A 3-Approximation Algorithm for Finding
Optimum 4,5-Vertex-Connected Spanning
Subgraphs

Yefim Dinitz*f Zeev Nutov¥

Abstract

The problem of finding a minimum weight k-vertex connected
spanning subgraph in a graph G = (V| E) is considered. For k > 2,
this problem is known to be NP-hard. Based on the paper of Auletta,
Dinitz, Nutov and Parente in this issue, we derive a 3-approximation
algorithm for & € {4,5}. This improves the best previously known
approximation ratios 4% and 4%, respectively. The complexity of the
suggested algorithm is O(|V'|?) for the deterministic and O(|V|*log |V|)
for the randomized version.

The way of solution is as follows. Analyzing a subgraph con-
structed by the algorithm of the aforementioned paper, we prove that
all its “small” cuts have exactly two sides and separate a certain fixed
pair of vertices. Such a subgraph is augmented to a k-connected one
(optimally) by at most four executions of a min-cost k-flow algorithm.

*Up to 1990, E. A. Dinic, Moscow.

tDept. of Mathematics and Computer Science, Ben-Gurion University of the Negev,
Beer-Sheva 84105, Israel. E-mail: dinitz@cs.bgu.ac.il.

1This work was done as a part of the author’s D.Sc. thesis at the Dept. of Mathematics,
Technion, Haifa, Israel.

§Max-Planck-Institut fiir Informatik, Im Stadtwald, 66123 Saarbriicken, Germany. E-
mail: nutov@mpi-sb.mpg.de.

1 Introduction
In this paper we consider the following problem (for motivation see [1]):

Minimum weight k-connected subgraph problem: given an integer k and a k-
connected graph with a nonnegative weight function on its edges, find
its minimum weight k-vertex-connected spanning subgraph.

The case £k = 1 is reduced to the problem of finding a minimum weight
spanning tree. Beginning from £ = 2, the minimum weight k-connected
subgraph problem is known to be NP-hard. (To see this, notice that a 2-
connected spanning subgraph of a graph G = (V, E) has |V| edges if and
only if G has a Hamiltonian cycle. A generalization to the case of any k > 2
is rather easy: let us add to such a G k — 2 new vertices connected each to
all vertices in the graph by edges of weight zero, arriving at an equivalent
instance of a k-connected spanning subgraph problem.)

An approximation algorithm is called a-approzimation, or is said to achieve
an approximation ratio «, if it is a polynomial time algorithm that produces
a solution of weight no more than « times the value of an optimal solu-
tion. For an arbitrary k, the best known approximation algorithm is due to
Ravi and Williamson [12]; it achieves the approximation ratio 2H (k), where
H(k)=1+3+...+ 1 is the kth Harmonic number. For a general instance of
the minimum weight k-connected subgraph problem, better approximation
ratios were obtained only for £ = 2,3: see 2-approximation algorithms for
k =21in [11, 1] and for k = 3 in [1] (for a review see [1].)

The main result of this paper is a 3-approximation algorithm for the
minimum weight 4- and 5-connected subgraph problems. This improves the

best previously known performance guarantees 4%, 4% [12], respectively.

The main subroutine of our algorithm is “Out-Connected Subgraph Al-
gorithm” | abbreviated OCSA, of [1]. For k € {4,5}, OCSA finds a subgraph
which is (k—1)-connected and whose weight at most twice the value of an op-
timal solution to the problem. Our algorithm finds an additional set of edges
to be added to this subgraph to make the resulting subgraph k-connected.
We show that in the subgraph computed by OCSA, there exist two vertices
such that all “small” cuts separate one of them from the other and have
exactly two sides (such a property was also used in [9] for £ = 3 and in [2]

for k = 4). This property enables us to find an optimal set of edges to be
added by at most four executions of a min-cost k-flow algorithm.

In addition, a faster randomized version ROCSA of OCSA is suggested.
Its time complexity is O(k?n?*mlogn) = O(k*n*logn), where n is the number
of vertices and m is the number of edges in the input graph; this is by factor
@ better than the complexity of OCSA. We note that ROCSA is a ran-
domized approximation algorithm for our problem for the cases k£ = 2,3. It
has the same approximation ratio 2 as the best previously known algorithms
for k = 2,3 ([11], [1], respectively), but its time complexity O(n*mlogn) =
O(n*logn) is better than O(n*m) = O(n®) achieved by those algorithms.

