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Abstract

The problem of finding a minimum weight k-vertex connected
spanning subgraph in a graph G = (V,E) is considered. For k ≥ 2, this
problem is known to be NP-hard. Combining properties of inclusion-
minimal k-vertex connected graphs and of k-out-connected graphs
(i.e., graphs which contain a vertex from which there exist k internally
vertex-disjoint paths to every other vertex), we derive an auxiliary
polynomial time algorithm for finding a (d k

2 e+1)-connected subgraph
with a weight at most twice the optimum to the original problem. In
particular, we obtain a 2-approximation algorithm for the case k = 3 of
our problem. This improves the best previously known approximation
ratio 3. The complexity of the algorithm is O(|V |3|E|) = O(|V |5).
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1 Introduction

Connectivity is a fundamental property of graphs, which has important ap-
plications in network reliability analysis and network design problems. Re-
cently, much effort has been devoted to problems of finding minimum cost
subgraphs of a given weighted graph that satisfy given connectivity require-
ments (see [7] for a survey). A particular important class are the problems
with uniform connectivity requirements, where the aim is to find a cheap-
est spanning subgraph which remains connected in presence of up to k − 1
arbitrary edge or vertex failures (i.e., a minimum cost k-edge- or k-vertex-
connected spanning subgraph, respectively). For the practical importance of
the problem see, for example, Grötschel, Monma and Stoer [10]. In this pa-
per we consider the vertex version1 (henceforth we omit the prefix “vertex”),
that is, the following problem:

Minimum weight k-connected subgraph problem: given an integer k and a k-
connected graph with a nonnegative weight function on its edges, find
its minimum weight k-connected spanning subgraph.

The case k = 1 is reduced to the problem of finding a minimum weight
spanning tree. Beginning from k = 2, the minimum weight k-connected
subgraph problem is known to be NP-hard. To see this, note that a 2-
connected spanning subgraph of a graph G has |V | edges if and only if G

has a Hamiltonian cycle. A generalization to the case of any k > 2 is rather
easy: let us add to such a G k− 2 new vertices connected each to all vertices
in the graph by edges of weight zero, arriving at an equivalent instance of a
k-connected spanning subgraph problem.2

A few approximation algorithms are known for solving minimum weight
k-connected subgraph problems (see [12] for a survey). An approximation
algorithm is called α-approximation, or is said to achieve approximation ratio
α, if it is a polynomial time algorithm that produces a solution of weight no
more than α times the value of an optimal solution. For an arbitrary k, the
best known approximation algorithm is due to Ravi and Williamson [18]; it
achieves the approximation ratio 2H(k), where H(k) = 1 + 1

2
+ . . . + 1

k
is

1For a survey on results concerning edge-connectivity see, for example, [12].
2Recently, Fernandes [6] showed that the minimum weight 2-edge-connected subgraph

problem is MAX SNP-hard.
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the kth Harmonic number. Note that, for the cases k = 2, 3, this algorithm
achieves approximation ratios 3, 3 2

3
, respectively.

For particular instances of the problem, there were obtained more efficient
algorithms. For the case when edge weights satisfy the triangle inequality,
a (2 + 2(k−1)

n
)-approximation algorithm for an arbitrary k was suggested by

Khuller and Raghavachari in [13]. Recently, Cheriyan and Thurimella [3]
suggested a (1 + 1

k
)-approximation algorithm for the problem of finding a

minimum size k-connected spanning subgraph (i.e., a k-connected spanning
subgraph with minimal number of edges), k arbitrary.

For a general instance of the minimum weight k-connected subgraph prob-
lem, approximation ratios better than in [18] were obtained for small values
of k. Khuller and Raghavachari [13] developed a (2 + 1

n
)-approximation al-

gorithm for k = 2; it was improved to approximation ratio 2 in [17]. Penn
and Shasha-Krupnik [17] introduced a 3-approximation algorithm for the
case k = 3. A simpler and faster 3-approximation algorithm for k = 3 was
developed in [16].

