
Tight Approximation Algorithm for Connectivity

Augmentation Problems

Guy Kortsarz
Rutgers University, Camden, NJ, USA

Zeev Nutov
The Open University of Israel, Raanana, Israel

Abstract

The S-connectivity λS
G(u, v) of (u, v) in a graph G is the maximum number of uv-paths that no

two of them have an edge or a node in S − {u, v} in common. The corresponding Connectivity

Augmentation (CA) problem is: given a graph G0 = (V, E0), S ⊆ V , and requirements r(u, v) on
V ×V , find a minimum size set F of new edges (any edge is allowed) so that λS

G0+F (u, v) ≥ r(u, v)
for all u, v ∈ V . Extensively studied particular choices of S are the edge-CA (when S = ∅) and
the node-CA (when S = V). A. Frank gave a polynomial algorithm for undirected edge-CA and
observed that the directed case even with rooted {0, 1}-requirements is at least as hard as the
Set-Cover problem (in rooted requirements there is s ∈ V − S so that if r(u, v) > 0 then: u = s

for directed graphs, and u = s or v = s for undirected graphs). Both directed and undirected

node-CA have approximation threshold Ω(2log1−ε n). The only polylogarithmic approximation
ratio known for CA was for rooted requirements – O(log n · log rmax) = O(log2 n), where rmax =
maxu,v∈V r(u, v). No nontrivial approximation algorithms were known for directed CA even for
r(u, v) ∈ {0, 1}, nor for undirected CA with S arbitrary. We give an approximation algorithm
for the general case that matches the known approximation thresholds. For both directed and
undirected CA with arbitrary requirements our approximation ratio is: O(log n) for S 6= V

arbitrary, and O(rmax · log n) for S = V .

Key words: Connectivity augmentation, Approximation algorithm

? A preliminary version of the paper appeared in ICALP 2006.
Email addresses: guyk@camden.rutgers.edu (Guy Kortsarz), nutov@openu.ac.il (Zeev Nutov).

Preprint submitted to Elsevier 29 March 2007

1. Introduction and preliminaries

1.1. The problem and our result

Let G = (V,E) be a graph and let S ⊆ V . The S-connectivity λS
G(u, v) of (u, v) in G

is the maximum number of uv-paths such that no two of them have an edge or a node
in S − {u, v} in common. We consider the following problem:

Connectivity Augmentation (CA):
Instance: A directed/undirected graph G0 = (V,E0), S ⊆ V , and a nonnegative integer

requirement function r(u, v) on V × V .
Objective: Add a minimum size set F of new edges to G0 so that for G = G0 + F

λS
G(u, v) ≥ r(u, v) for all (u, v) ∈ V × V. (1)

Extensively studied particular choices of S are: S = ∅ (the edge-CA), S = V (the
node-CA), any S so that r(u, v) = 0 whenever u ∈ S or v ∈ S (the element-CA). Except
the general requirements, two special types of requirement functions are studied in the
literature. The uniform requirements when r(u, v) = k for all u, v ∈ V , and the rooted
(single source/sink) requirements when there is s ∈ V − S so that if r(u, v) > 0 then:
u = s for directed graphs, and u = s or v = s for undirected graphs.

We summarize the status of CA problems with arbitrary and rooted requirements.
A. Frank [7] gave a polynomial time algorithm for undirected edge-CA based on Mader’s
undirected splitting off theorem for edge-connectivity [18]. He also observed, that for
directed graphs, even for rooted {0, 1}-requirements, CA is at least as hard as the Set-
Cover problem. Combined with the result of [22] this implies an Ω(log n)-approximation
threshold for this simple variant (namely, the problem cannot be approximated within
c ln n for some universal constant c < 1, unless P=NP). By extending the construction
from [7], a similar threshold was shown in [21] for the undirected rooted CA with root
s and S = V − {s}, but for {0, k}-requirements with k = Θ(n). For node connectivity
problems, both undirected and directed node-CA with r(u, v) ∈ {0, k} cannot be approx-

imated within O(2log1−ε n) for any fixed ε > 0, unless NP ⊆ DTIME(npolylog(n)), see
[20]. The only polylogarithmic approximation ratio known for CA was for rooted require-
ments [21] – O(log n · log rmax) = O(log2 n), where rmax = maxu,v∈V r(u, v) (in [21] the
algorithm is given for the case S = V − s and r(s, v) ∈ {0, k} but it easily extends to any
S ⊆ V − s and arbitrary rooted requirements).