The complexity of the algorithm suggested for cases k = 4,5 is the same
as the complexity of OCSA and ROCSA: O(n®) for the deterministic and
O(n*logn) for the randomized versions.

Auletta and Parente [2] obtained independently a 3-approximation algo-
rithm for the case £ = 4. However, we use additional ideas which lead to
a much simpler analysis and algorithm for £ = 4 and enable us to derive a
3-approximation algorithm for k£ = 5.

Recently, in [8], it was shown that the algorithms of [1] and of this pa-
per can be combined with the algorithm of [12] to achieve a slightly better
approximation guarantee than 2H (k) for all k.

This paper is organized as follows. In Section 2 we give notations and
describe known results used in the paper. Section 3 presents the random-
ized algorithm ROCSA. Section 4 presents an analysis of 4- and 5-out-
connected graphs and introduces our 3-approximation algorithm for the min-
imum weight 4- and 5-connected subgraph problems.

The preliminary version of this paper is a part of [3].

2 Preliminaries and Notations

Let G = (V, E) be an undirected simple graph (i.e., without loops and mul-
tiple edges) with vertex set V' and edge set E. For S,T C V we denote by
E(S,T) the set of edges with one end in S and the other end in 7. For a
vertex v of a graph G we denote by Ng(v) the set of neighbors of v in G,
and by dg(v) = |Ng(v)| the degree of v in G. In the case G is understood,
we omit the subscript “G” in these notations.

A graph G with a nonnegative weight (cost) function w on its edges is
referred to as a weighted graph and is denoted by (G, w), or simply by G if
w is understood. For a weight function w and E' C E, we use the notation
w(E") = Y{w(e) : e € E'}. For a subgraph G' = (V' E’) of a weighted
graph (G,w), w(G") is defined to be w(E’). A subgraph G' = (V' E’) is
called spanning if V' = V; in this paper, we use only spanning subgraphs
and, thus, sometimes omit the word “spanning”. Similar notations are used
for digraphs.

A subset C' C V is a (vertezx) cut of a connected graph G if G\ C is
disconnected; if |C| = k then such C' is called a k-cut. A side of a cut C' is
the vertex set of a connected component of G \ C. Given a cut C and two
nonempty disjoint subsets S, T C V' \ C, we say that C' separates S from T
if G\ C contains no path with one end in S and the other end in 7. Clearly,
if C'is a cut and {C, S, T} is a partition of V', then C separates S from T if
and only if E(S,T) = (). A cut that separates a vertex s from a vertex ¢ is
called an {s,t}-cut. An {s,t}-cut C is called {s,t}-minimum cut if C has
the minimum cardinality among all {s, t}-cuts. A graph G is k-connected if
it is a complete graph on k + 1 vertices or if it has at least k + 2 vertices
and contains no [-cut with [< k. The connectivity of G, denoted by k(G),
is defined to be the maximum k for which G is k-connected. In what follows

we assume that |V| > k + 2; thus x(G) is the cardinality of a minimum cut
of G.

A set of paths is said to be internally disjoint if no two of them have an
internal vertex in common. Following [4], a graph (resp., digraph) such that
there exist k internally disjoint paths from a certain vertex r to any its other
vertex is said to be k-out-connected from r. Using Menger’s Theorem, it is
not hard to see that in a graph which is k-out-connected from r, any [-cut
with [< k, if such exists, must contain 7.

A graph G is called minimally k-connected if k(G) = k, but for any e € E,
k(G \e) < k. Observe that among the subgraphs which are optimal solutions
for the minimum weight k-connected subgraph problem, there always exists
a minimally k-connected one.

The underlying graph of a digraph D is the simple graph U(D) obtained
from D by replacing, for every u,v € V, the set of arcs with endnodes u, v, if
nonempty, by an edge (u,v). The directed version of a weighted graph (G, w)
is the weighted digraph D(G) obtained from G by replacing every undirected

edge of G by the two antiparallel directed edges with the same ends and of
the same weight. For simplicity of notations, we denote the weight function
of D(G) also by w.

