. Put simply, that work re-
lies on finitely covering the range of the functions; but
(0,∞) cannot be covered by finitely many intervals of
the form (y, (1 + ε)y).

There are essentially two things we need to do: (1)
Quantify the difficulty of integrating a function family
F . We do this using a new parameter which we call
the total sensitivity S(F ); this parameter does not have
an analogue in the additive approximation theory. (2)
Show that an appropriate weighted sampling scheme
addresses the “uniformity” challenge, by constructing ε-
approximations whose size depends on two parameters:
one is S(F ), the other is more combinatorial and plays
the role analogous to the VC dimension, or more exactly,
the shatter function.



1.2 Our results. The results of this work are three-
fold.

(1) Primarily, we introduce an approach to approx-
imate integration of unbounded nonnegative functions,
and show the existence of succinct ε-approximators for
some important families of functions, while also showing
that such ε-approximators do not exist for some other
(quite simple) families of functions. To this end we in-
troduce and show the power of the key notion of sensi-
tivity; while also showing that it is logically independent
of another crucial ingredient, the existence of small ε-
cover-codes for the family.

We cannot yet provide VC-dimension-style charac-
terizations of when a family of unbounded nonnegative
functions is or is not finitely integrable; that is a major
open problem and this paper can serve only as a starting
point toward its resolution.

(2) We demonstrate the strength of our approach
by showing that it yields positive results for a broad
family of functions that are important to clustering.
What this means is that these families have the off-
line/on-line behavior familiar from numerical quadra-
ture: once someone has figured out where to put the
ε-approximator, anyone can integrate functions in the
family in constant time.

(3) We show that the application in (2) has algo-
rithmic implications: we demonstrate a generic reduc-
tion (applicable to any norm on Rd) of the problem of
near-optimal clustering of data points, to the problem of
bi-criteria approximate clustering. We stress that this
connection has already been demonstrated in the litera-
ture (especially in [10]); our contribution in this regard
is chiefly to show how the idea can be applied gener-
ically to any norm and to any clustering exponent α.
(See definition of α below.)

We now give more detail regarding the families of
functions relevant to clustering. These families include
and generalize the functions relevant to the well-known
k-means and k-median problems. Let X = (Rd, %) for
an arbitrary norm %. For α > 0 and k ≥ 1, the “k-
cluster, α-exponent” function family on X is defined as:

Definition 2. W (X , k, α) = {fc1,...,ck}c1,...,ck∈Rd
where fc1,...,ck(x) = min1≤i≤k %(x − ci)α. (We refer to
c1, . . . , ck as the centers of fc1,...,ck .)

For example, setting % to be the Euclidean
norm, the k-median problem on X = (Rd, %) is:
Given x1, . . . , xn ∈ X (and letting µ be the uni-
form measure on x1, . . . , xn), find ∆(X , k, 1, µ) :=
inff∈W (X ,k,1) f̄ . Likewise, we obtain the k-means prob-
lem with W (X , k, 2). More generally one seeks for gen-
eral % and α: ∆ := ∆(X , k, α, µ) := inff∈W (X ,k,α) f̄ ,
and frequently one requires as part of the output a spe-

cific f∗ ∈ W (X , k, α) for which f∗ = ∆. (It is easy to
see that the infimum is achieved.)

As noted above, we show two major results re-
garding the family W (X , k, α). First, we show that
W (X , k, α) has succinct ε-approximators (which are
typically referred to as strong core-sets in the setting
of clustering). Second, we describe a general reduc-
tion from finding these ε-approximators efficiently, to
“bi-criteria” approximation of W (X , k, α). Namely, we
show for approximation parameters c > 0 and β > 0,
that given a function f∗ ∈ W (X , βk, α) such that
f̄∗ ≤ cminf∈W (X ,k,α) f̄ , one can efficiently find an ε-
approximator to W (X , k, α). We note, that using stan-
dard ideas, the latter implies efficient (linear in n time)
algorithms for finding near-optimal functions f∗ for
the family W (X , k, α). Namely functions f∗ satisfy-
ing f∗ ≤ (1 + ε) minf∈W (X ,k,α) f̄ . More specifically, one
can exhaustively solve the clustering problem on the ε-
approximator and thus obtain a solution for X .

Our results for the function families relevant to clus-
tering can be summarized by the following theorems.
In what follows the Õ(·) notation neglects logarithmic
terms in d, k, α and 1/ε.

Theorem 1.1. Let X = (Rd, %). W (X , k, α) has an

ε-approximator of size Õ
(

(α4+1)d2k324α

ε2

)
.

In the terms below we assume oracle access to f , %,
the distribution µ, and the distribution q we construct.

Theorem 1.2. Let X ⊂ Rd be of size n. Let X =
(X, %). Let β > 0 and c > 0 be constants. Let A be
any algorithm that finds a function f∗ ∈ W (X , βk, α)
such that f̄∗ ≤ cminf∈W (X ,k,α) f̄ in time Tβ,c. Then an

ε-approximator of size Õ
(

(α4+1)d2k(c+βk)226α

ε2

)
can be

found in time Tβ,c+O(ndkβ)+Õ
(

(α4+1)d2k(c+βk)226α

ε2

)
.

1.3 Related work. As mentioned above, strong
core-sets (or ε-approximators) for k-means and k-
median have been extensively studied in the past. In
[20], it is shown that for sets X ⊂ Rd of size n, a core-
set of size O(kε−d log n) can be constructed. The depen-
dence on n was removed in [19] to obtain core-sets of size
O(k3ε−d−1). For high dimensional spaces, Chen [10] re-
duced the exponential dependence on d at the price of
a logarithmic dependence in n and obtains core-sets of
size O(k2dε−2 log n). For comparison, the core-sets we
obtain are of size polynomial in d, k, and 1/ε, and in-
dependent of n. (It is possible such a result may be
obtained in other ways; Feldman (private communica-
tion) has noted that a variation in the work of [15] may
yield such core-sets.)



In a nutshell, the results above all use the paradigm
of “bi-criteria” approximation mentioned previously.
Namely, they show how to construct strong core-sets
given a solution to the βk-median (or mean) of value
comparable to the optimal k clustering. This then leads
to efficient algorithms for the solution of k-means and
k-median. The best running time to date is that of

Õ(ndk + 2Õ(k/ε) + dpoly(k/ε)) presented in [15].
In its overall structure, our algorithms for the family

W (X , k, α) closely resemble those mentioned above.
Namely, given a bi-criteria approximation, a certain
random process is preformed in order to obtain a small
ε-approximation.

For comparison of our work with earlier works
mentioned previously in VC theory establishing small
ε-approximations, note that all these works provide
what is essentially an additive ε-approximation. The
requirement of multiplicative approximation is what
makes our work very different from those referenced
earlier. (However, there are interesting connections to
the VC theory. The dependence on d in our argument
relies upon bounding a shatter-like function.)

Finally we note that (multiplicative) ε-
approximators for finite sets X and for a number
of function families F defined on the line were studied
in [18]. These families F include linear functions,
piecewise monotone functions, and a variant of the
k-median problem on the line. Most of these function
families do not have finite ε-approximators when X
is taken to be infinite. The work of [18] focuses on
quantifying the dependence of the ε-approximator’s
size on the cardinality n of X.

1.4 Layout of the paper. In Section 2 we introduce
the notion of total sensitivity and show how it can be
used to design our sample distribution q. We then focus
on the families F = W (X , k, α): In Section 3 we analyze
their total sensitivity, and in Sections 4 and 5 we use this
analysis to prove Theorems 1.1 and 1.2.

2 Total sensitivity

2.1 Sensitivity and sampling. For each x ∈ X,
define the sensitivity of x w.r.t. (F, µ) by σF,µ(x) =
supf∈F f(x)/f̄ ; when the identities of F and µ are
either clear or immaterial we abbreviate this by
σ(x). Define the total sensitivity of F by S(F ) =
supµ

∫
σF,µ(x) dµ(x). From a theoretical perspective

these are the key concepts but it will be useful at a later
point if the results of the current section are stated in
terms of the following quantities: sF,µ(x) (or s(x)) is
any upper bound on σF,µ(x) (or σ(x)), and S(F ) =
supµ

∫
sF,µ(x) dµ(x). (Obviously S(F ) ≥ S(F ).) The

inequality to keep in mind is: for any f ∈ F , any µ and

any x ∈ X,

(2.2) f(x) ≤ s(x)f̄ .

The beauty of the notion of sensitivity is that
it leads to a judicious weighted sampling scheme for
integration. Let

(2.3) q(x) = s(x)µ(x)/S(F )

and let T be the estimator for f̄ given in Equation 1.1.
Observe that the sampling process tends to pick x’s of
high sensitivity. Now we’ll see why total sensitivity is a
crucial parameter:

Theorem 2.1. VarT ≤ (S(F )− 1)f̄2.