Summarizing, both directed and undirected CA have the following approximation
thresholds. An Ω(log n)-approximation threshold for S 6= V [7,21]; for directed graphs
this is so even for {0, 1}-requirements. For S = V , both directed and undirected CA have

approximation threshold Ω(2log1−ε n). Except for rooted requirements, no polylogarith-
mic approximation ratios were known for directed CA even for the fundamental case of
{0, 1}-requirements, nor for undirected CA with S arbitrary. We give a tight approxima-
tion algorithm for any S 6= V and arbitrary requirements (our ratio for the general case
is better than the one in [21] given for the rooted case), as well as the first nontrivial
algorithm for the case S = V .

Theorem Both directed and undirected CA admit an O(log n)-approximation algorithm
except the case S = V for which there exists an O(rmax · log n)-approximation algorithm.

2

The techniques used for proving our result for directed CA (the undirected case follows
from the directed one) is a combination of some known techniques in addition to some
new ones. First, we show a new method to decompose the problem into two subproblems,
each one of an ”almost” rooted type, and consider the subproblems separately. Second,
for each subproblem, we use the well known extension of the set-cover approximation
techniques. This is ”submodular cover” problems approximation techniques [25] that
are based on density considerations. Loosely speaking, the density is the “increase in
feasibility” or the ”decrease in the deficiency” of an added edge set over its size. Our
definition of deficiency is different from the commonly used one that is based on ”setpair
formulation”, c.f., [10,6,3]. We define the deficiency of (u, v) as max{r(u, v)−λS(u, v), 0}
and the total deficiency as the sum of the deficiencies of all the node pairs. In order to
prove that we can find a subset of appropriate density we use the well known method of
uncrossing ”deficient” sets.

1.2. Related work

CA is a particular case of the Generalized Steiner Network (GSN) problem: given
a complete directed/undirected graph G = (V, E) with edge-costs {ce : e ∈ E}, a node
subset S ⊆ V , and a requirement function r(u, v) on V ×V , find a minimum cost spanning
subgraph G of G so that (1) holds for G. Clearly, GSN with {0, 1}-costs is the CA problem.

Variants of connectivity types (edge/node/element connectivity) and requirements
(general/uniform/rooted requirements) are also extensively studied for other types of
GSN costs (e.g., general, {1,∞}-costs, and metric costs). Note also that the Directed
Steiner Tree problem is the special case of directed GSN with rooted {0, 1}-requirements.

For undirected graphs the best known approximation ratios for GSN are as follows.
For edge-GSN Jain [14] gave a 2-approximation algorithm. This result was extended to
element-GSN in [3,6]. For node-GSN no nontrivial approximation algorithms for arbitrary
costs are known. Recently, Cheriyan and Vetta [4] gave an O(log n)-approximation al-
gorithm for the undirected metric node-GSN (namely, when S = V and the edge costs
satisfy the triangle inequality). For directed graphs, nontrivial approximation algorithms
are known only for {0, 1}-requirements (in this case all choices of S are equivalent).
Dodis and Khanna [5] showed that even this simple case cannot be approximated within

O(2log1−ε n) for any ε > 0 unless NP ⊆ DTIME
(

npolylog(n)
)

. Charikar et. al [2] gave an

O(p2/3 log1/3 p)-approximation algorithm where p = |{(u, v) : r(u, v) = 1}| is the number
of pairs that are to be connected. For rooted {0, 1}-requirements (this is the Directed
Steiner Tree problem) [2] gave an O(nε/ε3)-approximation algorithm for any constant
ε > 0. See also surveys in [15,16] on various GSN problems.