Throughout the paper, let G = (G, w) denote the input graph, n and m
denote the numbers of its vertices and edges, respectively, and w* denote the
value of an optimal solution to our problem.

3 Randomized Out-Connected Subgraph Al-
gorithm

The algorithm OCSA [1], finds a spanning subgraph of weight at most 2w*
which is k-out-connected from a vertex of degree k.! By [1, Corollary 3.2],
such a subgraph is ([£]41)-connected; in particular, if k¥ € {2, 3} then it is k-
connected and if k € {4,5} then it is (k—1)-connected. The time complexity
of OCSA is O(k*n*m). Here we suggest a randomized version ROCSA of
OCSA (of Monte-Carlo type) with the complexity O(k*n*mlogn).

Let us describe OCSA briefly. The following auxiliary problem is con-
sidered. Let (D,w) be a weighted digraph and r be its vertex; among all
k-out-connected from r subdigraphs of D such that r has outdegree k£ in
them, if such exist, find one of the minimal weight. In [1], this problem is
reduced to the problem of finding an optimal k-out-connected from 7 subdi-
graph in D, where large penalties are added to the weights of edges incident
to 7. The latter problem can be solved by a single run of the algorithm [5]
in O(k*n*m) time.

For any input (G, w) and k, OCSA:
1. Constructs the directed version D = D(G) of G.

2. For every vertex r of D(G), finds a solution D, to the above auxiliary
problem.

3. Maintains the cheapest graph G (with the corresponding vertex 7)
among the underlying graphs of the subdigraphs D,; at the end of
the algorithm, GG, 7 are output.

!Here and further we mean the degree w.r.t. the subgraph.

We define a randomized algorithm ROCSA as a modification of OCSA by
setting that (i) the sequence of examined vertices r is chosen at random and
(ii) the algorithm ends and G, are output after the examination of [loga n]
first vertices.

Let us analyze the output of ROCSA. Let G* be any optimal minimally
k-connected spanning subgraph. According to the analysis of OCSA in [1],
G becomes a ([5] + 1)-connected subgraph of G of weight at most 2w* at
least as soon as a vertex with degree k in G* is examined. Mader [7] shows
that, for £ > 2, any minimally k-connected graph with n vertices has at least
(k;;)fl” > %n vertices of degree k. This implies that with probability 1 — %
at least one of the [log% n] vertices examined in ROCSA has degree k in G*.

We arrive at the following statement.

Theorem 3.1 For any integer k > 2 and any weighted k-connected graph
G, with probability 1 — %, the output of ROCSA is a spanning subgraph of G
which is k-out-connected from a vertex of degree k, and hence is ([£] +1)-
connected, and whose weight is at most 2w*. The time complexity of ROCSA
is O(k*n*mlogn).

As a consequence, we obtain:

Corollary 3.2 For k € {2,3}, ROCSA is a randomized 2-approzimation
algorithm for the minimum weight k-connected subgraph problem, with the
time complezxity O(n*mlogn) = O(n'logn).

4 Minimum Weight 4- and 5-Connected Sub-
graph Problems

In this section we present a 3-approximation algorithm for the minimum
weight 4- and 5-connected subgraph problems. The idea is to execute OCSA
as the first phase, which produces a (k — 1)-connected subgraph, and in the
second phase, to augment this subgraph by an appropriate set of edges. Such
a set of edges is found as follows. We show that, for k € {4, 5}, the subgraph
G produced by OCSA contains certain two vertices such that each its (k—1)-
cut separates one of them from the other. We “destroy” all (k — 1)-cuts of

G by adding an edge set F of edges, such that G U F contains k internally
disjoint paths between these two vertices; such an optimal edge set F' is found
by using a minimum cost k-flow algorithm.

We need several preliminary statements.

Lemma 4.1 ([1]) Let G be a k-out-connected graph from a vertex r, and let
C be an l-cut of G with |l < k. Then r € C, and for every side S of C' holds:
I >k—|SON(r)|+1. Thus k(G) > k — L@J +1. In particular, if d(r) = k
then G is ([%] + 1)-connected.