Proof. Let S := S(F ). We analyze the value of
(1/f̄2) VarT which is equal to

(1/f̄2)

∫ (
f(x)µ(x)

q(x)
− f̄

)2

dq(x)

= (1/f̄2)

∫
µ(x)s(x)

S

(
f(x)S

s(x)
− f̄

)2

dx

= (1/f̄2)

∫ (
f(x)2µ(x)S

s(x)
− 2f̄f(x)µ(x) +

µ(x)s(x)f̄2

S

)
dx

=

(
(1/f̄2)

∫
f(x)2S

s(x)
dµ(x)

)
−
(

(2/f̄)

∫
f(x) dµ(x)

)
+

(∫
s(x)/S dµ(x)

)
= (1/f̄2)

∫
f(x)2S

s(x)
dµ(x)− 2 + 1

Now we apply Inequality 2.2 to obtain,

≤ (1/f̄2)

∫
f(x)f̄S dµ(x)−1 = (S/f̄)

∫
f(x) dµ(x)−1 = S−1.

The effect of averaging over multiple samples is ex-
pressed by a simple application of Chebyshev’s inequal-
ity.

Lemma 2.1. Let ε > 0. Let f ∈ F . Let R be a random

sample of X of size a ≥ 2(S−1)
ε2 according to the distribu-

tion q. Then Pr
[∣∣∣f̄ − 1

a

∑
x∈R

S(F )f(x)
s(x)

∣∣∣ ≥ εf̄] ≤ 1/2.

Proof. Let Tf be the random variable which obtains the

value of Sf(x)
s(x) with probability q(x). As we have seen,

E[Tf ] = f̄ and by Theorem 2.1 VarTf ≤ (S − 1)f̄2.
Now, let T be the sum of a variables i.i.d. to Tf :

T
(1)
f , . . . , T

(a)
f . Setting T =

∑
i T

(i)
f , it follows that

E[T ] = af̄ and that V [T ] = aV [Tf ] ≤ a(S−1)f̄2. Thus,∣∣∣f̄ − 1
a

∑
x∈R

S(F )f(x)
s(x)

∣∣∣ ≥ εf̄ iff |T − E[T ]| > aεf̄ . Using

Chebyshev’s inequality, the probability of this event is
at most

V [T ]

a2ε2f̄2
≤ S − 1

aε2
≤ 1

2
.



2.2 Case studies. To put our definitions in perspec-
tive we present some examples.

2.2.1 Families that do not have ε-
approximators. In order to illustrate the nature
of the problem we examine a few very simple fam-
ilies F that do not have finite ε-approximators.
The simplest example is this: X is the unit in-
terval and Fivl := {fa,b}a<b where fa,b(x) = 1 if
a < x < b and 0 otherwise. This is a family that
trivially has an ε-approximator for additive approxi-
mation: let ν be supported uniformly on the multiset
xk = inf{x :

∫ x
0
µ(x) dx ≥ kε/2}. The conclusion can

also be seen from the more abstract consideration that
Fivl has VC dimension 2.

On the other hand, if µ is any measure without
atoms, then for any finitely supported ν, there is a pair
a < b such that µ((a, b)) > 0 but (a, b) ∩ support ν = ∅,
so (

∫
fa,b dν)/(

∫
fa,b dµ) = 0. It is easy to see that

S(Fivl) = ∞ because every point x has unbounded
sensitivity.

For our second example we again let X be the unit
interval and let Fray := {fa}a where fa(x) = 1 if
a < x and 0 otherwise. For the purpose of additive
approximation this is an even easier family than Fivl (it
has VC dimension 1), but this family too has no finite
ε-approximators: again let µ be the uniform measure.
If ν is finitely supported, let a be the greatest point
in its support; then (

∫
fa dν)/(

∫
fa dµ) = 0. To see

that S(Fray) =∞, let µ be the uniform measure. Now
σ(x) ≥ supa<x 1/(1 − a) = 1/(1 − x), so S(Fray) ≥∫ 1

0
1/(1− x) dx =∞.
It is worth examining the “finitary” versions of each

of these examples, with µ required to have support of
cardinality ≤ n. For Fivl, simply take µ to be uniform
on n points x1 < . . . < xn. None of these points may
be omitted in an ε-approximator. And, S(Fivl) (under
the restriction to measures of support ≤ n) equals n.
For Fray, take the same points x1 < . . . < xn but now
set µ(xi) = 2−i (except that µ(x1) = 2−1 + 2−n). Then
σ(xi) ≥ 2i−1, so S(Fray) (again under the cardinality
restriction) is ≥

∑
i σ(xi)µ(xi) ≥

∑
i 2i−12−i = n/2.

2.2.2 Families that have ε-approximators, yet
sampling from µ is futile. Our next example is the
simplest and most tractable prototype of the families
of functions that we shall show in this paper to have
finite ε-approximators. Let X = R and let F1-means :=
{fa}a∈R where fa(x) = (x − a)2. Let’s see why trying
to construct an ε-approximator by sampling repeatedly
from µ and setting ν to be the empirical measure, fails.

For 0 < p < 1, consider the following measure
µ supported on {0, 1}: µ({0}) = p, µ({1}) = 1 − p.

Observe that
∫
f1 dµ = p but that a sample of ∼ 1/p

points is needed for ν to be likely to include 0 in its
support; so long as this does not occur,

∫
f1 dν = 0. So

there is no finite sample size at which we likely obtain
an ε-approximator for every µ.

However, it is plain that a weighted sampling
scheme q (as described in Sec. 1.1) can be made to
work on these simple “counterexample” measures, for
instance by letting q be uniform on {0, 1}. This leaves
open the question of handling general measures µ. In
Section 2.4 we show that indeed weighted sampling can
generate ε-approximators for the “1-means” family for
any µ and in any dimension, and we will actually deduce
the sampling scheme q in closed form.

For the more complicated (and more important)
families of functions that are important for clustering,
there is almost certainly no closed form for optimal
solutions. Nonetheless we show in Section 4 that it is
possible to obtain an effective sampling scheme.

2.3 Properties of total sensitivity. What opera-
tions on function families preserve bounds on total sen-
sitivity? Two are easy to see: addition and projective
closure.

Proposition 1. Given families of nonnegative func-
tions F,G on X , let F + G = {f + g : f ∈ F, g ∈ G}.
Then S(F +G) ≤ S(F ) + S(G).

Proof. (f(x) + g(x))/(f̄ + ḡ) ≤ f(x)/f̄ + g(x)/ḡ (keep
in mind positivity of the quantities).

Given a family of nonnegative functions F on X ,
its closure F c includes any function g such that for any
bounded set A ⊆ X and any δ > 0 there exist f ∈ F and
c > 0 such that for all x ∈ A, cf(x) ≤ g(x) ≤ eδcf(x).
The projective closure of F , PF c, is formed by choosing
one representative from each equivalence class in F c

w.r.t. multiplication by positive scalars. (We need
this operation mainly in order to automatically include
constant functions in our families.) The proof of the
following proposition appears in Appendix A.

Proposition 2. S(PF c) = S(F ).

Finally, multiplication does not preserve good
bounds on total sensitivity. Let FG = {fg : f ∈ F, g ∈
G}. The proof of the following proposition appears in
Appendix B.

Proposition 3. There exist F,G for which S(FG) ≥
eΩ(max{S(F ),S(G)}).

2.4 Vector norm functions. The key to calculating
the total sensitivity of F1-means (mentioned above) is



the observation that there is a real vector space V (the
vector space of affine linear functions on R1) such that
for every f ∈ F1-means there is a v ∈ V satisfying
f(x) = |v(x)|2.

Theorem 2.2. Let V ⊆ RX be a real vector space of
dimension d. Let F = {|p(x)|2 : p ∈ V }. Then
S(F ) = d.

Proof. Let µ be any probability measure on X, and con-
sider it as defining an inner product on V that is diago-
nal in the “basis” of delta-functions: the inner product
of u, v ∈ V is

∫
u(x)v(x) dµ(x). (Correspondingly, we

freely consider µ as a diagonal matrix.) Let p1, . . . , pd

be an orthonormal basis for V w.r.t. µ, and let P be
the (possibly infinite) matrix having these vectors as
rows. Consider Rd as a space of column vectors and let
Sd−1 denote the unit sphere (w.r.t. the identity inner
product). Observe that

σ(x) = sup
u∈Sd−1

|(u†P )(x)|2

u†PµP †u
= sup
u∈Sd−1

|(u†P )(x)|2

The last term is maximized by letting u be a scalar
multiple of the column vector P (x) = (p1(x), . . . , pd(x)).
So,

σ(x) =

∣∣∣∣P †(x)P (x)

‖P (x)‖

∣∣∣∣2 = ‖P (x)‖2

Therefore S =
∫
σ dµ = Tr P †Pµ = Tr PµP †. Since

the vectors pi are orthonormal w.r.t. µ, S = d.

Corollary 2.1. The family of squares of d-variate
real polynomials of total degree ≤ t has total sensitivity(
t+d
d

)
.

Observe that the vector space of affine linear func-
tions on R, Vaff = {b + ax}a,b∈R, is of dimension 2.
Let Fd,1-means be {fa}a∈Rd : Rd → R where fa(x) =∑

(xi − ai)2. We can see that S(Fd,1-means) ≤ 2d by
applying Corollary 2.1 and Proposition 1; however, we
shortly improve this bound.

Corollary 2.1 and Proposition 1 together beg the
question whether one can bound the total sensitivity
of the cone of nonnegative real polynomials of total
degree ≤ 2t. Proposition 1 shows that for the cone of
“sum of squares” polynomials, the bound

(
t+d
d

)
k holds

for polynomials which are sums of k squares; we do
not know whether the dependence on k is necessary.
Moreover, there are nonnegative polynomials which are
not sums of squares (except in the special cases d = 1;
t = 1; and (d = 2, t = 2)) [23]).