As CA is a particular case of GSN, these approximation ratios (but not the hardness
results) are valid for CA problems as well, except the O(log n)-approximation algorithm
for the undirected metric node-GSN of [4]. The result of [4] is not valid for CA since in CA

problems the costs are usually not metric; furthermore, a polylogarithmic approximation
for the node-CA is unlikely, since as shown in [20], the node-CA cannot be approximated

within O(2log1−ε n) for any fixed ε > 0 unless NP ⊆ DTIME(npolylog(n)).
In many cases, for undirected CA better approximation ratios are known than for its

generalization GSN. As was mentioned, undirected edge-CA is in P [7]. The node-CA (and

3

the element-CA) turned to be NP-hard even when the input graph G0 is connected and
r(u, v) ∈ {0, 2} (c.f., [19]). However, while the element-CA admits a 7/4-approximation
algorithm [20], the undirected node-CA with r(u, v) ∈ {0, k} cannot be approximated

within O(2log1−ε n) for any fixed ε > 0, unless NP ⊆ DTIME(npolylog(n)), see [20]. For
uniform requirements r(u, v) = k for all u, v ∈ V the complexity status is not known
for undirected graphs, but the problem is in P for directed graphs [10]; this implies a
2-approximation algorithm for undirected graphs. For undirected graphs an algorithm
that computes a solution of size roughly opt+k(k−k0)/2 is given in [12], where k0 is the
connectivity of G0; furthermore, for any fixed k an optimal solution can be computed
in polynomial time [13]. For rooted uniform requirements (in undirected graphs) the
situation is similar, see [21].

For more work on CA problems see, e.g., [1,7,10,13,19,21,20], and surveys in [7–9,23].
For work on other types of GSN costs see detailed surveys in [15,16] on known upper and
lower bounds with respect to approximation.

1.3. Comparison to related work

Previous work on CA problems that does not follow from results for GSN dealt mainly
with algorithm for some special cases, for which were given either polynomial algorithm
(c.f., [24,7,10,8]), or constant ratio approximation algorithms (c.f., [12,13,19,17,21,20]).
Our main result resolves the approximability of a fundamental case: directed CA with
{0, 1}-requirements, thus showing that the approximation threshold Ω(log n) established
by A. Frank [7] in the 90’s is achievable. Furthermore, we are able to match this approx-
imation threshold even in a much more general setting.

We note that the first part of our Theorem extends to GSN, provided there is s ∈
V − S so that only edges incident to s can be added. As was mentioned, even for
undirected graphs our result is the best possible, and it cannot be deduced from the
O(log n)-approximation algorithm for the undirected metric node-GSN of [4], since for
CA problems the costs are usually not metric, and since the node-CA is unlikely to have
a polylogarithmic approximation [20].

We elaborate on few more points that should be emphasized. Usually it is hard to
give tight results to meaningful subproblems of the directed GSN. A reason that ap-
proximation algorithm for directed GSN are rare is that even for r(u, v) ∈ {0, 1} the

{0, 1,∞}-costs case cannot be approximated within 2log1−ε n for any constant ε > 0 un-
less NP ⊆ DTIME(npolylog(n)) [5], while the best known approximation ratio for this
simplest case is O(n1+ε/ε3) = Ω(n) [2]. This hardness result is valid also for the met-
ric costs case. In particular, for directed graphs our result is unlikely to be extended to
more general cost functions. Even for GSN with rooted {0, 1}-requirements, which is the
Directed Steiner Tree problem, there is still a large gap between known approximation
ratio and threshold. For the Directed Steiner Tree problem the best known approxima-
tion ratio is O(nε/ε3) for any constant ε [2], while the known approximation threshold is
Ω(log2−ε n) [11].

This should be contrasted with the {0, 1}-costs variant studied here; we are able to deal
both with the most general type of connectivity – the S-connectivity (bridging between
edge- and node-connectivity) and directed graphs to get tight results for (almost) all
cases.