The main result of this paper is a 2-approximation algorithm for the
minimum weight 3-connected subgraph problem. This improves the best
previously known performance guarantee 3 [17, 16]. This is done by combin-
ing certain properties of minimally k-connected graphs, certain techniques
from recent approximation algorithms [13, 17, 16], and some new ideas and
techniques.

The complexity of the suggested algorithm is O(n5), where n is the num-
ber of vertices in the graph. Our algorithm can be applied for the case k = 2
as well; it has the same performance (approximation ratio 2 and complexity
O(n5)) as the algorithm in [17].

Based on this paper, the continuation paper [4] shows a 3-approximation
algorithm for k = 4, 5, improving the previously best known approximation
ratios 41

6
, 417

30
, respectively. Recently, in [15], it was shown that the algorithms

of these two papers can be combined with the algorithm of [18] to achieve a
slightly better approximation guarantee than 2H(k) for all k.

This paper is organized as follows. In Section 2 we give notations and
describe known results used in the paper. Section 3 studies k-out-connected
graphs (i.e., graphs that have a vertex from which there exist k internally dis-
joint paths to any other vertex). In Section 4 we use properties of minimally
k-connected graphs to derive a 2-approximation algorithm for the minimum
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weight 3-connected subgraph problem.

The preliminary versions of this paper are [1, 5].

2 Preliminaries and Notations

Let G = (V, E) be an undirected simple graph (i.e., without loops and mul-
tiple edges) with vertex set V and edge set E. For a vertex v of a graph
(resp., digraph) G we denote by NG(v) the set of neighbors of v in G, and
by dG(v) = |NG(v)| the degree (resp., outdegree) of v in G. In the case G is
understood, we omit the subscript “G” in these notations.

A graph G with a nonnegative weight (cost) function w on its edges is
referred to as a weighted graph and is denoted by (G, w), or simply by G if
w is understood. For a weight function w and E ′ ⊆ E, we use the notation
w(E ′) =

∑
{w(e) : e ∈ E ′}. For a subgraph G′ = (V ′, E ′) of a weighted

graph (G, w), w(G′) is defined to be w(E ′). A subgraph G′ = (V ′, E ′) is
called spanning if V ′ = V ; in this paper, we use only spanning subgraphs
and, thus, sometimes omit the word “spanning”. Similar notations are used
for digraphs.

A subset C ⊆ V is a (vertex ) cut of a connected graph G if G \ C is
disconnected; if |C| = k then such C is called a k-cut. A side of a cut C is
the vertex set of a connected component of G \C. A graph G is k-connected
if it is a complete graph on k + 1 vertices or if it has at least k + 2 vertices
and contains no l-cut with l < k. The connectivity of G, denoted by κ(G),
is defined to be the maximum k for which G is k-connected. In what follows
we assume that |V | ≥ k + 2; thus κ(G) is the cardinality of a minimum cut
of G.

A set of paths is said to be internally disjoint if no two of them have an
internal vertex in common. Following [7], a graph (resp., digraph) such that
there exist k internally disjoint paths from a certain vertex r to any its other
vertex is said to be k-out-connected from r. The following statements are
well known and can be easily deduced from Menger’s Theorem: (i) in a graph
which is k-out-connected from r, any l-cut with l < k, if such exists, must
contain r; (ii) a graph G is k-connected if and only if it is k-out-connected
from every vertex of G. The latter implies that, for any vertex r of a k-
connected weighted graph, the weight of an optimal k-out-connected from r
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spanning subgraph is less or equal to the weight of an optimal k-connected
spanning subgraph.

A graph G is called minimally k-connected if κ(G) = k, but for any
e ∈ E, κ(G \ e) < k. Observe that every k-connected graph contains
a minimally k-connected spanning subgraph. Thus, among the subgraphs
which are optimal solutions for the minimum weight k-connected subgraph
problem, there always exists a minimally k-connected one.