3 Clustering functions and their total
sensitivity

In this section we study the total sensitivity of the
family F = W (X , k, α). Let X = (X, ρ). Consider

any probability measure µ on X; let f̄ =
∫
f dµ and

∆ = inff∈F f̄ .

Theorem 3.1. (1) For α ≥ 1, S(W (X , k, α)) ≤ (k +
1)22α + 2α. (b) For 0 ≤ α ≤ 1, S(W (X , k, α)) ≤
2k + 3 + 2

√
6k.

Observe that these bounds are independent of X .

Proof. If α = 0 the theorem is trivial. Otherwise, let
f∗ = fu∗1 ,...,u∗k be a function in W (X , k, α) for which

f∗ = ∆. Let Ui be the Voronoi cell of u∗i , and let
pi = µ(Ui). (Each pi is positive unless the support
of µ has cardinality less than k in which case the
theorem is trivial.) Let mi = 1

pi

∫
Ui
%(x−u∗i )α dµ(x), so

∆ =
∑
pimi. By a simple Markov inequality, for each i,

µ(B(u∗i , (2mi)
1/α) ∩ Ui) ≥ pi/2. (Here B(x, r) denotes

the closed ball of radius r about x.)
We now analyze S. Let x ∈ Ui, and let f = fu1,...,uk

be any function in W (X , k, α). Let u denote a closest
point to u∗i in {u1, . . . , uk}, and let %i = %(u − u∗i ).
Then f̄ ≥

∫
Ui
fdµ ≥ [max(0, %i − (2mi)

1/α)]α pi2 . Also,

f̄ ≥ ∆. Thus, for a parameter q ∈ [0, 1], f̄ ≥
[max(0, %i − (2mi)

1/α)]α qpi2 + (1 − q)∆. At this point
the arguments for Parts (1,2) of the theorem diverge.
Part (1):

σ(x) = max
f

f(x)/f̄ ≤ max
f

%(x− u)α/f̄

≤ max
f

(%i + %(x− u∗i ))α

[max(0, %i − (2mi)1/α)]αqpi/2 + (1− q)∆

≤ max
%i≥0

2α−1(%αi + %(x− u∗i )α)

[max(0, %i − (2mi)1/α)]αqpi/2 + (1− q)∆
(apply |a+ b|α ≤ 2α−1(|a|α + |b|α))

= max
%i≥(2mi)

1/α

2α−1(%αi + %(x− u∗i )α)

(%i − (2mi)1/α)αqpi/2 + (1− q)∆

≤ max
%αi ≥2mi

2α−1(%αi + %(x− u∗i )α)

max{0, 21−α%αi − 2mi}qpi/2 + (1− q)∆
(apply |a− b|α ≥ max{0, 21−α|a|α − |b|α})

Let G(%αi ) =
%αi +%(x−u∗i )α

(21−α%αi −2mi)qpi/2+(1−q)∆ . Observe

that sign
(
∂G
∂%αi

)
is independent of %αi and thus G is

monotone as a function of %αi . Moreover,
%αi +%(x−u∗i )α

(1−q)∆
is increasing as a function of %αi . Thus the bound on

σ(x) is maximized at either %i = 2m
1/α
i or %i =∞. We

conclude that for x ∈ Ui:

σ(x) ≤ max

(
22α−1mi + 2α−1%(x− u∗i )α

(1− q)∆
,

22α−1

qpi

)
≤ 22α−1mi + 2α−1%(x− u∗i )α

(1− q)∆
+

22α−1

qpi



Thus
∫
σ dµ is equal to∑
i

(∫
Ui

σ dµ

)
≤

∑
i

(∫
Ui

22α−1mi + 2α−1%(x− u∗i )α

(1− q)∆ +
22α−1

qpi
dµ

)

=
∑
i

(
22α−1pimi

(1− q)∆ +
2α−1pimi

(1− q)∆ +
22α−1

q

)
=

22α−1 + 2α−1

1− q +
22α−1k

q

≤
(√

22α−1 + 2α−1 +
√

22α−1k
)2

(the minimum of a/(1− q) + b/q is (
√
a+
√
b)2)

≤ (k + 1)22α + 2α (use (a+ b)2 ≤ 2(a2 + b2))

This suffices to bound S = supµ
∫
σ(x) dµ(x) and to

prove Part (1) of the theorem. Part (2) of the proof is
similar in nature and follows.

Part (2):

σ(x) = max
f

fx/f̄ ≤ max
f

%(x− u)α/f̄

≤ max
f

(%i + %(x− u∗i ))α

[max(0, %i − (2mi)1/α)]αqpi/2 + (1− q)∆

≤ max
%i

%αi + %(x− u∗i )α

[max(0, %i − (2mi)1/α)]αqpi/2 + (1− q)∆

≤ max
%i≥(2mi)

1/α

%αi + %(x− u∗i )α

(%i − (2mi)1/α)αqpi/2 + (1− q)∆

≤ max
%αi ≥2mi

%αi + %(x− u∗i )α

(%αi − 2mi)qpi/2 + (1− q)∆

In the last inequality we apply |a+b|α ≤ |a|α+|b|α, thus

|a−b|α ≥ |a|α−|b|α. Let G(%αi ) =
%αi +%(x−u∗i )α

(%αi −2mi)qpi/2+(1−q)∆ .

As before, sign
(
∂G
∂%αi

)
is independent of %αi and thus G

is monotone as a function of %αi . We conclude that for
x ∈ Ui σ(x) is at most

max

(
2mi + %(x− u∗i )α

(1− q)∆ ,
2

qpi

)
≤ 2mi + %(x− u∗i )α

(1− q)∆ +
2

qpi

Thus

S =

∫
σ dµ =

∑
i

∫
Ui

σ dµ

≤
∑
i

∫
Ui

(
2mi + %(x− u∗i )α

(1− q)∆
+

2

qpi

)
dµ

=
∑
i

(
2mipi

(1− q)∆
+

mipi
(1− q)∆

+
2

q

)
=

3

1− q
+

2k

q
≤ 2k + 3 + 2

√
6k

This completes the proof of Part (2).

4 ε-approximators, arrangements and covering
codes for W (X , k, α)

Let X = (Rd, %). In this section we study the fam-
ily F = W (X , k, α) and show that it has succinct ε-
approximators. Let S be a bound on the total sensi-
tivity of F . We prove the following theorem which is
a rephrased version of Theorem 1.1 stated in the Intro-
duction.

Theorem 4.1. Let X = (Rd, %). The fam-
ily W (X , k, α) has an ε-approximator of size

O
(

(α4+1)d2kS2

ε2 log
(

(α+1)dkS
ε

))
. Thus by Theo-

rem 3.1, for α ≥ 1 the ε-approximator is of size

Õ
(
α4d2k324α

ε2

)
and for α ≤ 1 the ε-approximator is of

size Õ
(
d2k3

ε2

)
. Here Õ(·) neglects logarithmic terms in

d, k, α and 1/ε.

Roughly, speaking this is done in three major steps.
Primarily, recall that X (and thus F ) is defined by a
norm % which in turn is defined by a centrally symmetric
convex set C%. In our first step, we show that one may
assume w.l.o.g. that % is well behaved. Namely, that any
arrangement (in the sense of combinatorial geometry)
described by n translates of C% (i.e., the dissection of Rd
by the boundaries of the translates) has low complexity,
of approximately nd. In our second step, we define the
notion of an “ε-cover code” for the family F . Namely, a
set of functions F ′ ⊂ F that approximates the set F with
respect to any finite subset of the support X. We show
that F has small cover-codes F ′ if its underlying norm %
is well behaved. Finally, in our third step we show that a
small ε-cover code for F implies a small ε-approximator.
This will conclude the proof of Theorem 4.1. We give a
detailed outline below.

4.1 Well behaved norms.

Definition 3. Let % be a norm corresponding to the
centrally symmetric convex set C. Consider any collec-
tion of convex sets {C1, . . . , Cn} where each set Ci is
equal to riC% + vi. Here vi is a vector in Rd, ri is a
positive real, and riC = {x | %(x) ≤ ri}. The collec-
tion of sets Ci describes an arrangement in Rd. We say
that % is Γ-well behaved if the complexity of any such
arrangement is bounded by (nΓ)d.

Theorem 4.2. Let % be any norm. Let Γ = (cd/
√
ε)d

for a sufficiently large constant c. There exists a Γ-well
behaved norm %′ such that any ε-approximator for %′ will
yield an O((1 + ε)α − 1)-approximator for the original
%.

The proof of Theorem 4.2 appears in Section 6.
Notice that when ε is small compared to 1/α, the quality



loss in our approximator is small.
(This is the place to draw attention to a crucial

distinction between Euclidean norm and general norms
%. Recall that the collection of positive homothetes
(= translation and multiplication by positive scalars)
of the unit ball in Rd, has VC dimension d + 1. This
implies that the complexity of an arrangement of n balls
is O(nd+1). Grünbaum [16] conjectured that the same
VC dimension bound held for the positive homothetes
of any fixed compact convex set in Rd. If this (or even
a weaker O(d) upper bound) were true, the size of our
ε-approximators in Theorem 4.1 would no longer have
quadratic dependence in d but rather linear dependence.
However, the conjecture has been falsified. The first
counterexample was due to Naiman and Wynn, who
showed that the collection of translates of a box [29] has
VC dimension b3d/2c. This of course is not large enough
to be an obstacle to our application. But very recently,
Naszódi and Taschuk showed that in dimension 3 and
above there is no upper bound on the VC dimension of
the positive homothetes of convex bodies [30]. Actually
even stronger, there is a convex body whose collections
of translates has infinite VC dimension.)