Let S be aside of an I-cut of G, | < k. Then, by Lemma 4.1, |[SNNg(r)| >
k—1+1> 2. Thus Lemma 4.1 implies the following statement.

Corollary 4.2 Let G be a k-out-connected graph from a vertex r of degree
k, k € {4,5}. Then G is (k — 1)-connected, and for every (k — 1)-cut C of
G holds:

(i) C has ezactly two sides;

(ii) If k =4 then |C N N(r)| = 0 and each side of C' contains exactly two
vertices from N(r);

(iii) If k =5 then |C N N(r)| <1 and each side of C' contains two or three
vertices from N(r); thus at least one side contains exactly two vertices
from N(r).

The following fact is well known (its proof is presented here for complete-
ness of exposition).

Lemma 4.3 Let C,C" be two {s,t}-minimum cuts of a graph G such that
each of C' and C" has exactly two sides, say S,T and S',T', respectively,
where s € S, 5" and t € T,T'. Then Ry = (CUC")\ (TUT") separates SN S’
fromTUT', Ry = (CUC")\ (SUS’) separates TNT" from SUS', and both
R, R, are {s,t}-minimum cuts as well.

Proof: Notice that each of {R;, SN S, TUT'} and {R;, SUS" TNT'} is
a partition of V. Also, E(SN S, TUT') = E(SUS,TNT') = {, since
E(S,T)= E(S',T') = (). This implies that R, separates SN .S’ from TUT",

7

Figure 1: Tllustrations for the proofs of Lemmas 4.3 and 4.4.

and R; separates TNT' from SUS’ (for illustration see Fig. 1a). In particular,
we obtain that R, and R; are both {s,t¢}-cuts. To see that R, and R, are
both {s,¢}-minimum cuts, observe that |Rs| + |R;| = |C| + |C’| and that
|Rs|, [R| > |C] = |C]. O

We begin our analysis from the following statement.

Lemma 4.4 Let G be a k-out-connected graph from a vertex r of degree k,
k € {4,5}. Let C be a (k— 1)-cut of G and S a side of C that contains
ezactly two vertices from N(r), say, s; and so. Then, for any (k — 1)-cut of
G, both s1 and sy are contained in the same side of C.

Proof: Recall that, by Corollary 4.2, G is (k — 1)-connected, and every
(k — 1)-cut of G contains at most one vertex from N(r) and has exactly two
sides, containing 2 or 3 vertices from N(r) each. Let T be the side of C that
is distinct from S. Assume in negation that there exists a (k —1)-cut C' with
sides S’ and 7" such that s; and s, are not contained in the same side of
C'. Since C’ contains at most one of sy, s, we assume w.l.o.g. that s; € 5,
sy ¢ S'. Let us consider two cases:

TNT #0: Let t; € TNT' (see Fig. 1b). Then, clearly, both C' and C” are
{s1,t1}-minimum cuts. Thus, by Lemma 4.3, the cut R;, = (CUC")\
(TUT’) is a (k—1)-cut with sides SNS", TUT". But (SNS")NN, = {s1},
a contradiction to Corollary 4.2.

TNT =0: In this case s, € SNT', since |T' N N(r)| > 2, |CNN(r)| <1,
and (S\S")NN(r) = s3. Moreover, TNS’ # (), since |[TNN(r)| > 2 and

8

|C" N N(r)| < 1. Let t € TN S’ (see Fig. 1¢). Then the contradiction
is obtained by using similar arguments for sq, t5 instead of s, ;.

O

Remark. Observe that Lemma 4.4, together with Corollary 4.2, implies
that a k-out-connected graph G from a vertex r of degree k, k € {4,5}, has a
vertex s neighboring to which does not belong to any cut smaller than & (in
fact, there are four such vertices). Such a vertex s can be easily recognized
as a neighbor of r for which x(G'\ s) > k—1. This observation, together with
Lemma 4.1, already implies a 4-approximation algorithm for the minimum
4- and 5-connected subgraph problems, as follows. Let G, 7 be the output
of the OCSA for the input (G, w) and k, and let, for s as above, G be the
underlying graph of the minimum weight k-out-connected from s subdigraph
of D(G). Then, for k € {4,5}, the graph G U G, has no (k — 1)-cuts, i.e., is
k-connected. Similarly to the proof of [1, Lemma 4.3], w(G,) < 2w*. Thus,
w(GUG,) < w(G)+w(G,) < 2w* + 2w* = 4w*, as required.