Throughout the paper, let G = (G, w) denote the input graph, n and m

denote the number of its vertices and edges, respectively, and w∗ denote the
value of an optimal solution to our problem.

The underlying graph of a digraph D is the simple graph U(D) obtained
from D by replacing, for every u, v ∈ V , the set of arcs with endnodes u, v, if
nonempty, by an edge (u, v). The directed version of a weighted graph (G, w)
is the weighted digraph D(G) obtained from G by replacing every undirected
edge of G by the two antiparallel directed edges with the same ends and of
the same weight. For simplicity of notations, we denote the weight function
of D(G) also by w.

Frank and Tardos [8] showed that for a directed graph, the problem of
finding a minimum weight k-out-connected subdigraph from a given vertex r

is solvable in polynomial time; a faster algorithm is due to Gabow [9]. This
polynomial solvability was used as a basis for deriving approximation algo-
rithms for several augmentation problems (see, for example, [13, 17, 16]). The
main idea behind most of these algorithms is as follows. First, to add a new
“external” vertex r and connect it by edges to certain k vertices of the input
graph. Then, to find a minimum weight k-out-connected subdigraph from r

in the directed version. It is shown in [13] that the underlying graph of thus
obtained k-out-connected subdigraph, after deleting r, is d k

2
e-connected and

its weight is at most twice the weight of an optimal k-connected subgraph.3

For k = 2, a slight modification of this technique gives a 2-connected sub-
graph [13, 17], while for k = 3, an additional set of edges is added to make
thus obtained subgraph 3-connected [17, 16].

In our algorithm, we show a method to choose such r as a vertex of

3In the case of edge connectivity, the underlying graph of any k-edge-out-connected
subgraph is k-edge-connected. This observation was used in [14] to derive a fast and
simple 2-approximation algorithm for the minimum weight k-edge-connected subgraph
problem, k arbitrary.
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the input graph. This guarantees that the resulting subgraph is (d k

2
e + 1)-

connected. For the case k = 3 considered in this paper, d 3
2
e+1 = 3, and our

improvement produces a better approximation algorithm.

Roughly, our algorithm works as follows. Among all spanning subgraphs
which are k-out-connected from a vertex of degree k,4 the algorithm finds one
of weight at most twice the value of an optimal solution to our problem. For
k = 3, such a subgraph is 3-connected, and it is the output of the algorithm.

3 Properties of k-out-connected graphs

In this section we study k-out-connected graphs, k ≥ 2. In particular, we
show that if a graph is k-out-connected from a vertex of degree k, then it is
(dk

2
e + 1)-connected.

Our motivation to study k-out-connected graphs is that, in this paper,
we choose to approximate a minimum weight k-connected spanning subgraph
by a certain k-out-connected spanning subgraph. Observe, however, that an
arbitrary k-out-connected graph is not necessarily even 2-connected. Indeed,
let us take two complete graphs on at least k vertices each and connect an
additional vertex r to some t ≥ k vertices in each of these two graphs. The
resulting graph is k-out-connected from r, but not 2-connected (since {r} is a
1-cut). Observe that the degree of r in this example is at least 2k. One may
ask whether lower degree of r guarantees higher connectivity. The following
Lemma establishes a lower bound on the connectivity of a k-out-connected
graph from r relatively to the degree of r (generalizing [13, Theorem 4.3]).

Lemma 3.1 Let G be a k-out-connected graph from a vertex r, and let C

be an l-cut of G with l < k. Then r ∈ C, and for any side S of C holds:
l ≥ k − |S ∩ N(r)| + 1. Thus κ(G) ≥ k − b d(r)

2
c + 1.5

Proof: The fact that r is in C was already established in Section 2.

