Approximating Multiroot 3-Outconnected Subgraphs

Zeev Nutov*

Abstract

Consider the following problem: given an undirected graph with nonnegative edge
costs, and requirements k, for every node u, find a minimum-cost subgraph that
contains max{k,, k,} internally disjoint paths between every pair of nodes u,v. For
k = max k,, > 2 this problem is NP-hard. The best known algorithm for it has approx-
imation ratio 2(k — 1). For a general instance of the problem, for no value of k > 2 a
better approximation algorithm was known.

We consider the case of small requirements k,, € {1,2, 3}; these may arise in appli-
cations, as in practical networks the connectivity requirements are usually rather small.
For this case we give an algorithm with approximation ratio 13—0. This improves the best
previously-known approximation ratio 4. Our algorithm also implies an improvement
for arbitrary k. In the case in which we have an initial graph which is 2-connected, our
algorithm achieves approximation ratio 2.

Key-wodrs: approximation algorithm, rooted 3-outconnected subgraph.

1 Introduction

A basic problem in network design is to find a minimum cost subgraph of a given graph (net-
work) that satisfies given connectivity requirements (see [7, 4] for surveys). A fundamental
problem in this area is the survivable network design problem: find a cheapest spanning sub-
graph so that for every pair of nodes {u,v}, there are k,, internally disjoint paths' between
u and v, where k,, is a nonnegative integer (requirement) associated with the pair {u,v}.
No efficient approximation algorithm for this problem is known.

An a-approximation algorithm for a minimization problem is a polynomial time algorithm
that produces a solution of value no more than « times the value of an optimal solution;
« is called the approzimation ratio of the algorithm. A particular important case of the
survivable network design problem is the problem of finding a k-connected spanning subgraph
of minimal cost, that is, the case of uniform requirements when k,, = k for every node
pair {u,v}. Ravi and Williamson [13] presented a 2H (k)-approximation algorithm, where

*nutov@oumail.openu.ac.il, Open University of Israel, Klauzner 16 Str., Ramat-Aviv, Israel. Sup-
ported in part by NSERC research grant OGP0138432.
1 Unless stated otherwise, “connectivity”, “disjoint paths”, and “cut” mean node connectivity, internally

disjoint paths, and node cut, respectively.

H(k) =1+ 3+ + +. However, the proof of the approximation ratio in [13] contains an
error. The algorithm of [13] has k iterations; at iteration i the algorithm finds an edge set F;
such that G; = (V, F1U- - -UF;) is i-connected. At the end, G} is output. There is an example
[14] showing that the edge set Fj found at the last iteration has cost at least k/2 times the
value of an optimal solution. On the other hand, it is possible to get a k-approximation
algorithm, see [8]. A [(k + 1)/2]-approximation algorithms are known for k < 7; see [9] for
k=2, 1] for k =2,3, [3] for k = 4,5, and [8] for k =6, 7.

Particular cases of the survivable network design problem, where pairwise node re-
quirements are defined by single node requirements, arise naturally in network design.
For example, Stoer [12] discusses problems where pairwise requirements are of the form
ky, = min{ky, k,}, where the single node requirements k, are given. In this paper we con-
sider the case in which the pairwise requirements are of the form k,, = max{k,, k,}, that is,
the following problem:

The multiroot problem: Given an undirected graph with nonnegative edge costs, and require-
ments k, for every node u, find a minimum-cost subgraph that contains max{k,, k, }
internally disjoint paths between every pair of nodes u, v.

A graph is said to be k-outconnected from a node r if it contains k internally disjoint
paths between r and any other node; such node r is usually referred to as the root. It is
easy to see that a subgraph is a feasible solution to the multiroot problem if and only if it is
k,-outconnected from every node u. A graph is said to be (ky, ko, ..., k,)-outconnected from
(11,72, ...,74) if it is simultaneously k;-outconnected from each r;, i = 1,...,¢. Given an
instance of the multiroot problem, we use ¢ to denote the number of nodes with positive single
node requirements k,, and £ = maxk, is the maximum requirement. In this notation, the
multiroot problem can be formulated as follows: given an undirected graph with nonnegative
costs on the edges, a vector R= (r1,...,74) of ¢ root nodes, and a vector K= (ky,..., k) of
positive connectivity requirements, find a minimum-cost subgraph which is K-outconnected
from K. We shall always assume without loss of generality that k; > ky > ... > k, (thus
k = k1). Observe that the minimum-cost k-connected subgraph problem is a special case of
the multiroot problem when the number of the roots with requirement k is at least & (since
any root with requirement £ must be contained in every node cut smaller than k).

The one root problem (i.e., when ¢ = 1) was considered long ago. Note that it is NP-hard,
even when k£ = 2 and unit costs. To see this, note that a 2-outconnected spanning subgraph
of a graph G has < |[V(G)| edges if and only if G has a Hamiltonian cycle. The general setting
with more than one root was introduced in [11]. A possible application is described in [11].
We remark here that some other possible applications can fit this paradigm. For example,
the root nodes (“suppliers”) can be power stations, computer servers, transportation centers,
etc., with possibly distinct abilities, and the goal is to achieve a certain level of supply
reliability to the terminals (“demanders”) according to the ability of the suppliers.