4

Another point is the following irregularity. Our approximation ratio is tight for S 6= V
since rooted CA has an Ω(ln n)-approximation threshold (for directed graphs even for
S = ∅ and {0, 1}-requirements). For S = V our approximation ratio is tight for small
requirements, but may seem weak if rmax is large. However, it might be that a much better
approximation algorithm does not exist: in [20] it is proved that for S = V and k = Θ(n),

CA with r(u, v) ∈ {0, k} cannot be approximated within 2log1−ε n for any constant ε > 0
unless NP ⊆ DTIME(npolylog(n)). Thus there is a large gap in approximability between
the case S = V \ {v} (for any v ∈ V) for which we show an O(log n)-approximation, and
the substantially harder case S = V .

1.4. Notation and preliminaries

An edge from u to v is denoted by uv. A uv-path is a path from u to v. For arbitrary two
sets A,B of nodes and edges (or graphs) A−B is the set (or graph) obtained by deleting
B from A (deletion of a node implies deletion of the edges incident to it); similarly, A+B
denotes the set (graph) obtained by adding B to A. Let H be a (possibly directed) graph
or an edge set on node set V . For disjoint X,Y ⊆ V we denote by δH(X,Y) the set
{uv ∈ E : u ∈ X, v ∈ Y } of the edges in H from X to Y and dH(X,Y) = |δH(X,Y)|;
for brevity, δH(X) = δH(X,V − X) and dH(X) = |δH(X)|. Let ΓH(X) be the set
{v ∈ V − X : uv ∈ E for some u ∈ X} of neighbors of X in H. We sometimes omit the
subscripts if they are clear from the context. We call the new edges that are added to
a given graph links in order to distinguish them from the existing edges. Let opt denote
the optimal solution value of an instance at hand.

2. Proof of the Theorem

We need the following formulation of Menger’s theorem for S-connectivity, which can
be easily deduced from its original theorem by standard constructions. In this formulation
C represents a ”mixed” cut, which may include edges and nodes from S − {u, v}.

Theorem 2.1 (Menger’s Theorem for S-connectivity) Let u, v be two nodes of a
(directed or undirected) graph G = (V,E) and let S ⊆ V . Then

λS
G(u, v) = min{|C| : C ⊆ E + S − {u, v}, G − C has no uv-path} .

We prove the Theorem for the directed case and the statement for the undirected
CA follows from the following proposition (c.f., [16]), which implies that undirected CA

problems cannot be much harder to approximate than the directed ones.

Proposition 2.2 If there is a ρ-approximation algorithm for the directed CA then there
is a 2ρ-approximation algorithm for the undirected CA.

Let F ′ be an arbitrary solution to an instance G0, S, r of directed CA. Subdivide every
edge in F ′ by a new node, and then identify all these new nodes into a node s. The
obtained graph satisfies the requirements between nodes in V , and the number of links
incident to s is 2|F ′|. Now, if V −S 6= ∅, then by identifying s with some node v ∈ V −S
we get that the new links added form a feasible solution for G0, S, r. This implies:

5

(b)(a)

G

H +
0

02u

ku

1 1v
2v

0v

kv

2u

u0

ku

u11v
2v

0v

kv

u

0u
a a

s

Fig. 1. An example of construction of H+
0

. (a) An instance G0, r of CA: the requirements are r(ui, vj) = 1,

i, j = 1, . . . k, and r(u, v) = 0 otherwise. (b) The graph H+
0

(the requirements remain the same, edges

added are shown by dashed lines).

Corollary 2.3 For any solution F ′ for directed CA with S 6= V and any s ∈ V − S,
there exists a solution F with |F | ≤ 2|F ′| such that all the links in F are incident to s.

If S = V , we make rmax copies s1, . . . , srmax
of s and of the links incident to s, choose

arbitrary rmax nodes {v1, . . . , vrmax
}, and identify every si with vi. Again, it is easy to

see that the new links added form a feasible solution to the CA instance, and that the
number of links added is 2|F ′|rmax.