4.2 ε-cover codes. A central role in the VC theory of
additive approximation is played by the shatter function
of a family F of Boolean functions. (Frequently, VC
dimension appears merely as a means to bound the
shatter function.) The viewpoint which generalizes to
our situation is this: Shatter functions measure the size
of covering codes or transversals for (restrictions of) F .
In the boolean case the notion of “covering” is trivial:
one function covers another only if their restrictions are
identical. But we require something more general. Let
F be a function family and s(x) a sensitivity bound (as
in Section 2.1). Let A ⊆ X be finite, a = |A|. For
g : X → R, let νA(g) = (1/a)

∑
x∈A g(x). For f, f ′ ∈ F

and x ∈ A define f̂ = νA(f/s) and

DA,x(f, f ′) =

∣∣∣∣∣ f(x)

f̂ s(x)
− f ′(x)

f̂ ′s(x)

∣∣∣∣∣
Notice that DA,x(f, f ′) also depends on our bound s(x)
on the sensitivity of F at x, however, we do not write
s explicitly as a parameter in D. The definition of D
and that which follows are designed to fit our needs in
Theorem 4.4 of Section 4.3.

Definition 4. F ′ ⊆ F is an ε-cover-code for (F,A, s)
if for every f ∈ F there is an f ′ ∈ F ′ such

that f̄ ′

f̂ ′
≤ f̄

f̂
and for every x ∈ A, DA,x(f, f ′) ≤

ε
64S

(
1 + f(x)

f̂s(x)
+ f ′(x)

f̂ ′s(x)

)
.

In Section 7 we show that for well behaved %, F has
succinct cover codes.

Theorem 4.3. Let X = (Rd, %). Let F = W (X , k, α)
where % is a Γ-well behaved norm. Let A ⊂ Rd
be a set of size a, F has an ε-cover-code F ′ of size[(
Sa
ε

)Θ(α2+1)
Γ
]2dk

.

4.3 ε-approximators. Finally, we turn to show a
general VC-type argument. Loosely speaking, we show
that small cover codes imply succinct ε-approximators
via random sampling. The analysis of our theorem holds
for any family F with support X and total sensitivity
at most S. Our proof resembles that used in [37, 22]
for the proof of small ε-nets. We present our proof in
Section 8.

Theorem 4.4. Suppose that for some a ≥ 8(S −
1)/ε2, every A ⊆ X of cardinality |A| = 2a possesses
an ε-cover-code (w.r.t. F and sensitivity bound s) of

cardinality at most 1
8e

aε2

100S2 . Then a sample of a points
from q is (with probability ≥ 1/2) an ε-approximator for
F .

4.4 Proof of Theorem 4.1. We now are ready
to prove Theorem 4.1: Let X = (Rd, %), and F =
W (X , k, α). In Theorem 4.2 we show that one may
assume that % is Γ-well behaved, for Γ = (cd/

√
ε)d

(here c is a sufficiently large constant). For a set
A of size a, we have shown in Theorem 4.3 that for
such well behaved % the family F has cover codes of

cardinality
[(
Sa
ε

)Θ(α2+1)
Γ
]2dk

=
(
cddSa
εd

)Θ((α2+1)dk)

.

As
(
cddSa
εd

)Θ((α2+1)dk)

≤ 1
8e

aε2

200S2 for values of a of size

at least Θ
(

(α2+1)d2kS2

ε2 log
(

(α+1)dkS
ε

))
by Theorem 4.4

(and a slight change of parameters to compensate for
the loss of Theorem 4.2) we may conclude Theorem 4.1
stated in the beginning of this section.

5 Finding ε-approximators for W (X , k, α) via
bi-criteria approximation

Algorithmically, our method for finding an ε-
approximator described in Section 4 is a reduction to
bi-criteria approximation. In the Euclidean case, such
bi-criteria approximations already exist, and our results
imply that further progress on such algorithms for other
norms will immediately lead to efficient clustering algo-
rithms in those norms.

Conceptually our method is simple: First, the algo-
rithm computes a distribution q on X = {x1, . . . , xn};
then it selects independent samples from X according



to q. In what follows we show how one can construct
the distribution q.

A “bi-criteria” approximation to the problem is
a function f∗ ∈ W (X , βk, α) such that f̄∗ ≤
cminf∈W (X ,k,α) f̄ . Here, both β and c are parameters
that will affect the running time computed below.

Assuming that finding f∗ can be done in time Tβ,c,
we show that the distribution q and an ε-approximator
can be found efficiently in time ' Tβ,c + O(|X|dβk).
Namely we prove Theorem 1.2 stated in the Introduc-
tion.

In general to compute q one really only needs to
compute s(x) (a bound on the sensitivity) for each
x ∈ X. Recall that in our setting it is necessary
that the values s(x) we compute be greater or equal

to the ideal values σ(x) = supx
f(x)

f̄
corresponding to

our given family F and distribution µ. The size of
our ε-approximator resulting from q will depend on the
value of S =

∫
X
s(x) dµ. In what follows we show

how to efficiently compute such s(x) for which S is at
most O(22α(c + βk)) (no matter what µ is). This is
comparable to the (non-constructive) bounds we give
on S in Section 3. Moreover, this suffices to prove
Theorem 1.2. We now present our theorem for this
section. We note that its proof closely resembles that
of Theorem 3.1 in which we bounded the value of s(x)
(and thus S) for families W (X , k, α).

Theorem 5.1. Let F = W (X , k, α). Let f∗ ∈
W (X , βk, α) such that f̄∗ ≤ cminf∈F f̄ . Given f∗,
one can compute for all x ∈ X a value s(x) ≥ σ(x)
and a corresponding q(x) in time O(|X|dβk). The val-
ues of s(x) computed will satisfy S =

∫
X
s(x) dµ ≤

O(22α(c+ βk)).

Before we prove Theorem 5.1, a small remark is in
place. If the norm % corresponding to X is not well
behaved, then naively following the flow of theorems
in Section 4 one would need to find a well behaved
approximation %′ to % and use it in Theorem 5.1
above. However, this is not necessary. By multiplying
the values of s(x) that correspond to % computed in
Theorem 5.1 by O((1+ε)α) (to compensate for the slight
difference between % and %′ stated in Theorem 4.2) we
obtain values s(x) (and thus a bound on S) that also
correspond to %′.

Proof. We concentrate on computing s(x). We start
with the case α ≤ 1 and then turn to the case α ≥ 1.
Let f∗ = fu∗1 ,...,u∗βk be a function in W (X , βk, α) for

which f̄∗ ≤ cminf∈W (X ,k,α) f̄ . Let f∗ = ∆. Let Ui be
the Voronoi cell of u∗i , and let pi = µ(Ui). Let mi =
1
pi

∫
Ui
%(x − u∗i )αdµ(x), so ∆ =

∑
pimi. By a simple

Markov inequality, for each i, µ(B(u∗i , (2mi)
1/α)∩Ui) ≥

pi/2. (Here B(x, r) denotes the closed ball of radius r
about x.)

Case 1: α ≤ 1.

Claim 1. Let x ∈ Ui. Setting

s(x) =
2c(2mi + %(x− u∗i )α)

f̄∗
+

4

pi

satisfies s(x) ≥ maxf
f(x)

f̄
.

Proof. Let x ∈ Ui, and let f = fu1,...,uk be any function
in W (X , k, α). Let u denote a closest point to u∗i
in {u1, . . . , uk}, and let %i = %(u − u∗i ). Then f̄ ≥∫
Ui
fdµ ≥ [max(0, %i − (2mi)

1/α)]α pi2 . Also, f̄ ≥ ∆/c.

Thus, f̄ ≥ [max(0, %i − (2mi)
1/α)]α pi4 + f̄∗/2c. We

conclude that

max
f

f(x)/f̄ ≤ max
f

%(x− u)α/f̄

≤ max
f

(%i + %(x− u∗i ))α

[max(0, %i − (2mi)1/α)]α pi
4

+ f̄∗/2c

≤ max
%i

%αi + %(x− u∗i )α

[max(0, %i − (2mi)1/α)]α pi
4

+ f̄∗/2c

≤ max
%i≥(2mi)

1/α

%αi + %(x− u∗i )α
(%i−(2mi)

1/α)αpi
4

+ f̄∗/2c

≤ max
%αi ≥2mi

%αi + %(x− u∗i )α
(%αi −2mi)pi

4
+ f̄∗/2c

In the above we use the fact that (i) |a + b|α ≤
|a|α + |b|α, and thus (ii) |a − b|α ≥ |a|α − |b|α. Let

G(%αi ) =
4(%αi +%(x−u∗i )α)

(%αi −2mi)pi+2f̄∗/c
. It is not hard to verify that

sign
(
∂G
∂%αi

)
is independent of %αi and thus G is monotone

as a function of %αi . We conclude that for x ∈ Ui,

maxf
f(x)

f̄
is at most

max

(
2mi + %(x− u∗i )α

f̄∗/2c
,

4

pi

)
≤ 2mi + %(x− u∗i )α

f̄∗/2c
+

4

pi

Claim 2. Setting s(x) according to Claim 1, it holds
that S =

∫
sdµ ≤ 6c+ 4βk.