Let us say that a directed graph D is r — k-outconnected, if in D there are k internally
disjoint paths from r to any other node. For directed graphs, Frank and Tardos [5] showed
that the problem of finding an optimal » — k-outconnected subdigraph is solvable in polyno-
mial time; a faster algorithm is due to Gabow [6]. This implies a 2-approximation algorithm

Figure 1: (a) A graph G. The costs are: thick edges: M, dashed edges: M + ¢, and all the
other edges: 0; (b) a 3-outconnected from 7, subgraph; (c¢) an optimal (3, 3)-outconnected
from (ry,3) subgraph; (d) an optimal 2-connected subgraph H of G and the sides of {r1, 7};

(e) {r1,ro}-component G; with respect to H (the virtual edge is shown by dotted line); (f)
split {ry, 79 }-component G; with respect to H.

for the (undirected) one root problem, as follows. The directed version of a graph G is the
digraph D(G) obtained from G by replacing every undirected edge of G by the two anti-
parallel directed edges with the same ends and of the same cost. To get a 2-approximation
algorithm for the one root case, we compute in the directed version of the input graph an op-
timal » — k-outconnected subdigraph, and output its underlying (undirected) simple graph.
It is easy to see that the output subgraph is k-outconnected from r, and its cost is at most
twice the value of an optimal k-outconnected (from r) subgraph, see [9].

For the multiroot problem, a 2¢-approximation algorithm follows by applying the above
algorithm for each root and taking the union of the resulting ¢ subgraphs. In [2], it was
shown that we can always assume that ¢ < k as otherwise some requirements are redundant
(so they can be set to zero), and if ¢ = k and there are no redundant requirements, then
the problem is equivalent to that of finding a minimum-cost k-connected spanning subgraph.
The approximation guarantee 2q of the above algorithm is tight for ¥ = 3 and ¢ = k£ — 1.
To see this, consider the graph shown in Fig. 1(a), with two roots ry, 5 and (kq, ko) = (3, 3);
all the thick edges (dashed edges) have cost M (M + ¢) and all the other edges have cost 0.
In the first step, the algorithm will find the subgraph of cost 4M shown in (b). Indeed, in
the directed version of G, an optimal r; — 3-outconnected subdigraph is the one obtained
from the directed version of the graph in (b) by deleting the arcs entering r1. Note that the
subgraph in (b) is not 3-outconnected from rq, since G \ 71 is not 2-outconnected from ro. At
the second step, the algorithm will find a similar subgraph for r, (even if before the second

step the cost of all the edges found at the first step will be reduced to 0). The output graph
will be the union of these two, and will have cost 8 M, while an optimal solution shown in
(c) has cost 2M + 2e. This example can be generalized for arbitrary k& > 3, see [2].

In [2] are given a min{2, ’“J“Qkﬁ}—approximation algorithm for unit costs, and a 3-approxi-
mation algorithm for metric costs. (Remark: The algorithm of [2] for metric costs computes a
k-connected subgraph. However, for arbitrary costs, the input graph may contain a feasible
solution to the problem, but not be k-connected, see Fig 1(a)). For metric costs, a (2 +
W)—approximation algorithm for £ < 7 is given in [§].

But, in the case of arbitrary costs, for no value of £ an algorithm with a better approx-
imation ratio than 2(k — 1) is known. In this paper we give an algorithm for £ = 3 with
approximation ratio 13—0.

This paper is organized as follows. Section 2 contains some preliminary results and
definitions. In section 3 we give a 2-approximation algorithm for augmenting a 2-connected
graph to be (3, 3)-outconnected, and in Section 4 we show a %—approximation algorithm for
the multiroot problem with £ = 3.

A preliminary version of this paper is [10].

2 Definitions and preliminary results

Here are some notations and definitions used in the paper. Unless stated otherwise, the
graphs in the paper are assumed to be connected, and simple (i.e., without loops and parallel
edges); if parallel edges arise, only the cheapest is kept. For an arbitrary graph G, V(G)
denotes the node set of G, and E(G) denotes the edge set of G. Let G = (V, E) be a graph.
For any set of edges and nodes U = E'UV”’, we denote by G\U (respectively, GUU) the graph
obtained from G by deleting U (respectively, by adding U), where deletion of a node implies
also deletion of all the edges incident to it. For a nonnegative cost function ¢ on the edges of
G and a subgraph G' = (V', E') of G we use the notation ¢(G") = ¢(E') = Y-{c(e) : e € £'}.
Similar notations are used for digraphs.

A subset C C FUYV is called a separator if G\ C' is disconnected. A particular case of
a separator that contains nodes only is referred to as (node) cut. If |C| = k then C' is called
a k-separator (k-cut). A side of a separator C' is the node set of a connected component of
G\ C. A graph G is k-connected if it has no l-separator with [< k. A separator C separates
two nodes u and v if u and v belong to distinct sides of C. For r € V and S C V' \ r we say
that G is k-outconnected from r to S if for every v € S there are k internally disjoint paths
between r and v in G. Note that a graph is k-outconnected from r to S if and only if it has
no l-separator with [< k separating r and some v € S (by Menger’s Theorem).