Given an instance G0, S, r for directed CA, let H0 = G0 + s (note that s /∈ S). We say
that a set F of links incident to s is a feasible solution for H0 if H0 + F satisfies the
S-connectivity requirements defined by r. The H0-problem is to find a feasible solution
for H0 of minimum size. We will give an O(log n)-approximation algorithm for the H0-
problem. This is done by approximating the following two problems. Let H+

0 be obtained
from H0 by adding rmax edges from s to every node in V (see Fig. 1), and H−

0 is obtained
by adding rmax edges from every node in V to s. Intuitively, in H+

0 (the situation for H−

0

is symmetric) we “reduce” the problem to a new one, so that any solution can contain
only edges entering s. Indeed, since we pre-added ”enough” edges from s to any v, any
edge uv, u, v 6= s that belongs to a solution can be replaced by the edge us. Any path
that used the edge uv now may use the edges us and sv.

We say that a set F+ (F−) of links entering s (leaving s) is a feasible solution for
H+

0 (for H−

0) if H+
0 +F+ (if H−

0 +F−) satisfies the S-connectivity requirements defined
by r. The H+

0 -problem is to find a feasible solution for H+
0 of minimum size, and the

H−

0 problem is defined similarly. E.g., in Figure 1, each one of {u0s} and {u0a, as} is a
feasible solution to the H+

0 problem, and {u0s} is an optimal one. From Corollary 2.3 it
follows that opt+, opt− ≤ opt, where opt+ and opt− denote the optimal solution values
for H+ and H−, respectively, and opt is the optimal solution value for H0.

We will prove the following two statements:

Lemma 2.4 Let F+ and F− be a feasible solution for the H+
0 and for the H−

0 problems,
respectively. Then F = F+ + F− is a feasible solution for the H0 problem.

Lemma 2.5 The H+
0 -problem (and the H−

0 -problem) admits an O(log n)-approximation
algorithm.

The algorithm for directed CA with S 6= V is as follows.

6

1. Using the algorithm from Lemma 2.5 find a solutions F + for the H+
0 -problem and F−

for the H−

0 -problem, so that |F+| = O(log n) · opt+ and |F−| = O(log n) · opt−.
2. Let F = F+ + F−, and let H = H0 + F .

Obtain a graph G from H by identifying s with an arbitrary node in V − S.

The algorithm computes a feasible solution, by Corollary 2.3 and Lemma 2.4. Since
opt+, opt− ≤ opt, the approximation ratio is O(log n), by Lemma 2.5.

To finish the proof of the Theorem it remains to prove Lemmas 2.4 and 2.5. We need
the following statement that stems from Menger’s Theorem.

Proposition 2.6 λS
G(u, v) ≥ k if, and only if, |Q| + dG(X,Y) ≥ k for any partition

(X,Q, Y) of V with u ∈ X, v ∈ Y , and Q ⊆ S.

Proof of Lemma 2.4: Let H = H0 +F . Suppose to the contrary that there are u, v ∈ V
so that λS

H(u, v) ≤ r(u, v)− 1. Then by Proposition 2.6 there exists a partition (X,Q, Y)
of V +s with u ∈ X, v ∈ Y , and Q ⊆ S such that |C| ≤ r(u, v)−1 for C = Q∪δH(X,Y).
Note that s /∈ C (since s /∈ S), so s ∈ X or s ∈ Y . If s ∈ X then δH−(X,Y) = δH(X,Y),
so H− − C has no uv-path. Since |C| ≤ r(u, v) − 1, we conclude that λS

H−(u, v) ≤
r(u, v) − 1, contradicting that F− is a feasible solution for H−

0 . The proof of the case
s ∈ Y is similar. 2

In the rest of this section we prove Lemma 2.5. We use a result due to Wolsey [25]
about the performance of the greedy algorithm for a certain type of covering problems.
A covering problem is defined as follows:

Instance: An integer non-decreasing function p given by an evaluation oracle on subsets
of a groundset E .