The following Lemma is crucial to derive our 3-approximation algorithm
for k € {4,5}.

Lemma 4.5 Let G be a k-out-connected graph from a vertex r of degree k,
k € {4,5}. Then there exists a pair of vertices {s,t} C N(r) such that every
(k —1)-cut of G has exactly two sides and separates s from t. Moreover, for
any distinct four vertices sy, So,11,t9 € N(r), there exists such a pair s,t with
s € {81,82}, te {tl,tg}.

Proof: If GG is k-connected, then the proof is immediate. Otherwise, by
Corollary 4.2, K(G) = k — 1 and any (k — 1)-cut has exactly two sides.

Let us suppose first that there exists a (k—1)-cut C which has exactly two
vertices from N (r) in each its side, say s1, so and ¢, t5. Then, by Lemma 4.4,
any (k — 1)-cut separates s from t for any s € {s1,s2} and t € {t,t5}.

Otherwise, by Corollary 4.2, k = 5 and every (k — 1)-cut has exactly two
vertices from N(r) in its one side and three vertices from N(r) in its other
side. Let C be a (k — 1)-cut, and let N(r) be partitioned into {si, s2} and
{t1,ta,t3} by the two sides of C'. Suppose now that there exists a (k — 1)-cut
C" which does not separate {s, s} from {t1, t2,t3}. Then Lemma 4.4 implies
that C’" has sy, sy and one of t1, to, t3, say, t3, in its one side, and ¢, ¢, in its

9

other side. But then, by Lemma 4.4, every (k — 1)-cut must have s, sy in
its one side and t;,t, in its other side. Also in this case, any pair {s;,%,},
i,j € {1,2}, is appropriate.

The last part of the statement is checked by a simple case analysis. O

The following statement stems straightforwardly from Menger’s Theorem.

Fact 4.6 Let G be a connected graph that has a pair {s,t} of vertices such
that any l-cut of G with | < k has exactly two sides and separates s from t.

Let F be a set of edges. Then G U F' is k-connected if and only if in G U F
there are k internally disjoint paths between s and t.

Let now G be a weighted graph, and let G be a spanning subgraph of G
with a pair {s, ¢} as in the above statement. By Fact 4.6, finding an optimal
edge set F' such that GU F' is k-connected is equivalent to finding an optimal
edge set F' such that in GU F' there are k internally disjoint paths between s
and t. The latter problem can be solved in polynomial time via a reduction
to the min-cost k-flow problem with unit capacities of vertices (see, e.g., [4]);
we use such a reduction below at Phase 2 of our algorithm.

We now present our 3-approximation algorithm for the minimum weight
4- and 5-connected subgraph problems.

4 and 5-Connected Subgraph Algorithm

Input: A k-connected weighted graph (G, w) and an integer k, k € {4,5}.

Output: A k-connected spanning subgraph of G.

Phase 1: Execute OCSA or ROCSA on the input G, w, k, and let (G, 7) be
the output;

Phase 2: Change the weight of any edge in G to zero;
Choose any four vertices sy, 5o, t1,t2 € Ng(7);
For every pair of vertices s € {s1,s2}, t € {t1,t2} do:
1) Find in G, with capacity 1 of every vertex in V' \ {s,¢}, a minimum
cost k-flow from s to ¢, using the algorithm [10];
2) Find k internally disjoint paths between s and ¢, by path decompo-
sition of this flow; let F'(s,t) be the union of their edge sets;

10

3) Check whether G U F(s,t) is k-connected, using algorithm [6];
If it is, then terminate with G U F(s,t);
end for;

Theorem 4.7 The 4- and 5-Connected Subgraph Algorithm is a 3-approz-
imation algorithm for the minimum weight k-connected subgraph problems,
k € {4,5}. The time complezity of the algorithm is O(n*m) = O(n®) de-
terministic (using OCSA) or O(n’*mlogn) = O(n*logn) randomized (using
ROCSA).