Throughout the paper, for an instance of a problem, we will denote by G the input graph;
n = |V(G)| denotes the number of nodes in G, and m = |F(G)| the number of edges in G.

Note that to prove a g—o—approximation algorithm for the multiroot problem with £ = 3
it is sufficient to consider the case ¢ = 2 and (ki, k2) = (3,3). Indeed, for ¢ = 1 (and k
arbitrary), there is a 2-approximation algorithm. For ¢ = 3, if all three requirements are
non-redundant, then, by [2], the problem is equivalent to that of finding a minimum-cost

3-connected spanning subgraph; for the latter, a 2-approximation algorithm is given in [1].
Now, if ¢ = 2, then there are three possible cases for (ki, ks): (3,1), (3,2), and (3,3). In
the first case ks, is redundant, so this case is reduced to the case ¢ = 1. For the second case
a 3-approximation algorithm is given in [11]. Proposition 2.1 generalizes the latter. It also
shows that improving approximation guarantees for small values of k£ can be used to obtain
better approximation guarantees for arbitrary values of k.

Proposition 2.1 Let K = (k1, ko, ..., kqg) be a vector of requirements of root nodes R =
(r1,72,...,1q), k1 > ko > ... > ky. Suppose that there exists an «j-approzimation algorithm
for the multiroot problem with requirement vector I?j = (kjzn—Joo- kg —17), kg > j+ 1.
Then for the original problem there exists a (25 + «;)-approzimation algorithm.

Proof: Apply j times the 2-approximation algorithm for finding a k;-outconnected subgraph
from r;, « = 1,...,j. Let G, be the union of the resulting j subgraphs. Clearly, G; is
(k1,...,kj)-outconnected from (rq,...,r;), and has cost at most 2jopt. Moreover, if C
is a separator of G; that separates r; from some other node, ¢ > j, and |C| < k;, then
{r1,...,r;} € C. This implies that augmenting G, to a subgraph which is (kji1,...,ky)-
outconnected from (rj11,...,r,) is equivalent to the problem of augmenting G, \ {r1,...,7;}
to a spanning subgraph of G\ {r1,...,r;} which is Kj—outconnected from ﬁj = (Tj41, .-+ Tq)-
Assume that for the latter problem there exists an «;-approximation algorithm, and let F}
denote its output augmenting edge set. Then G; U Fj is K-outconnected from ﬁ, and
co(G; U Fj) < o(Gj) + c(Fj) = 2jopt + ajopt = (2j + a;)opt. 0

Here are some typical applications of Proposition 2.1. Suppose that for some value of
J the requirement vector Kj has ¢ — j requirements of value ¢ — 7 each. In this case, the
problem for I?j is reduced to the problem of finding a minimum cost (¢ — j)-connected
spanning subgraph. Note that combining this with the 4-approximation algorithm of [8]
for the minimum-cost 7-connected subgraph problem implies a (2k — 10)-approximation
algorithm for the minimum-cost k-connected subgraph problem, £ > 8. This approximation
ratio is better than £ for £ = 8, 9.

Consider now the worst case when there are k — 1 requirements each of value k£ or k — 1.
Let j be the number of requirements of value k. Then Kj has £ —j — 1 requirements of value
k—j—1 each. The problem for Kj is the same as the problem of finding (k —j — 1)-connected
spanning subgraph. If j =& — 2, then £ —j —1 =1, a; = 1, and thus we have for this case
a (2k — 3)-approximation algorithm. The 3-approximation algorithm for (k, k) = (3,2) of
[11] is a particular case of this approach.

Our 13—0—approximation algorithm for requirements (3, 3) implies an improvement for any
vector K with k — 1 requirements of value k each. Indeed, let j = kK — 3. Then I?j =(3,3),
and thus we obtain an algorithm with approximation ratio 2(k — 3) + & = 2(k — 3), which
is an improvement over the previously best known 2(k — 1)-approximation.

The idea of our %-approximation algorithm for (ky, k) = (3,3) is as follows. In the
first phase, the algorithm uses the 2-approximation algorithm of [9] to find a 2-connected
subgraph H of G; in Section 4 we show that ¢(H) < (5 + =)opt, where opt denotes the
value of an optimal solution to the problem. In the second phase, an additional set of edges

is found by our 2-approximation algorithm for augmenting a 2-connected subgraph to a
(3, 3)-outconnected from (ry,rs).

3 Augmenting a 2-connected graph

In this section we will show a 2-approximation algorithm for augmenting a 2-connected
subgraph to be (3, 3)-outconnected. It follows from Menger’s Theorem that a graph G is
(3, 3)-outconnected from (71, 79) if and only if either G is 3-connected, or {ry,ro} is a unique
2-separator of G (recall that in this paper, a separator is a “mixed cut” that may contain
edges, and that separators that do not contain edges are called cuts). So, for augmenting a
2-connected graph H to be (3, 3)-outconnected from (ry,79), it is sufficient (and necessary)
to “destroy” all the 2-separators of H except of, maybe, {r;,ro}. The first consequence is,
that if {r1,72} is not a cut of H, the problem is reduced to finding a min-cost 3-connected
subgraph. For the latter, a 2-approximation algorithm is given in [1].