Proof.

S =

∫
s dµ =

∑
i

∫
Ui

s dµ

≤
∑
i

∫
Ui

(
4cmi + 2c%(x− u∗i )α

f̄∗
+

4

pi

)
dµ

=
∑
i

(
4cmipi
f̄∗

+
2cmipi
f̄∗

+ 4

)
≤ 6c+ 4βk



Case 2: α ≥ 1. The proof below has a very similar
structure to that above for α ≤ 1.

Claim 3. Let x ∈ Ui. Setting

s(x) =
22αcmi + 2αc%(x− u∗i )α

f̄∗
+

22α

pi

satisfies s(x) ≥ maxf f(x)/f̄ .

Proof. Let x ∈ Ui, and let f = fu1,...,uk be any function
in W (X , k, α). Let u denote a closest point to u∗i in
{u1, . . . , uk}, and let %i = %(u − u∗i ). It follows that
f̄ ≥

∫
Ui
f dµ ≥ [max(0, %i − (2mi)

1/α)]α pi2 . It also

holds that f̄ ≥ f̄∗/c. Thus, as before, f̄ ≥ [max(0, %i −
(2mi)

1/α)]α pi4 + f̄∗/2c. We conclude that maxf f(x)/f̄
is at most

max
f

%(x− u)α/f̄

≤ max
f

2α−1 (%i + %(x− u∗i ))α

max(0, (%i − (2mi)1/α)α) pi
4

+ f̄∗/2c

≤ max
%i

2α−1 %αi + %(x− u∗i )α

max(0, (%i − (2mi)1/α)α) pi
4

+ f̄∗/2c

≤ max
%i≥(2mi)

1/α
2α−1 %αi + %(x− u∗i )α

(%i−(2mi)
1/α)αpi

4
+ f̄∗/2c

≤ max
%i≥(2mi)

1/α
2α−1 %αi + %(x− u∗i )α

max(0,(21−α%αi −2mi))pi
4

+ f̄∗/2c

≤ max
%αi ≥2αmi

2α−1 %αi + %(x− u∗i )α
(21−α%αi −2mi)pi

4
+ f̄∗/2c

In the above we use the fact that (i) |a + b|α ≤
2α−1(|a|α+ |b|α), and thus (ii) |a−b|α ≥ 21−α|a|α+ |b|α.

Let G(%αi ) = 2α
%αi +%(x−u∗i )α

(2−α%αi −mi)pi+f̄∗/c
. It is not hard to

verify that sign
(
∂G
∂%αi

)
is independent of %αi and thus G

is monotone as a function of %αi . We conclude that for
x ∈ Ui:

max
f

f(x)/f̄ ≤ max

(
22αmi + 2α%(x− u∗i )α

f̄∗/c
,

22α

pi

)
≤ 22αmi + 2α%(x− u∗i )α

f̄∗/c
+

22α

pi
= s(x)

Claim 4. Setting s(x) according to Claim 3, it holds
that S =

∫
s dµ ≤ 22α(βk + c) + 2αc

Proof.

S =

∫
s dµ =

∑
i

(∫
Ui

s dµ

)
≤

∑
i

(∫
Ui

22αcmi + 2αc%(x− u∗i )α

f̄∗
+

22α

pi

)
dµ

=
∑
i

(
22αcmipi

f̄∗
+

2αcmipi
f̄∗

+ 22α

)
= 22αc+ 2αc+ 22αβk = 22α(βk + c) + 2αc

In summary, given f∗, the computation of Ui, pi,
mi, s(x), S =

∫
s dµ and finally q(x) take time

O(|X|dβk). (Recall that we assume oracle access to
f , %, and the distribution µ.) This concludes our proof.

6 Proof of Theorem 4.2

Let % be the norm at hand. In what follows we present
a proof for α = 1. An analogous proof holds for general
α. One may associate with % a centrally symmetric
convex set C% ⊂ Rd such that for each x ∈ Rd it
holds that %(x) = ‖x‖C% = inf{r > 0 | x

r ∈ C%}.
Let ε > 0. In a previous work of ours [27], certain
approximations to convex sets C were studied. Namely,
using a proof technique similar to that of Dudley for
convex shape approximation by a polytope with few
vertices [12], in Theorem 1 of [27] it is shown that every
centrally symmetric convex set C has a corresponding
centrally symmetric convex set C ′ ⊆ C such that (a)
C ′ is a polyhedral of low complexity, and (b) for any
x ∈ Rd it holds that (1 − ε)‖x‖C′ ≤ ‖x‖C ≤ ‖x‖C′ .
More specifically, it was shown in [27] that C ′ has at
most (cd/

√
ε)d (d − 1)-dimensional facets. Here c is a

sufficiently large universal constant.
Let %′ be the norm corresponding to C ′. Let f ∈ F

and x ∈ Rd. We denote by f% the function f computed
with the norm % and by f%′ the same function (i.e., with
the same centers) computed via %′. By the discussion
above it holds that (1−ε)f%′(x) ≤ f%(x) ≤ f%′(x). Thus,
for sufficiently small ε > 0:

Lemma 6.1. Any ε-approximator for %′ will yield an
O(ε)-approximator for the original %.

Proof. Let ν be an ε-approximator for a measure µ with
respect to %′, it now holds that for every f ∈ F∫

f% dν ∈ (1± ε)
∫
f%′ dν ∈ (1± 3ε)

∫
f%′ dµ

∈ (1± 11ε)

∫
f% dµ

We thus may assume w.l.o.g. that our norm %
is defined by a polyhedral C% of low complexity as
described above. Consider a set {C1, . . . , Cn} of convex
sets where each set Ci is equal to riC% + vi. Here
vi is a vector in Rd, ri is a positive real, and riC =
{x | ‖x‖% ≤ ri}. The collection of sets Ci describes
an arrangement in Rd. In what follows we bound the
complexity of this arrangement. To do so, we consider
another, more complex arrangement, and present a
bound on its complexity.

For each Ci, let Hi be the set of hyperplanes
defining the boundary of Ci. Let Γ = (cd/

√
ε)d. It

holds that |Hi| ≤ Γ. Now, consider the arrangement



describing the collection of sets Hi. It is known that
the size of this arrangement is at most (nΓ)d, e.g., [17].
As this arrangement is more complex than that of the
Ci’s we have that

Lemma 6.2. The arrangement of {C1, . . . , Cn} has

complexity at most (nΓ)d =
(
n(cd/

√
ε)d
)d

.

Which suffices to prove our theorem.

7 Proof of Theorem 4.3

In what follows we present our proof for Theorem 4.3
when α ≥ 1. Our proof is analogous (with slight changes
in parameters) for α ≤ 1. Our proof of Theorem 4.3
has two steps. In Step 1 we show the existence of a
small set of functions G for which for any f ∈ F there
exists a constant cf and a function g ∈ G which covers
f . Namely, for any x ∈ A:

(7.4)

∣∣∣∣f(x)

s(x)
− cfg(x)

s(x)

∣∣∣∣ ≤ ε

256S
f̂ .

We do not take G to be our ε-cover-code since G is not
a subfamily of F . In Step 2 we define a mapping from
G into F . We denote by fg the function corresponding
to G in this mapping. We show that any f covered by
g will also be covered by fg. The set F ′ = {fg | g ∈ G}
is our final cover code. We start with the proof of Step
2.

7.1 Step 2. Let G be a set of functions satisfying
Condition 7.4. We partition the set F into |G| disjoint
sets, with F g being the set of functions f covered by
g. Let fg ∈ F g be a function in F g minimizing f̄/f̂ .

Namely, f̄g/f̂g ≤ f̄/f̂ for all f ∈ F g. If the minimum is

not obtained, we may take fg to satisfy f̄g/f̂g ≤ 2f̄/f̂
for all f ∈ F g without changing the statement of our
theorems.

Lemma 7.1. For any f covered by g and for any x ∈ A

DA,x(f, fg) ≤ ε

64S

(
1 +

f(x)

f̂ s(x)
+

fg(x)

f̂gs(x)

)
The set {fg | g ∈ G} will correspond to F ′ in
Theorem 4.3.

Proof. Let f ∈ F g and let cf be as in condition 7.4.
Then

|f̂ − cf ĝ| ≤ νA
(∣∣∣∣fs − cfg

s

∣∣∣∣) ≤ ε

256S
f̂

Since 256S(1− ε/256S) ≥ 128S, it holds that∣∣∣∣f(x)

s(x)
− cfg(x)

s(x)

∣∣∣∣ ≤ ε

128S
cf ĝ for all x ∈ A,

and thus
|f̂ − cf ĝ| ≤

ε

128S
cf ĝ.