Objective: Find F ⊆ E of minimum size so that p(F) = p(E).

The Greedy Algorithm starts with F = ∅ and adds elements to the solution one after
the other using the following simple greedy rule. As long as p(F) < p(E) it adds to F
an element e ∈ E that has maximum p(F + e) − p(F); if this step can be performed
in polynomial time, then the algorithm can be implemented to run in polynomial time.
Let ∆p = maxe∈E(p(e) − p(∅)), and for an integer k let H(k) =

∑k
i=1

1
i denote the kth

harmonic number.

Theorem 2.7 ([25]) Suppose that for an instance of a covering problem
∑

e∈F2

(p(F1 + e) − p(F1)) ≥ p(F1 + F2) − p(F1) ∀F1, F2 ⊆ E , F1 ∩ F2 = ∅. (2)

Then the Greedy Algorithm produces a solution of size at most H(∆p) times the optimal.

Condition (2) is the submodularity condition (or the improvement independence con-
dition), and covering problems obeying it are called submodular covering problems. We
formulate the H+

0 -problem as a submodular covering problem and using Theorem 2.7
show that it admits an O(log n)-approximation algorithm. The set E is obtained by tak-
ing rmax links from v to s for every v ∈ V . We also need to define a function p on the
subsets of E . For (u, v) ⊆ V × V and F ⊆ E , let

q(F+, (u, v)) = max{r(u, v) − λS
H+

0
+F+(u, v), 0}

be the deficiency of (u, v) in H+
0 + F+. Let

7

q(F+) =
∑

(u,v)∈V ×V

q(F+, (u, v))

be the total deficiency of H+
0 + F+. Then p is defined by:

p(F+) = q(∅) − q(F+) . (3)

In other words, p(F+) is the decrease in the total deficiency as a result of adding F + to
H+

0 ; in the corresponding covering problem, the goal is to find a minimum size F + ⊆ E
so that p(F+) = p(E) (that is, q(F+) = 0). Clearly, p is monotone non-decreasing. The
Greedy Algorithm can be implemented in polynomial time, as p(F +) can be computed
in polynomial time for any link set F +. Clearly, ∆p ≤ n2. We prove that (2) holds for
p, and thus Theorem 2.7 implies that the Greedy Algorithm produces a solution of size
H(∆p) · opt+ ≤ H(n2) · opt+ = O(log n) · opt+.

Remark: The reason why we decompose the problem into two subproblems, and only
then apply Theorem 2.7, is that the original CA instance (with p defined by (3)) is
not a submodular covering problem. To see this, consider the example in Figure 1(a),
with F1 = ∅ and F2 = {u0a, av0}. Then p(F1 + u0a) − p(F1) = p(F1 + av0) − p(F1) =
0, since adding each one of u0a, av0 separately does not decrease the deficiency, while
p(F1 + F2) − p(F1) = k2, since the deficiency of G0 is k2 and since F2 is a feasible
solution. On the other hand, the reason that our result does not extend to more general
instances of GSN (except the case when there is s ∈ V − S so that only edges incident
to s can be added) is that for general costs we cannot decompose the problem into such
two subproblems.

Let F1, F2 ⊆ E be disjoint link sets. We need to prove the submodularity condition (2).
To simplify the notation, denote J = H+

0 + F1, F = F2, and denote by ∆(F, (u, v)) the
decrease in the deficiency of (u, v) as a result of adding F to J . Namely, ∆(F, (u, v)) =
q(F1, (u, v))−q(F1 +F, (u, v)) is obtained by subtracting the deficiency of (u, v) in J +F
from the deficiency of (u, v) in J . Also denote by ∆(F) = q(F1)− q(F1 +F) the decrease
in the total deficiency as a result of adding F to J , and write ∆(e) instead of ∆({e}).
Note that ∆(∅) = 0. Then (2) can be rewritten as:

∑

e∈F

∆(e) ≥ ∆(F) . (4)

Note that, by the definition of ∆(·), for any link set F ′:

∆(F ′) =
∑

(u,v)∈V ×V

∆(F ′, (u, v)) .