To shrink a subset S of V(G) means to combine all nodes in S into a single node s,
deleting all edges with both end-nodes in S, and for every edge with one end-node in .S, to
replace this end-node by s; an edge of a new graph is identified with the corresponding edge
of G, and, for every inclusion maximal set of parallel edges, only the cheapest is kept.

Let {ry,72} be a cut of a 2-connected spanning subgraph H of G. For a proper subset
S of V(G) \ {r1,r2}, let us denote S = V(G) \ (S U {r1,72}). Assume that {r,r,} has I
sides in H, say Si,...,S;. Decomposing GG into components (with respect to H and {ry,73})
means the following. Delete the edge (rq,r2) from G, if such exists, and add a new virtual
edge & = (r,73) of cost 0; this results in a graph G. Then the {ry, ry}-components of G (see
Fig. 1(e)) are the graphs Gy,...,G,, where G; = G(S;) is obtained from G by shrinking S;
into a single virtual node 5;. The split {ry, 79 }-components of G (see Fig. 1(f)) are the graphs
Gy, ...,Gy, where G; = G(S;) = Gi \ §;. Clearly, if G is 2-connected, then its every (split)
{ry, r2}-component is 2-connected.

The following facts are well known, or can be easily deduced from the well-known struc-
ture of 2-cuts. We omit a full proof, and instead refer the reader to [15] for details.

Lemma 3.1 Let {ry,re} be a cut of a 2-connected graph G.

ere is a 2-separator in G separating r, and o then:
1) If there is a 2 tor in G ti dry th
(1) {ri,re} has exactly two sides in G;
(ii) G has a 2-separator distinct from {ry,ro} that does not separate ry and r.

(2) {ri,re} is a unique 2-separator of G if and only if every split {ry,rs}-component of G
with respect to itself is 3-connected.

Sketch of the proof: It is not hard to see that if S is a side of {ry,r9}, then there is a
path between r; and r in G\ S. In particular, if {7}, 7} has [sides, then there are at least
[internally disjoint paths between r; and r,. Thus, if there is a 2-separator that separates
r1 and 79, then (by Menger’s theorem) [< 2, and thus | = 2.

Let {aq,as} be a 2-separator that separates r; and ro. Note that (r1,77) is not an edge
of G. For i = 1,2, if q; is an edge, let v; be an (arbitrarily chosen) end-node of a; distinct
from r; and from ry; otherwise (i.e., a; is a node) let v; = a;. Note that {v,v9} is a 2-cut
that separates r; and 79 as well, and, has 2 sides, say T},T5, where r; € T} and ry, € T5.
Let Sy, S, be the sides of {ry, 72}, where v; € S} and v, € S,. Now, if T; N S; = 0 for all
t # 7 = 1,2, then G must be a cycle of length 4. In this case, r; and any edge incident
to ry is a 2-separator that does not separate r; and ro. Otherwise, assume without loss of
generality that 77 N S] is nonempty. It is not hard to see that {rq, vy} separates 77 NS; from
VA (Th NSy U {r,v}).

Both directions of part 2 can be proved by contradiction. If a split {ry, 5 }-component of
G is not 3-connected, then it has a 2-separator P # {ry,ro}. It is not hard to see that then
P is also a 2-separator of G. If G has a 2-separator distinct from {ry, 73}, then, by part 1
of the lemma, G has a 2-separator P # {ry,ry} that does not separate r; and ro. It can be
verified that P must be a separator of some split {ry, ro}-component of G. O

Our first key observation is:

Lemma 3.2 Let H be a 2-connected spanning subgraph of a graph G, and let {r1,m} be a
cut of H with sides Sy,...,S,. Let (G;) Gi, i = 1,...,1, be the (split) {r1,rs}-components
of G with respect to H. Then:

(1) Ifl =2 then, G is (3, 3)-outconnected from (r1,rs) if and only if the following holds:

e if G has an edge (u,v) with u € Sy, v € Sy, then G is 3-connected;

e if G has no such edge, then each one of G1, Gy is 3-connected, and G\ (ry,72) is
(3, 3)-outconnected from (ry,rs).

(ii) If 1 > 3 then, G is (3, 3)-outconnected from (ry,12) if and only if G\ (r1,72) is (3,3)-
outconnected from (ry,13), and for every 1 < i <[holds:

e if G has an edge (u,v) with u € S;, v € S;, then G, is 3-outconnected from §;;
e if G has no such edge, then G; is 3-connected.

Proof:

(i) Clearly, if G contains an edge (u,v) with u € S1, v € Sy, then {ry,r2} is not a cut of G.
Thus, in this case, G is (3, 3)-outconnected from (7, r2) if and only if G is 3-connected.