4Here and further we mean the degree w.r.t. the subgraph.
5In fact, the bounds in Lemma 3.1 are tight in the following sense. For any k ≥ 2 and

k ≤ d ≤ 2k, there exists a graph which is k-out-connected from its vertex r of degree d and
has connectivity exactly k−b d

2
c+ 1. Such a graph can be obtained by a generalization of

the construction given above, as follows: we identify k − b d

2
c vertices of the two complete

graphs and connect the additional vertex r to one common vertex (if d is odd) and to at
least bd

2
c non common vertices of each one of the complete graphs.
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Let now S be a side of C. If k ≤ |S ∩N(r)|, then the statement is trivial,
so assume k > |S ∩ N(r)|. Let us choose a vertex v ∈ S and consider a set
of k internally disjoint paths between r and v. Since those paths begin with
distinct edges, at most |S ∩ N(r)| of them may not contain a vertex from
C \ r. This implies that every one of the other at least k − |S ∩ N(r)| paths
must contain each at least one vertex from C \ r. These vertices are distinct,

hence l − 1 ≥ k − |S ∩N(r)|, as required. To see that κ(G) ≥ k − b d(r)
2
c+ 1,

observe that every cut of G has a side S for which |S ∩ N(r)| ≤ b d(r)
2
c. 2

The highest connectivity that can be guaranteed by Lemma 3.1 for a k-
out-connected graph from r corresponds to the lowest possible degree of r,
which is k. For such graphs, Lemma 3.1 implies the following statement.

Corollary 3.2 Let G be a k-out-connected graph from a vertex r of degree
k, k ≥ 2. Then G is (dk

2
e + 1)-connected. In particular, if k ∈ {2, 3}, then

G is k-connected.

4 Minimally k-connected graphs and the min-

imum weight 3-subgraph problem

In this section we show how to find a subgraph which is k-out-connected from
a vertex of degree k and has weight at most twice the value of an optimal
k-connected subgraph. Combining this with Corollary 3.2, we arrive at a
2-approximation algorithm for the minimum weight 3-connected subgraph
problem.

Our first aim is to establish that among optimal solutions to the min-
imum weight k-connected subgraph problem there always exists one which
has a vertex of degree k (recall that its k-connectivity implies that it is
k-out-connected from that vertex). This is straightforward by combining ex-
istence of an optimal solution graph which is minimally k-connected and the
following theorem of Halin [11] (see also [2]).

Theorem 4.1 ([11]) Any minimally k-connected graph has a vertex of de-
gree k.
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Remark. Let us define a minimally k-out-connected graph as a k-out-
connected graph G such that, for every its edge e, G\e is not k-out-connected.
Then, combining Theorem 4.1 with Corollary 3.2, we obtain an interesting
characterization of minimally 2 and 3-connected graphs: For k ∈ {2, 3}, a
graph is minimally k-connected if and only if it is minimally k-out-connected
from a vertex of degree k.

Let w∗ denote the weight of an optimal k-connected subgraph. We now
suggest an algorithm that finds a subgraph which is k-out-connected from
a vertex of degree k and has weight at most 2w∗ (using the approach of
[14, 13], where it was shown how to find such a subgraph but without the
degree constraint). We use the following simple observation:

Fact 4.2 A graph G′ is k-out-connected from a vertex r if and only if its
directed version D(G′) is k-out-connected from r, or, which is equivalent,
D(G′) without the edges entering r is k-out-connected from r.

Before presenting our algorithm, let us consider the following auxiliary
problem. Let (D, w) be a weighted digraph and r a vertex of D. Among
all k-out-connected from r subdigraphs of D such that r has outdegree k in
them, if any, find one of the minimal weight. Using penalty methods, this
problem can be easily reduced to the problem of finding an optimal k-out-
connected subdigraph (and thus solved by a single run of algorithm [9]) as
follows. Let M = w(D) + 1, and let wr be the weight function obtained
from w by adding M to the weight of each arc incident to r. Let us consider
a minimum weight k-out-connected subdigraph from r in (D, wr), say, Dr;
clearly, there are no arcs incoming r in it. Observe that, by the definition of
M , for any two subgraphs D′ and D′′ of D holds: (i) if dD′(r) < dD′′(r) then
wr(D

′) < wr(D
′′) and (ii) if dD′(r) = dD′′(r) then wr(D

′) ≤ wr(D
′′) if and

only if w(D′) ≤ (D′′). This implies that if the outdegree of r in Dr is k, then
Dr is an optimal solution to the discussed problem; otherwise, this problem
has no feasible solution.