Thus (4) is equivalent to:
∑

e∈F

∑

(u,v)∈V ×V

∆(e, (u, v)) ≥
∑

(u,v)∈V ×V

∆(F, (u, v)) .

Consequently, it would be sufficient to show that:

∑

e∈F

∆(e, (u, v)) ≥ ∆(F, (u, v)) ∀(u, v) ∈ V × V . (5)

8

(b)(a)

Q’

Q’’

Q’

Y’’X’’

v
Y’

X’

Y’

X’’ Y’’

X’

v

Q’’

uu

Fig. 2. Illustration to the proof of Proposition 2.8.

Let us fix u, v ∈ V . If λS
J (u, v) ≥ r(u, v), then (5) is valid, since its both sides are zero.

Note that λS
J+F (u, v)−λS

J (u, v) ≥ ∆(F, (u, v)), while ∆(e, (u, v)) = λS
J+e(u, v)−λS

J (u, v)
if λS

J (u, v) ≤ r(u, v) − 1. Thus if λS
J (u, v) ≤ r(u, v) − 1, it would be sufficient to prove

that for any set F of links entering s:
∑

e∈F

(

λS
J+e(u, v) − λS

J (u, v)
)

≥ λS
J+F (u, v) − λS

J (u, v) ∀(u, v) ∈ V × V .

Let us say that X ⊆ V is (u, v)-tight (in J) if there exists a partition (X,Q, Y) of V +s
with u ∈ X, v ∈ Y , and Q ⊆ S such that |Q| + dJ(X,Y) = λS

J (u, v). Note that s /∈ S,
and that if λS

J (u, v) ≤ rmax − 1 then s ∈ Y .

Proposition 2.8 The intersection and union of two (u, v)-tight sets are also (u, v)-tight.
Thus an inclusion-minimal (u, v)-tight set is unique.

Proof: Let X ′ and X ′′ be two (u, v)-tight sets with the corresponding partitions (X ′, Q′, Y ′)
and (X ′′, Q′′, Y ′′), respectively, with Q′, Q′′ ⊆ S (see Figure 2). Then

|Q′| + dJ(X ′, Y ′) = |Q′′| + dJ (X ′′, Y ′′) = λS
J (u, v) .

Let Q∩ = V −[(X ′∩X ′′)∪(Y ′∪Y ′′)] and Q∪ = V −[(X ′∪X ′′)∪(Y ′∩Y ′′)] (see the dashed
arcs in Figure 2). It is easy to see that Q∩, Q∪ ⊆ Q′ ∪ Q′′ ⊆ S and that |Q∩| + |Q∪| =
|Q′| + |Q′′|. We claim that (X ′ ∩ X ′′, Q∩, Y ′ ∪ Y ′′) and (X ′ ∪ X ′′, Q∪, Y ′ ∩ Y ′′) are the
corresponding partitions for X ′ ∩ X ′′ and X ′ ∪ X ′′, respectively. Namely, that:

|Q∩| + dJ (X ′ ∩ X ′′, Y ′ ∪ Y ′′) = |Q∪| + dJ (X ′ ∪ X ′′, Y ′ ∩ Y ′′) = λS
J (u, v) .

We have |Q∩| + dJ (X ′ ∩ X ′′, Y ′ ∪ Y ′′) ≥ λS
J (u, v) and |Q∪| + dJ(X ′ ∪ X ′′, Y ′ ∩ Y ′′) ≥

λS
J (u, v), by Proposition 2.6. On the other hand,

dJ (X ′, Y ′) + dJ(X ′′, Y ′′) ≥ dJ(X ′ ∩ X ′′, Y ′ ∪ Y ′′) + dJ(X ′ ∪ X ′′, Y ′ ∩ Y ′′) .