Assume now that G has no such edge. Then {r;,r} is a cut of G, and the split
{r1, 3 }-components of G with respect to itself and with respect to H coincide. Thus,
by Lemma 3.1(2), G is (3, 3)-outconnected from (r1,75) if and only if each of G, G
is 3-connected. It remains to show that if G is (3, 3)-outconnected from (ry,73), then
so is G \ (r1,r2). Assume, on the contrary, this is not so. Then, G\ (ry,r2) has a
2-separator P separating r; and 7. Then, by Lemma 3.1(1lii), G \ (r1,r2) has a 2-
separator P’ # {ry,ro} that does not separate r; and r5. It is easy to see, that P’ is
also a 2-separator of GG, a contradiction.

7

(ii) Note that if G \ (r1,re) is not (3,3)-outconnected from (ry,73), then there is a 2-
separator P that separates r; and ro in G\ (rq,79). Thus, P is also a 2-separator of
H \ (r1,72). This contradicts Lemma 3.1(1i), since H \ (rq,79) is 2-connected, and
{r1, 72} has at least 3 sides in H \ (rq,79).

Let S; be a side of {ry,r2} in H, 1 <i <.

Claim 1: If there exists an edge (u,v) € G, u €S, ve S;, then G is 3-outconnected
from r; to S; and from ry to S; if and only if G; is 3-outconnected from s;.

Proof: Note that in this case (a) {r, 7} is not a 2-separator of G;, and (b) G; has
no 2-separator separating any two from rq,79,5;. We now prove both directions by
contradiction.

Assume the contrary; that G is 3-outconnected from r; to .S; and from 75 to S;, but Gz
is not 3-outconnected from 3;. Let P be a 2-separator separating S; from some v € S;
in G;. In particular, 5; ¢ P. Since by (a) P # {r1, 73}, one of 71,79, say 71, is not in
P. Then, by (b), also P separates r and v. It is not hard to see that P must also
separate r; and v in GG, which is a contradiction.

Assume now that G; is 3-outconnected from §;, but G is not (3, 3)-outconnected from
(r1,72). Then, by Lemma 3.1, there is a 2-separator P of G separating one of 71, o, say
ry, from some v € S;, but P does not separate r; and r,. Thus P is also a separator
of G U (r1,r3). Also, P does not contain an edge or a node that is not in G, since

~

G; = G; \ 5; is 2-connected. So, P is a separator of Gi, which is a contradiction. O

Claim 2: If an edge as in Claim 1 does not exist, then G is 3-outconnected from r; to
S; and from ry to S; if and only if G; is 3-connected.

Proof: Note that under the assumptions of the Claim, S; is also a side of {ry, 7} in G.
In particular, the {r,rs}-component G; of G with respect to itself and with respect
to H coincide. Thus, by Lemma 3.1, if G is (3, 3)-outconnected from (ry,rs), then G,
must be 3-connected.

The proof of the other direction is similar to the proof of Claim 1. O

Now, observe that US; = V \ {ry,72}. Thus, by Lemma 3.1(1i), in this case G is
(3, 3)-outconnected from (r1,75) if and only if for every ¢ = 1,...,[holds: G is 3-
outconnected from 7y to S;, and from r5 to .S;. Combining this with Claims 1 and 2
finishes the proof of part (ii) of the Lemma.

The proof of the Lemma is complete. O

The following algorithm makes a 2-connected graph H (3,3)-outconnected from (71, 75).
The problematic case is when {ry,r9} is a cut of H, and has at least 3 sides. The idea is to
use Lemma 3.2(ii), which essentially states that a subgraph is a solution to the problem if
and only if it can be composed from certain 3-connected graphs and 3-outconnected graphs.
These can be found in the (split) {7y, 79 }-components within twice the value of an optimal
using the algorithms of ([9]) [1]. But this does not guarantee the overall approximation ratio
2, if we compare the cost of each of the subgraphs found to the cost of the directed version
of the corresponding “piece” of an optimal solution. Our second observation is that the arcs

of the directed version of any optimal solution can be partitioned in a similar way (without
every part necessarily being a directed version of a subgraph of), so that at least one of the
3-connected or 3-outconnected graphs found has cost at most twice the cost of its directed
counterpart.

Algorithm for augmenting a 2-connected graph

Input: A graph G with cost function ¢ on the edges, a 2-connected spanning subgraph H
of G with ¢(H) = 0, and two nodes 71,79 of G;

Output: An edge set F'C E(G)\ E(H) so that HU F' is (3, 3)-out-connected from (ry,r5);

1. If {rq, 72} is not a cut of H, then using the algorithm of [1], find a set F' of edges such
that H U F' is 3-connected and output F’;

2. If {ry, 75} is a cut of H, then decompose G with respect to H into {ry, r3}-components
Gi,...,G;, and the corresponding split components Gy, ..., G;

(i) If I = 2 then using the algorithm [1] find, if they exist:
e edge set F' so that H U F' is 3-connected;
e fori=1,2, edge sets F/' C E(G;) \ E(H;) so that H; U F" is 3-connected;
Output F, the cheapest among F' and F" = (F'U F}) \ ¢;
(ii) If I > 3 then for i = 1,...,[do:

e Using the algorithm [6], find, if it exists, an optimal 5; — 3-outconnected
subdigraph D; in the directed version of G;, and set F] to be the edge set of
its underlying graph;

e Using the algorithm [1], find, if it exists, an edge set F!' in G;, such that
H; U F/' is 3-connected;

e Set F; to be the cheapest among found F], F/;

Output F = (UL, F;) \ (E(H) U).