Hence,

DA,x(f, g) =

∣∣∣∣∣ f(x)

f̂s(x)
− cfg(x)

cf ĝs(x)

∣∣∣∣∣
≤

∣∣∣∣ f(x)

cf ĝs(x)
− cfg(x)

cf ĝs(x)

∣∣∣∣+

∣∣∣∣∣ f(x)

f̂s(x)
− f(x)

cf ĝs(x)

∣∣∣∣∣
≤ ε

128S
+
f(x)

s(x)

∣∣∣∣ 1
f̂
− 1

cf ĝ

∣∣∣∣
≤ ε

128S
+
f(x)

s(x)

∣∣∣∣∣ f̂ − cf ĝcf ĝf̂

∣∣∣∣∣
≤ ε

128S
+
f(x)

s(x)

∣∣∣∣∣ εcf ĝ

128Scf ĝf̂

∣∣∣∣∣
=

ε

128S

(
1 +

f(x)

f̂s(x)

)
As fg ∈ F g, the same holds for fg, namely

DA,x(fg, g) ≤ ε
128S

(
1 + fg(x)

f̂gs(x)

)
. Thus we conclude

that

DA,x(f, fg) =

∣∣∣∣∣ f(x)

f̂s(x)
− fg(x)

f̂gs(x)

∣∣∣∣∣
≤

∣∣∣∣∣ f(x)

f̂s(x)
− g(x)

ĝs(x)

∣∣∣∣∣+

∣∣∣∣∣ fg(x)

f̂gs(x)
− g(x)

ĝs(x)

∣∣∣∣∣
= DA,x(f, g) +DA,x(fg, g)

≤ ε

128S

(
1 +

f(x)

f̂s(x)

)
+

ε

128S

(
1 +

fg(x)

f̂gs(x)

)

≤ ε

64S

(
1 +

f(x)

f̂s(x)
+

fg(x)

f̂gs(x)

)

7.2 Step 1. Let F be W (X , k, α). Let A be any
subset of X of size a. We show there exists a set

of functions G of size
[(
Sa
ε

)Θ(α2+1)
Γ
]2dk

satisfying

Condition 7.4, i.e., for any f ∈ F there is a constant
cf > 0 and a function g ∈ G such that for all x ∈ A∣∣∣ f(x)
s(x) −

cfg(x)
s(x)

∣∣∣ ≤ ε
256S νA(f/s).

The family G is designed by partitioning the space
X in a certain manner. We start with some definitions.
Let Z =

∑
A 1/s(x), and z(x) = 1/(s(x)Z). So z is

a probability measure on A. Let h ∈ F be a function
satisfying ĥ = minf∈F f̂ . Let v1, . . . , vk be the centers
of h, and let the Voronoi regions of these centers be
V1, . . . , Vk. Namely, for x ∈ Vi, h(x) = %(x− vi)α.

Observe that for any f ∈ F (in particular for h) it
holds that for all y ∈ A,

(7.5) f̂ = νA(f(x)/s(x)) ≥ f(y)

as(y)



and so s(y) ≥ f(y)

af̂
.

In what follows we assume that Z(Vi) > 0 for all
i. (Otherwise, values of i for which Z(Vi) = 0 may
be neglected in the computations to come.) Let hi be
defined as follows:

hi =
1

az(Vi)

∑
y∈Vi∩A

h(y)

s(y)
=

1

az(Vi)

∑
y∈Vi∩A

%(y − vi)α

s(y)

=
Z

a

∑
y∈Vi∩A

%(y − vi)αz(y)

z(Vi)

This implies that ĥ =
∑k
i=1 z(Vi)hi. Observe that the

average value (according to z) of h on Vi is

1

z(Vi)

∑
y∈Vi∩A

%(y − vi)αz(y) =
ahi
Z

Thus, at least half of z(Vi) lies in the ball
B%(vi, (2ahi/Z)1/α).

Let smin
i = miny∈Vi∩A s(y). Then

(7.6) z(Vi) =
∑
Vi∩A

1

s(x)Z
≥ 1

Zsmin
i

Let f be any function in F . Let the centers of f
be {u1, . . . , uk}. Let %i be the distance from vi to the

nearest center of f . We start by bounding f̂ from above
and below.

Lemma 7.2.

2α−1

(
ĥ+

k∑
i=1

%αi /s
min
i

)
≥ f̂ ≥ 1

4a2α−1

k∑
i=1

%αi /s
min
i

and thus

∀i, f̂ ≥ %αi
4a2α−1smin

i

Proof. For a point x ∈ A let ux be the closest center in
{u1, . . . , uk} to x. Suppose for a moment that for all i,
%i ≥ (2ahi/Z)1/α. LetBi = Vi∩B%(vi, (2ahi/Z)1/α)∩A.

Then

f̂ ≥ 1

a

∑
i

∑
x∈Bi

f(x)

s(x)

=
1

a

∑
i

∑
x∈Bi

%(x− ux)α

s(x)

≥ 1

a

∑
i

∑
x∈Bi

|%i − (2ahi/Z)1/α|α

s(x)

=
Z

a

∑
i

∑
x∈Bi

|%i − (2ahi/Z)1/α|αz(x)

=
Z

a

∑
i

|%i − (2ahi/Z)1/α|α
∑
x∈Bi

z(x)

≥ Z

2a

∑
i

|%i − (2ahi/Z)1/α|αz(Vi)

≥ Z

2a2α−1

∑
i

%αi z(Vi)−
∑
i

hiz(Vi)

≥ 1

2a2α−1

∑
i

%αi /s
min
i −

∑
i

hiz(Vi)

=
1

2a2α−1

∑
i

%αi /s
min
i − ĥ

Here we used Equation 7.6. If for some i it holds that
%i ≤ (2ahi/Z)1/α, then the inequalities above still hold
as in this case due to the monotonicity of | · |α and
the fact that α ≥ 1 we have that %αi /2

α−1 ≤ %αi ≤
2ahi/Z, so it clearly holds that %(x − ux)α ≥ 0 ≥
%αi /2

α−1 − 2ahi/Z. Now, as h was chosen to minimize

f̂ for f ∈ F , it holds that f̂ ≥ ĥ, which implies that

f̂ ≥ 1
4a2α−1

∑
i %
α
i /s

min
i . For the upper bound, we have

by the triangle inequality that

f̂ =
1

a

∑
x∈A

f(x)

s(x)
=

1

a

∑
x∈A

%(x− ux)α

s(x)

≤ 1

a

∑
i

∑
x∈Vi∩A

(%(x− vi) + %i)
α

s(x)

≤ 2α−1

a

∑
i

∑
x∈Vi∩A

%(x− vi)α

s(x)
+

2α−1

a

∑
i

∑
x∈Vi∩A

%αi
s(x)

≤ 2α−1ĥ+ 2α−1
∑
i

∑
x∈Vi∩A

%αi /as
min
i

≤ 2α−1

(
ĥ+

∑
i

%αi /s
min
i

)

Here we use the fact that (by definition) smin
i ≤ s(x)

for all x ∈ Vi ∩A.

We will now define a set of points in X that will
act as potential centers for functions g ∈ G. In what
follows we will use some parameters p1, p2, p3 and p4 to



be defined at the end of the proof. For each point x ∈ A
and for i = 1, . . . , (ap1)2, let

Rx,i =

{
v ∈ X | %(v − x)α

s(x)
∈

[
(i− 1)ĥ

ap1
,
iĥ

ap1

)}

The sets Rx,i and their intersections form an arrange-
ment A of cells in X. Let N be a set of points with
at least one representative in each cell of A. As we
are assuming that % is Γ-well behaved, we have that
|N | ≤ (ap1Γ)2d. (Here, to simplify our notation, the
bound presented is not tight.)

Claim 5. Let f ∈ F . Let U be a cell in A, and let n be
a corresponding representative of N in U , then for any
v ∈ U it holds that

|%(x− v)α − %(x− n)α| ≤ ĥs(x)

ap1
≤ f̂ s(x)

ap1

Proof. Follows directly by the definition of A and the
family Rx,i.

We are now ready to define our function g that will
approximate f . We consider two cases:

Case A: In this case we assume f̂ ≤ p1ĥ. We also
assume w.l.o.g. that each center ui of f is of significance
in the sense that it is the closest center of f to some
point x ∈ A. Otherwise, set the insignificant centers of
f to one of the significant centers. This will not change
the value of f at all—and the new f can be used in the
analysis below.

Consider a center ui of f and let x be a point in A
for which ui is the closest center of f to x. It holds by
Equation 7.5 that

f(x)

s(x)
≤ af̂ ≤ ap1ĥ

We conclude that ui is in ∪iRx,i, which implies that ui
is in some cell of A. Let ni be the representative point
in the cell of ui. We define g to be the function in F
with centers n1, . . . , nk.

We now show that g satisfies our requirements with
cf = 1. Namely, let x ∈ A and consider any center ui
of f and its corresponding center ni of g. As ui and
ni are in the same cell of A it holds by Claim 5 that
|%(x− ui)α − %(x− ni)α| ≤ ĥs(x)/(ap1) ≤ f̂ s(x)/(ap1).
To bound |f(x) − g(x)| assume that the closest center
of f to x is ui and the closest center of g to x is nj .