Let us return to the original problem. Our algorithm solves the above
auxiliary problem in the directed version D = D(G) of G for every vertex r;
it outputs the cheapest one among the underlying graphs of the subdigraphs
Dr constructed as solutions to these problems.
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Out-Connected Subgraph Algorithm (OCSA)

Input: A weighted graph (G, w), G = (V, E), and an integer k.

Output: A subgraph G̃ of G and a vertex r̃, such that G̃ is k-out-connected
from r̃ and d

G̃
(r̃) = k, if exists.

Set G̃, r̃ undefined, w̃ = ∞, M = 2w(G) + 1;
For every vertex r ∈ V do:

(1) Set wr(e) = w(e)+M if e is incident to r, and wr(e) = w(e) otherwise;
(2) Find a minimum weight k-out-connected from r subdigraph Dr

of D(G, wr), if such exists, by the algorithm [9];
(3) If the degree of r in U(Dr) is k and w(U(Dr)) < w̃,

then set G̃ = U(Dr), r̃ = r, and w̃ = w(U(Dr));
end for
If w̃ < ∞ then output G̃, r̃

else declare “G contains no subgraph which is k-out-connected
from a vertex of degree k”;

Lemma 4.3 For any integer k ≥ 1 and any weighted graph G that contains a
spanning subgraph which is k-out-connected from a vertex of degree k, OCSA
outputs such a subgraph of weight at most twice the minimal possible. The
complexity of OCSA is O(k2n3m).

Proof: Let G′ be a k-out-connected from a vertex of degree k (say, r′)
spanning subgraph of G with the minimal weight (say, w′). At some iteration,
the algorithm chooses r = r′. Observe that the subdigraph D(G′) of D(G)
is (i) k-out-connected from r′ (by Fact 4.2), and (ii) the outdegree of r′ in
it is exactly k. By the above discussion, the constructed subgraph Dr′ is an
optimal one among the subgraphs of D(G) with these two properties, hence
w(Dr′) ≤ w(D(G′)). Therefore, after this iteration G̃ and r̃ are defined, and

w̃ ≤ w(U(Dr′)) ≤ w(Dr′) ≤ w(D(G′)) = 2w(G′) = 2w′.

Thus, OCSA outputs a pair (G̃, r̃), where w(G̃) ≤ 2w′.

Observe that at any iteration of the algorithm in which the pair (G̃, r̃)
is updated, the properties d

G̃
(r̃) = k and G̃ is k-out-connected from r̃ are
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maintained. Thus, the same is valid at the end of the algorithm for the
output (G̃, r̃), as required.

We now show the time complexity. The dominating time is spent for find-
ing subdigraphs Dr. The time complexity of the algorithm [9] is O(k2n2m),
and the number of its executions in OCSA is n. The complexity O(k2n3m)
follows. 2

Theorem 4.4 For any integer k ≥ 2 and any weighted k-connected graph
G, OCSA outputs a (dk

2
e + 1)-connected spanning subgraph of G of weight at

most 2w∗, in time O(k2n3m).

Proof: Let G∗ be any minimally k-connected optimal subgraph of G; its
weight is w∗. By Theorem 4.1, there exists a vertex r∗ which has degree k

in G∗; note that G∗ is k-out-connected from r∗. Lemma 4.3 implies that the
subgraph output by OCSA has weight at most 2w∗ and that it is (dk

2
e + 1)-

connected, by Corollary 3.2. The time bound is implied by Lemma 4.3. 2

Since for k = 2, 3 holds dk

2
e + 1 = k, the above discussion implies our

main result, as follows.

Theorem 4.5 For k ∈ {2, 3}, OCSA is a 2-approximation algorithm for the
minimum weight k-connected subgraph problem, with complexity O(mn3) =
O(n5).
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