Observe that for the example in Fig. 1, the algorithm computes an optimal solution. Each
set F (F/) will consist of E(H;) and the corresponding dashed edge (of the corresponding
two thick edges). Thus for each i = 1,...,4, F; = F}\ E(H;), and thus F will consist of the
two dashed edges, which is the optimal.

Theorem 3.3 The above algorithm is a 2-approzimation algorithm for the problem of aug-
menting a 2-connected graph to be (3, 3)-outconnected from its two nodes (ry,r9). The time
complezity of the algorithm is O(n*m).

Proof: The correctness of the algorithm follows from Lemma 3.2.

We now show the approximation ratio. Let F* C E(G)\ E(H) be an optimal edge set so
that H U F* is (3, 3)-out-connected from (r1,73), and let F' be the output of the algorithm.
The other notations are also as in the algorithm.

If {7y, 7} is not a cut of H, then F* is an optimal edge set so that HU F* is 3-connected.
The algorithm of [1] computes an edge set F' so that H U F' is 3-connected within a factor 2
of the optimal. Thus for this case we have ¢(F) < 2¢(F™*).

Assume now that {ry, 7} is a cut of H. Consider two cases: [=2 and [> 3.
I =2 : We will show that ¢(F) = min{c(F"), c(F")} < 2¢(F*). Consider two sub-cases:

e [has an edge (u,v) with u € S} and v € Sy:

Then, via Lemma 3.2(i), the same analysis as for the previous case is applied, and
shows that F” exists, and that ¢(F") < 2¢(F™).

e F™ has no such edge:
In this case, by Lemma 3.2(i), we can assume (ri,75) ¢ F*. For i = 1,2, let
F!' = {(u,v) € F : (u,v) € G;}, and F} = {(u,v) € F : (u,v) € G;}. For the
same reason as before, F}' < 2¢(F}). Note that the sets F}", Fj are disjoint. Thus
c(F") < e(FY) + c(Fy) < 2¢(FY) + 2¢(Fy) = 2¢(F™).

[> 3: by Lemma 3.2(ii), we can assume (ry,r9) ¢ F*. Let D* = D(F*) be the directed
version of F*. Clearly, ¢(D*) = 2¢(F*). Let Sy,...,S; be the sides of {ry,r2} in H,
and let D} = {(u,v) € D* : u € S;,v € S;}, and Ff = {(u,v) € F* : u € S;,v € S;},
t=1,...,1. Observe that the sets D; are pairwise disjoint and their union is D*. We
claim that ¢(F;) = min{c(F}),c(F])} < ¢(Df), i =1,...,1. Consider two sub-cases:

e I has an edge (u,v) with u € S;,v € S;:
Then, by Lemma 3.2(ii), H; U Ff* is 3-outconnected from 5;. This implies that
D(I:Ii U F}) is also 3-outconnected from §;, or, which is equivalent, D(I:I,) U Dy
is 3-outconnected from 5; (since D(H;) U D? is obtained from D(H; U F}) by
deleting the arcs of D(F}) entering §;). Note however, that D} is an optimal
5; — 3-outconnected subdigraph. Thus we have ¢(F}) < ¢(D)}) < ¢(Dy).

e [has no such edge:
Then, by Lemma 3.2(ii), H; U F}* is 3-connected. The algorithm [1] computes
an edge set F so that H; U F;" is 3-connected within a factor 2 of the optimal,
implying ¢(F}") < 2¢(F;7). Note also that in this case D = D(F}), and thus
c(F') < 2¢(F}) = (D).

This implies that ¢(F;) = min{c(F}), c(F!")} < ¢(Dy). Finally,
l
o(F) < Y e(F) < X e(D}) = e(D*) = 2¢(F).
i=1 i=1

This finishes the proof of the approximation ratio.

10

We now show the time complexity. The dominating time is spent for finding edge sets F
at step 2(ii). Let n; and m; denote the number of the nodes and of the edges of the {rq,r9}-
component G, of G, respectively. For each + = 1,...,[, the time required for the algorithm
6] is O(n;?m;). Observe that 3!, n; < n+ 31 < 4n, and that Y!_, m; < 3m (since an edge
of G appears in at most two split {71, 7, }-components, and the virtual edge appears once in
each component). Thus 3!, n?m; < (L, n2)(Z, m) < (4n)?3m = O(n’*m), and the

overall time complexity follows. a

4 The general case kK = 3

We now show how the algorithm described in the previous section can be used to obtain
two algorithms for the general case k = 3 of our problem. One is a (5 + =)-approximation
algorithm with complexity O(n®m), and the other is a *-approximation algorithm with
complexity O(n®m). First, the algorithm computes, using the algorithm [9], a 2-connected
subgraph H of G. Then, H is augmented to be (3, 3)-outconnected from (r1,73), using the
algorithm from the previous section. Since we show that ¢(H) < (5 + =)opt, this results
in a (13—0 + %)—approximation algorithm. A slight modification of this approach leads to a
%—approximation algorithm. We need some known facts and intermediate results before
proving that ¢(H) < (3 + &)opt.