It now holds that |f(x)− g(x)| is equal to

|%(x− ui)α − %(x− nj)α|
≤ |%(x− ui)α − %(x− ni)α|+ |%(x− ni)α − %(x− nj)α|
≤ f̂s(x)/(ap1) + |%(x− ni)α − %(x− nj)α|

Now, by Claim 5 and the fact that nj (ui) is the closest
center of g (f) to x it holds that

%(x− ni)α − 2f̂s(x)/(ap1) ≤ %(x− ui)α − f̂s(x)/(ap1)

≤ %(x− uj)α − f̂s(x)/(ap1)

≤ %(x− nj)α ≤ %(x− ni)α

Thus,

|%(x− ni)α − %(x− nj)α| ≤ 2f̂ s(x)/(ap1)

We conclude that, |f(x)− g(x)| ≤ 3f̂ s(x)/(ap1). Thus,
setting ap1 ≥ 768S/ε, we obtain |f(x) − g(x)| ≤
ε

256S s(x)f̂ . Note that the number of different functions
g that we may receive in this case is at most |N |k =
(ap1Γ)2dk.

Case B: We now consider the case in which f̂ ≥
p1ĥ. In this case the function g we construct will
be constant on each Voronoi region Vi. The values g
on a given Voronoi region will be one of O(p2 log(p2))
different values to be specified shortly. This will imply
that the number of different functions g specified in this
case is at most this number to the power of k.

We now define g: For a parameter p3 and i in
which %αi /s

min
i ≤ f̂/p3 we define g to be 0 on Vi. We

refer to such indices i as light indices, other indices are
referred to as heavy. Loosely speaking, for i in which
%αi /s

min
i ≥ f̂/p3 we define g to be %αi /cf on Vi, where

cf is defined as follows:

cf = max
i:%αi /s

min
i ≥f̂/p3

%αi
p2

To be more precise, for i in which %αi /s
min
i ≥ f̂/p3 we

define g to be the nearest value to %αi /cf in the set{
0,

(
1 +

1

p2

)
,

(
1 +

1

p2

)2

, . . . , p2

}
Notice that by definition, %αi /cf is at most p2.
Also notice that for heavy indices i, cfg obtains
a value of approximately %αi . More precisely the
value of cfg on the heavy indices i is in the range[
%αi

(
1− 1

p2

)
, %αi

(
1 + 1

p2

)]
. We now study |f(x) −

cfg(x)| on light and heavy indices i.

Case B1: Light indices i for which %αi /s
min
i ≤ f̂/p3.

Here, for x ∈ Vi, gx = 0 and

|f(x)− cfg(x)| = |f(x)| ≤ (%(x− vi) + %i)
α

≤ 2α−1(%(x− vi)α + %αi )

= 2α−1(h(x) + %αi )

≤ 2α−1(aĥs(x) + smin
i f̂/p3)

≤ 2α−1(as(x)f̂/p1 + s(x)f̂/p3)



Here, we used Equation 7.5. We will set p1 and p3 such
that a/p1 + 1/p3 ≤ ε

256S2α−1 which implies in this case

|f(x)− cfg(x)| ≤ ε
256S s(x)f̂ .

Case B2: Heavy indices i for which %αi /s
min
i ≥

f̂/p3. Here we consider two sub-cases. First consider
x ∈ Vi for which %(x − vi) ≤ %i/p4 (here p4 ≥ 1
will be specified later). As the closest center of f to
vi is at distance %i from vi, for such x it holds that
f(x) ∈ [(%i − %i/p4)α, (%i + %i/p4)α]. Thus,

|f(x)− cfg(x)| ≤ |f(x)− %αi |+
%αi
p2

≤ |(%i + %i/p4)α − %αi |+
%αi
p2

≤ %αi

(
2α

p4
+

1

p2

)
≤ 4a2α−1smin

i f̂

(
2α

p4
+

1

p2

)
Here (in the last inequality) we used the second state-
ment in Lemma 7.2. Also, for p4 ≥ 2α notice that
(1 + 1/p4)α ≤ 1 + 2α/p4. We will set p4 and p2 such

that
(

2α
p4

+ 1
p2

)
≤ ε

1024Sa2α−1 which will imply in this

case |f(x)− cfg(x)| ≤ ε
256S s

min
i f̂ ≤ ε

256S s(x)f̂ .
Now consider x ∈ Vi for which %(x − vi) ≥ %i/p4.

In this case, by the triangle inequality f(x) ∈ [0, (%i +
%(x − vi))α]. Also, recall by Equation 7.5 that h(x) =

%(x− vi)α ≤ as(x)ĥ. Now,

|f(x)− cfg(x)| ≤ |f(x)− %αi |+
%αi
p2

≤ (%i + %(x− vi))α + %αi +
%αi
p2

≤ 2α(%αi + %(x− vi)α) +
%αi
p2

≤ %(x− vi)α
(
pα4
p2

+ (2p4)α + 2α
)

≤ aĥs(x)

(
pα4
p2

+ (2p4)α + 2α
)

≤ af̂s(x)

p1

(
pα4
p2

+ (2p4)α + 2α
)

We will set p1, p2 and p4 such that
a
p1

(
pα4
p2

+ (2p4)α + 2α
)
≤ ε

256S which will imply in

this case |f(x)− cfg(x)| ≤ ε
256S s(x)f̂ .

To summarize, one can set our parameters such
that all the requirements stated above hold: p1 =(
cSa
ε

)Θ(α2+1)
; p2 = 1024Sa2α

ε ; p3 = 512S2α−1

ε ; and

p4 = 4096Sa2α−1α
ε . Here c is a sufficiently large constant.

The total size of |G| = |F ′| is thus

(cp2 log(p2))k + (ap1Γ)2dk =

[(
Sa

ε

)Θ(α2+1)

Γ

]2dk

.

8 Proof of Theorem 4.4

Fix an integer a ≥ 8(S−1)/ε2. Let E0 be the event that
a sample R of size a according to the distribution q is not
an ε-approximator for F . (If this occurs write R ∈ E0.)
Throughout this section R is treated as a multiset. Say
that (f,R) is ε-bad if

∣∣f̄ − νR(Sf/s)
∣∣ > εf̄ . (Recall, for

a function g, that νR(g) = (1/|R|)
∑
x∈R g(x).) So,

E0 occurs if there is an f ∈ F s.t. (f,R) is ε-bad.
We shall upper-bound Pr[E0]. We start by recalling
that if R chosen as above, then for any given function
f ∈ F , there is only a small probability that (f,R)
is ε-bad. Namely, by Lemma 2.1 we have that for
ε > 0 and f ∈ F , if R is a random sample of X of

size a ≥ 2(S−1)
ε2 according to the distribution q then

Pr[(f,R) is ε-bad] ≤ 1/2.
In the manner of Vapnik and Chervonenkis, now let

G be an additional multiset of size a chosen indepen-
dently at random according to q. Let E1 be the event
“∃f ∈ F : (f,R) is ε-bad and (f,G) is ε/2-good”
(here good is the complement of bad). In order to upper-
bound Pr[E0] we relate E0 and E1 as follows:

Claim 6. Pr[E1] ≤ Pr[E0] ≤ 2 Pr[E1].

Proof. The first inequality is trivial; for the second, we
condition on R. If R has no bad functions f (namely
E0 does not happen), then Pr[E1|R] = 0. If R has bad
functions, pick one and denote it fR. Now Pr[E1|R] ≥
Pr[(fR, G) is ε/2-good]. By Lemma 2.1, the latter
happens with probability at least 1/2 over the set G. So,
Pr[E1] =

∑
R∈E0

Pr[E1|R] Pr[R] ≥ 1
2

∑
R∈E0

Pr[R] =
1
2 Pr[E0].

We now bound Pr[E1] from above. Let A be an
independent random sample of size 2a according to the
distribution q. Let R be a random sample from A of
size a (without replacement, treating all elements of the
multiset as distinct) and let G = A \ R. Notice that
the distribution of R and G are identical to that of
R and G discussed above (namely, they both contain
a independent random samples from X according to
q). We now condition on the multiset A = R ∪ G
and show that the event “E1 | A” happens with low
probability (no matter what A is). To do so we analyze
an event implied by “E1 | A” that is easier to analyze.



Specifically, it holds that Pr[E1] is at most

sup
A

Pr[E1 | A]

= sup
A

Pr[∃f ∈ F : (f,R) is ε-bad and

(f,G) is ε/2-good | A]

≤ sup
A

Pr
[
∃f ∈ F : |νR(Sf/s)− νG(Sf/s)| ≥ ε

2
f̄ | A

]
= sup

A
Pr
[
∃f ∈ F : |νR∪G(Sf/s)− νG(Sf/s)| ≥ ε

4
f̄ | A

]

For any specific f ∈ F , the event in brackets is
unlikely:

Claim 7. Let δ > 0. Let f ∈ F and let A be any
multiset of size 2a in X. Let R be a random (uniform)
sample from A of size a and let G = A \R. Then

Pr[|νA(Sf/s)− νG(Sf/s)| ≥ δf̄ ] ≤ 2e−
aδ2

S2

Proof. We use the following auxiliary lemma for our
proof:

Lemma 8.1. ([21]) Let h(·) be a function defined on a
set A, such that for x ∈ A we have h(x) ∈ [0,max].
Let G be a multiset of a samples drawn independently
and identically from A, and let δ > 0 be a parameter. If
a ≥max2/γ2 ln(2/ε), then Pr[|νA(h)− νG(h)| ≥ γ] ≤ ε

The proof of Claim 7 now follows directly for any a

by setting h = Sf/s, γ = δf̄ , ε = 2e−
aδ2

S2 and noticing
that h = Sf/s ∈ [0, Sf̄ ].