Proof: At Phase 2 the algorithm finds edge sets F(s,t) such that in G U
F(s,t) there are k internally disjoint paths between s and ¢. By Lemma 4.5
and Fact 4.6, for at least one of the pairs {s,¢} examined by the algorithm,
G'U F(s,t) is k-connected. This shows the correctness of the algorithm.

We turn now to show the approximation ratio. Let E be the edge set of G,
and let F' = F(s,t) be the additional edge set chosen by the algorithm. The
set F'\ E is an optimal augmenting edge set for G (see the discussion before
the description of the algorithm); clearly, its weight is at most w*. By [1],
w(G) < 2w*. Summarizing: w(GUF) = w(G)+w(F\E) < 2w*+w* = 3w*.

Let us discuss the time complexity. At Phase 2 the algorithm finds a
minimum cost k-flow and checks k-connectivity at most four times. Com-
puting a minimum cost k-flow takes O(nlogn(m + nlogn)) time [10], and
k-connectivity is checked in O(k?n? + k*>n'5) time [6]. Hence, the dominat-
ing time is spent for executing Phase 1, i.e., the complexity of the algorithm
using OCSA or ROCSA is the same as the complexity of OCSA or ROCSA,
respectively. a

Remark. It can be easily shown that the same approximation ratio is valid
even if at Phase 2 of the algorithm we do not reduce the weights of edges
in G to zero. However, this reduction guarrantees optimality of the edge set
addition at Phase 2.

References

[1] V. Auletta, Ye. Dinitz, Z. Nutov, and D. Parente: A 2-approximation al-
gorithm for finding an optimum 3-vertex-connected spanning subgraph.

11

J. of Algorithms, this issue, 77-77.

[2] V. Auletta and D. Parente: Better algorithms for minimum-weight con-
nectivity problems. Proc. 14th Annual Symposium on Theoretical As-
pects of Computer Science (STACS '97), R. Reischuk and M. Morvan
Eds., Lecture Notes in Comp. Sci., Vol. 1200, Springer-Verlag, Berlin
(1997), 547-558. (See also Tech. Rep. Universita’ di Salerno 6/96 (July
1996).)

(3] Ye. Dinitz and Z. Nutov. Finding minimum weight k-vertex connected
spanning subgraphs: approximation algorithms with factor 2 for k = 3
and factor 3 for k = 4,5. Proc. 3rd Italian Conf. on Algorithms and
Complezity, CIAC’97 (Rome, March 1997), Lecture Notes in Comp.
Sci., v. 1203, Springer-Verlag, 1997, 13-24.

[4] A. Frank: Connectivity augmentation problems in network design.
Mathematical Programming, the State of the Art. J. R. Birge and K.
G. Murty eds. (1994), 34-63.

[5] H. N. Gabow: A representation for crossing set families with application
to submodular flow problems. Proc. 4th Annual ACM-SIAM Symp. on
Discrete Algorithms (1993), 202-211.

(6] Z. Galil: Finding the vertex connectivity of graphs. SIAM J. of Com-
puting 9 (1980), 197-199.

[7] W. Mader: Ecken vom Grad n in minimalen n-fach zusammenhéngenden
Graphen. Archiv. Math. (Basel) 23 (1972), 219-224.

[8] Z. Nutov: Improved approximation algorithms for finding optimum k-
vertex-connected spanning subgraphs. TR CORR 98-03, University of
Waterloo, Waterloo, Canada, Feb. 1998.

9] Z. Nutov and M. Penn: Faster approximation algorithms for weighted
triconnectivity augmentation problems. Operations Research Letters 21,
(1997), 219-223.

[10] J. B. Orlin: A faster strongly polynomial minimum cost flow algorithm.
Operations Research 41 (1993), 338-350.

12

[11] M. Penn and H. Shasha-Krupnik: Improved approximation algorithms
for weighted 2 & 3 vertex connectivity augmentation problems. J. of
Algorithms 22 (1997), 187-196.

[12] R. Ravi and D. P. Williamson: R. Ravi and D. P. Williamson: An ap-
proximation algorithm for minimum-cost vertex-connectivity problems.
Algorithmica 18, (1997), 21-43.

13

APPROXIMATING 4, 5-VERTEX CONNECTED SUBGRAPHS

14