For any digraph D = (V, A), there is a bijective correspondence between the 0, 1-vectors
x indexed by the arcs of A, and the spanning subdigraphs D, = (V, A;) of D, where a € A,
if and only if z, = 1. For any two disjoint subsets S, T C V let us denote x(S,7T) = > {z, :
a=(s,t) € A,seS,teT}. Similar notations are used for graphs. It follows from Menger’s
Theorem that a digraph D, is l-outconnected from 7 if and only if |V \ (SUT)|+xz(S,T) > 1
for every two non-empty disjoint subsets S,T" of V' so that r € S (see, for example, [4]).
Therefore, there is a bijective correspondence between the feasible integral solutions of the

corresponding linear program

min cx
st. |[VNSUT)|+x(S,T)>1 TES,@#TCV\S (1)
0<x<1

and the r — [-outconnected subdigraphs of D. A similar result is valid for graphs. For
digraphs (but not for graphs), by [4, Theorem 2.2], this linear program always has an op-
timal solution which is integral; for such an integral solution z*, D, is an optimal r — [-
outconnected subdigraph of D.

The following Lemma implies that the 2-approximation algorithm for the one root prob-
lem produces a solution of cost at most twice the value of an optimal solution to the linear
program (1).

Lemma 4.1 Let ¢} p be the value of an optimal solution to the linear program (1), where
x 15 defined on the edges of an undirected graph G. Let D* be an optimal spanning r — [-
outconnected subdigraph of D(G), and let H* be the (simple) underlying graph of D*. Then
c(H*) < 26 p.

11

Proof: Let 2* be an optimal solution to the linear program (1) for G. Let z7}, be defined on
the arcs of D(G) as follows: for e = (u,v) € E, x3,(u,v) = 23,(v,u) = 2*(e). Consider the
linear program (1), but with = being defined on the arcs of D(G). By [4], this linear program
always has an optimal solution which is integral, namely D*. Observe that z7, is a feasible
solution to this linear program. Thus we have: ¢(H*) < ¢(D*) < ca}) = 2ca* =2¢;p. O

Here is a short description of the 2-approximation algorithm of [9] for finding an optimal
2-connected spanning subgraph. Let (s,u) be the cheapest edge of G. The algorithm:
(1) adds an external node r and connects it to each of s, u;
(2) finds in the directed version of the graph so obtained, an optimal 2-outconnected subdi-
graph D, and outputs (G \ 7) U (s, u), where G is the (simple) underlying graph of D.

Lemma 4.2 Let G be a graph, 1 < | < k integers, and {r1,...,r} a subset of distinct nodes

of V.. Let opt be the cost of an optimal (k, ..., k)-outconnected from (ry,...,r;) subgraph of

G, and let H be a subgraph of G computed as follows:

(1) Construct a graph G, by adding an external node r and connecting r to each of {ry,...,r}
by edges of cost 0;

(2) Find in D(G,) an optimal r — l-outconnected subdigraph D and output the underlying
graph of D \ 7.

Then c(H) < 2opt.

Proof: Consider the linear program (1) with = being defined on the edges of G,. Note that
for any such x, the value of x is the same as the value of the restriction of x to the edges of
G. Thus we will assume z(e) = 1 for any external edge, since it does not affect the optimal
value of (1). Consider also the linear program

min cx

st. [V\(SUT)|+2(S,T)>t 1 €S 0ALTCV\S

: (2)
V\N(SUD)|+z(S.T)>t 1€eS 0£TCV\S
0<x<1

for which x is defined on the edges of G. Note that feasible integral solutions to (2) correspond
to (,...,t)-outconnected from (ry,...,r;) spanning subgraphs of G.

Let ¢}, ¢3(t) denote the value of an optimal solution to linear programs (1) and (2),
respectively. We will show that ¢} < ¢5(I) < £¢3(k). Since, clearly, ¢3(k) < opt, and, by
Lemma 4.1, ¢(H) < 2¢j, the result follows.

We prove that ¢; < ¢§(I) by showing that if x is not feasible for (1) (with ¢ = [), and
if z(e) = 1 for every external edge e, then the restriction of = to G is not feasible for (2).
Now, if z is not feasible for (1), and if z(e) = 1 for every external edge e, then there are sets
STCV, 04T cCcV\S,resS, sothat |[V\(SUT)|+x(S,T) <I. By the assumption
x(e) = 1 for every external edge e, there is 1 < i < so that r; € S. Therefore, the restriction
of S and z to G, violates for ¢ = [the ith constraint of (2).