At this point we need to take the key step around
the union bound in

Pr
[
∃f ∈ F : |νR∪G(Sf/s)− νG(Sf/s)| ≥ ε

4
f̄ | A

]
.

In the classic VC argument for binary functions this
step is trivial, but in our case it is actually what
pivotally defines the definition of “ε-cover-code.” The
remainder of the proof is devoted to this step.

By our assumption, F contains an ε cover code

F ′ for (F,A, s) of size at most 1
8e

aε2

100S2 . To prove
Theorem 4.4 we use Claim 7 with a union bound over F ′.

Namely, as F ′ is of size at most 1
8e

aε2

100S2 , Claim 7 implies

that with probability 1− 1
8e

aε2

100S2 ·2e−
aε2

100S2 ≥ 3/4 for all
f ′ in F ′ it holds that |νA(Sf ′/s)− νG(Sf ′/s)| < ε

10 f̄
′.

We now show that if indeed
|νA(Sf ′/s)− νG(Sf ′/s)| < ε

10 f̄
′ for all f ′ ∈ F ′,

then |νA(Sf/s)− νG(Sf/s)| < ε
4 f̄ for all f ∈ F . This

will essentially conclude the proof of the theorem. Let

f ∈ F and let f ′ ∈ F ′ be a function covering it. Then:

|νA(Sf/s)− νG(Sf/s)|

= νA(f/s)

∣∣∣∣νA( Sf

νA(f/s)s

)
− νG

(
Sf

νA(f/s)s

)∣∣∣∣
≤ νA(f/s)

∣∣∣∣νA( Sf

νA(f/s)s

)
− νA

(
Sf ′

νA(f ′/s)s

)∣∣∣∣
+νA(f/s)

∣∣∣∣νA( Sf ′

νA(f ′/s)s

)
− νG

(
Sf ′

νA(f ′/s)s

)∣∣∣∣
+νA(f/s)

∣∣∣∣νG ( Sf

νA(f/s)s

)
− νG

(
Sf ′

νA(f ′/s)s

)∣∣∣∣
≤ νA(Sf/s) · νA

(∣∣∣∣ f

νA(f/s)s
− f ′

νA(f ′/s)s

∣∣∣∣)
+
ε

10

f̄ ′

νA(f ′/s)
νA(f/s)

+νA(Sf/s) · νG
(∣∣∣∣ f

νA(f/s)s
− f ′

νA(f ′/s)s

∣∣∣∣)
≤ ε

10

f̄

νA(f/s)
νA(f/s) + νA(Sf/s)νA(DA,x(f, f ′))

+νA(Sf/s)νG(DA,x(f, f ′))

≤ ε

10
f̄

+
ενA(f/s)

64

[
νA

(
1 +

f

νA(f/s)s
+

f ′

νA(f ′/s)s

)]
+
ενA(f/s)

64

[
νG

(
1 +

f

νA(f/s)s
+

f ′

νA(f ′/s)s

)]
≤ ε

10
f̄ +

ε

32
νA(f/s)

+
ενA(f/s)

64

[
νA

(
f

νA(f/s)s
+

f ′

νA(f ′/s)s

)]
+
ενA(f/s)

64

[
2νA

(
f

νA(f/s)s
+

f ′

νA(f ′/s)s

)]
≤ ε

10
f̄ +

ε

32
νA(f/s) +

6ε

64
νA(f/s) <

ε

4
f̄

In the last inequality we used νA(f/s) ≤ f̄ (which
follows from the inequality f(x) ≤ s(x)f̄ for all
f ∈ F and x ∈ X). Thus, Pr[E0] is at most
2 supA Pr

[
∃f ∈ f : |νA(Sf/s)− νG(Sf/s)| ≥ ε

4 f̄ | A
]
≤

1/2.
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A Proof of Proposition 2

Proof. For convenience write G = PF c. Let δ > 0
be arbitrary. If S(G) < ∞, let t = e−δS(G). If
S(G) = ∞, let t = 1/δ. Let µ be a measure for which



∫
σG,µ(x) dµ(x) ≥ t. We show there is a µ′ for which∫
σF,µ′(x) dµ′(x) ≥ e−3δt.

At each point x let gx ∈ G be a function
for which gx(x)/

∫
gx(y) dµ(y) ≥ e−δσG,µ(x). Let

A ⊆ X be a bounded region sufficiently large that∫
A
σG,µ(x) dµ(x) ≥ e−δt. Let µ′ be the probability

measure defined by µ′(S) = µ(S ∩ A)/µ(A). For each
x ∈ A let fx ∈ F , cx > 0 be such that cxfx(y) ≤
gx(y) ≤ eδcxfx(y) for all y ∈ A. Then:

σF,µ′(x) ≥ fx(x)∫
fx(y) dµ′(y)

≥ e−δgx(x)/cx∫
gx(y)/cx dµ′(y)

=
e−δgx(x)∫
gx(y) dµ′(y)

=
µ(A)e−δgx(x)∫
A
gx(y) dµ(y)

≥ µ(A)e−δgx(x)∫
gx(y) dµ(y)

≥ µ(A)e−2δσG,µ(x).

So: S(F ) =
∫
σF,µ′(x) dµ′(x) ≥

µ(A)e−2δ
∫
σG,µ(x) dµ′(x) = e−2δ

∫
A
σG,µ(x) dµ(x) ≥

e−3δt. This suffices to prove our assertion as by
definition S(F ) ≤ S(G).

B Proof of Proposition 3

Let the space X be a discrete set {a1, . . . , an}. Let F be
a family of n binary functions f1, . . . , fn each selected
independently at random, by picking each f i(aj) ∈
{0, 1} independently and uniformly at random. Let G
be a family of n binary functions g1, . . . , gn defined as
follows: for j ≤ i, gi(aj) = f i(aj); for j > i, gi(aj) =
1− f i(aj). Observe that G is identically distributed to
F (but of course not independent of it).

Lemma B.1. With probability 1 − o(1): S(F · G) ∈
Ω(n).

Proof. Let µ(aj) = 2j−1−n (except that µ(a1) = 21−n).
With probability at least 1− o(1) there are Ω(n) values
of i for which f i(ai)g

i(ai) = 1. For each such i,
s(ai)µ(ai) ≥ 1/2.

Lemma B.2. With probability 1 − o(1): S(F ),S(G) ∈
O(log n).

(This bound is optimal up to constants, because
with high probability, there are Ω(log n) points at each
of which there is a function in F which is 1 there, but
0 on the others.)

Proof. It is enough to argue for F .
For functions f, f ′, write (f ∨ f ′)(ai) =

max{f(ai), f
′(ai)}. Say that f dominates f ′, written

f ≥ f ′, if f(ai) ≥ f ′(ai) for all i. Write f > f ′ if in
addition there is an i for which f(ai) > f ′(ai).

For binary-valued families of functions, a function
f optimizes s(ai) if and only if (a) f(ai) = 1; (b) among
functions satisfying (a),

∑
j µ(aj)f(aj) is minimal.

Consequently, there is a permutation π and a 1 ≤
k ≤ n such that fπ(1), . . . , fπ(k) ∈ F satisfy:

(1) fπ(1) is a function in F minimizing∑
j µ(aj)f(aj). It is used to optimize all s(ai) for

which fπ(1)(ai) = 1.
(2) fπ(2) is a function in F which (a) is not

dominated by fπ(1); (b) among functions satisfying (a),
minimizes

∑
j µ(aj)f(aj). It is used to optimize all s(ai)

for which fπ(2)(ai) = 1 and which were not already
optimized by fπ(1).

(3) In general for 2 ≤ ` ≤ k, fπ(`) is a function
in F which (a) is not dominated by fπ(1) ∨ . . . ∨
fπ(`−1); (b) among functions satisfying (a), minimizes∑
j µ(aj)f(aj). It is used to optimize all s(ai) for which

fπ(2)(ai) = 1 and which were not already optimized by
one of fπ(1), . . . , fπ(`−1).

(4) (fπ(1) ∨ . . . ∨ fπ(k))(aj) = 1 for all j.
For each 1 ≤ ` ≤ k, the combined contribution to

the total sensitivity of all those aj whose sensitivity is
optimized by fπ(`), is at most 1. So it is sufficient to
show:

Lemma B.3. With probability 1 − o(1): any series
fπ(1) < (fπ(1) ∨ fπ(2)) < . . . < (fπ(1) ∨ . . . ∨ fπ(k))
has k ≤ 5 log n.

Proof. It is enough to show that with probability 1 −
o(1), for any series of length k = 3 log n, fπ(1)∨. . .∨fπ(k)

equals 1 on all but at most 2 log n points.
For any specific set T of 2 logn points, and any

specific set of indices π(1), . . . , π(3 log n), Pr((fπ(1) ∨
. . . ∨ fπ(k))(aj) = 0 for all j ∈ T ) = 2−6 log2 n. Take
a union bound over the

(
n

2 logn

)
choices of T and

the
(

n
3 logn

)
choices of π (as a set, i.e., order does

not matter). So the probability of “failure” is ≤
2−6 log2 n25 log2 n ∈ o(1).