Showing that ¢3(I) < Lcj(k) is straightforward. Indeed, if « is a feasible solution for (2)

with ¢ = k, then Lz is a feasible solution for (2) with ¢ = . The proof is complete. O

12

Lemma 4.1 together with Lemma 4.2 applied for £ = 3 and [= 2 imply that the cost of
the 2-connected subgraph found by the algorithm of [9], excepting the cheapest edge added
at the end, is at most gopt, where opt is the value of an optimal solution to our problem.
The cost of the cheapest edge of G is at most %opt (since any 3-outconnected subgraph has
at least 2 edges). Thus we will obtain the following intermediate result:

Corollary 4.3 Let H be the subgraph produced by the algorithm [9] and let opt be the cost
of an optimal (3, 3)-out-connected subgraph from (r1,2). Then c¢(H) < (3 + 2)opt.

Our algorithm for £ = 3 finds a 2-connected spanning subgraph using the algorithm [9],
and then augments it to be (3,3)-outconnected from (r1,79) using the algorithm from the
previous section.

The correctness and the time complexity O(n?m) of the algorithm follow from the cor-
rectness and the time complexity of the algorithm [9], and Theorem 3.3.

We now show the approximation ratio. By Corollary 4.3, ¢(H) < (5 + &)opt. By
Theorem 3.3, ¢(F) < 20pt. Thus ¢(H U F) < ¢(H) 4 ¢(F) < (§ + &)opt.

We can slightly modify the algorithm to get rid of the % term, but the time complexity
will increase to O(nm). Let us choose an arbitrary node s € V(G). For every u € V(G)
with (s,u) € E(G) we:

(1) set ¢(s,u) = 0;
(2) execute the algorithm of [9], connecting the external node to each of s, u; this results

in a 2-connected spanning subgraph H, of G;

(3) Using the algorithm above, find an edge set F' C E(G) such that H U F'is (3, 3)-
outconnected from (ry,rs).

Finally, among the subgraphs H, U F' obtained, the algorithm will output the cheapest one.

In such a way we are guaranteed to “catch” an edge (s, u) belonging to some optimal solution

to our problem. We do not need to pay for such an edge (s,u).

Theorem 4.4 For the problem of finding an optimal (3, 3)-outconnected from (r1,74) span-

ning subgraph there exist two algorithms: one with approximation ratio (13—0 + %) and time

complexity O(n*m), and the other with approzimation ratio % and time complezity O(n’m).

Acknowledgment I would like to thank Joseph Cheriyan for fruitful discussions and
his help. Thanks also to Tibor Jordan for his comments on a previous version of this work.

References

[1] V. Auletta, Y. Dinitz, Z. Nutov, and D. Parente, A 2-approximation algorithm for
finding an optimum 3-vertex connected spanning subgraph, Journal of Algorithms 32,
1999, 21-30.

[2] J. Cheriyan, T. Jordan, and Z. Nutov, Approximating k-outconnected subgraph prob-
lems, Approximation Algorithms for Combinatorial Optimization, K. Jansen and

13

[10]

[11]

[12]

[13]

[14]
[15]

J. Rolim eds., Springer Lecture Notes in Computer Science 1444, 1998, 77-88. (A full
version is to appear in Algorithmica special issue on APPROX’98.)

Y. Dinitz and Z. Nutov, A 3-approximation algorithm for finding optimum 4,5-vertex-
connected spanning subgraphs, Journal of Algorithms 32, 1999, 31-40.

A. Frank, Connectivity augmentation problems in network design, Mathematical Pro-
gramming, State of the Art, J. R. Birge and K. G. Murty eds. (1994), 34-63.

A. Frank and E. Tardos, An application of submodular flows, Linear Algebra and its
Applications, 114/115 (1989), 329-348.

H. N. Gabow, A representation for crossing set families with application to submodular
flow problems, Proc. 4th Annual ACM-SIAM Symp. on Discrete Algorithms (1993),
202-211.

S. Khuller, Approximation algorithms for finding highly connected subgraphs, In Ap-
proximation algorithms for NP-hard problems, Ed. D. S. Hochbaum, PWS publishing
co., Boston, 1996.

G. Kortsarz and Z. Nutov, Approximating node connectivity problems via set covers,
manuscript.

S. Khuller and B. Raghavachari, Improved approximation algorithms for uniform con-
nectivity problems, J. of Algorithms 21, (1996), 434-450.

7. Nutov, Approximating multiroot 3-outconnected subgraphs, In Proc. 10th ACM-
SIAM Symposium on Discrete Algorithms (SODA’99), 1999, 951-952.

Z. Nutov, M. Penn, and D. Sinreich, On mobile robots flow in locally uniform networks,
Canadian Journal of Information Systems and Operational Research (a special issue on
Intelligent Scheduling of Robots), Vol. 35, No. 4, 1997, 197-208.

M. Stoer, Design of survivable networks, Lecture Notes in Mathematics 1531, Springer
Verlag, Berlin, 1972.

R. Ravi and D. P. Williamson, An approximation algorithm for minimum-cost vertex-
connectivity problems, Algorithmica 18, (1997), 21-43.

R. Ravi and D. P. Williamson, private communication.

W. T. Tutte, Connectivity in graphs, Ch. 11, Univ. of Toronto Press, 1966.

14