The later inequality is easily verified by counting the contribution of every edge to each
side of the inequality (see Figure 2). Edges in Figure 2(a) have the same contribution
for both sides: every edge in δ(X ′ ∩ X ′′, Y ′ ∩ Y ′′) contributes 2 to both sides, while any
other edge in Figure 2(a) contributes 1 to both sides. Edges in Figure 2(b) contribute
only to the left hand side. Other edges (that are not shown in Figure 2(a,b)) have no
contribution. Thus we have:

9

e

Q

u

v

X Y

s

u

X

Fig. 3. Illustration to the proof of Corollary 2.9.

λS
J (u, v) + λS

J (u, v) = (|Q′| + dJ(X ′, Y ′)) + (|Q′′| + dJ(X ′′, Y ′′))

≥ (|Q∩| + dJ (X ′ ∩ X ′′, Y ′ ∪ Y ′′)) + (|Q∪| + dJ (X ′ ∪ X ′′, Y ′ ∩ Y ′′))

≥ λS
J (u, v) + λS

J (u, v) .

Consequently, equality holds everywhere, and the statement follows. 2

Corollary 2.9 Let Xu be the unique minimal (u, v)-tight set in J and let e be any link
from Xu to s. If λS

J (u, v) ≤ rmax − 1 then λS
J+e(u, v) = λS

J (u, v) + 1.

Proof: Clearly, λS
J+e(u, v) = λS

J (u, v) + 1 or λS
J+e(u, v) = λS

J (u, v), and suppose to the
contrary that the later holds. By Proposition 2.6 there exists a partition (X,Q, Y) of
V + s with u ∈ X, v ∈ Y , and Q ⊆ S so that |Q|+dJ+e(X,Y) = λS

J (u, v) (see Figure 3).
Note that Xu ⊆ X, and that s ∈ Y (s /∈ Q since Q ⊆ S and s /∈ S, and s /∈ X since
λS

J (u, v) ≤ rmax − 1, and since in J there are rmax edges from s to any node in V). This
implies |Q| + dJ(X,Y) = |Q| + dJ+e(X,Y) − 1 = λS

J (u, v) − 1, which is a contradiction
to Proposition 2.6. 2

We now finish the proof of Lemma 2.5. Let t = λS
J+F (u, v) − λS

J (u, v). Then at least
t links in F must connect Xv with s. Thus, each one of these t links contributes 1 to
∑

e∈F

(

λS
J+e(u, v) − λS

J (u, v)
)

.

This finishes the proof of Lemma 2.5, and thus also the proof of the Theorem.

Acknowledgment: We thank an anonymous referee for useful comments.

References

[1] A. Benczúr and A. Frank, Covering symmetric supermodular functions by graphs, Math.

Programming, 84:483-503, 1999.
[2] M. Charikar and C. Chekuri and T. Cheung and Z. Dai and A. Goel and S. Guha and M. Li,

Approximation Algorithms for Directed Steiner Problems, Journal of Algorithms, 33:73-91,

1999.
[3] J. Cheriyan and S. Vempala and A. Vetta, Network design via iterative rounding of setpair

relaxations, Combinatorica, 26(3):255-275, 2006.
[4] J. Cheriyan and A. Vetta, Approximation Algorithms for Network Design with Metric Costs,

Symposium on the Theory of Computing (STOC), 167–175, 2005.
[5] Y. Dodis and S. Khanna, Design networks with bounded pairwise distance, Symposium on the

Theory of Computing (STOC), 750–759, 1999.

10

[6] L. K. Fleischer, K. Jain, and D. P. Williamson, An iterative rounding 2-approximation algorithm

for the element connectivity problem, Symposium on the Foundation of Computer Science
(FOCS), 339–347, 2001.

[7] A. Frank, Augmenting graphs to meet edge-connectivity requirements, SIAM Journal on

Discrete Math., 5(1):25–53, 1992.

[8] A. Frank, Connectivity augmentation problems in network design, Mathematical Programming:

State of the Art, 34–63, 1995.

[9] A. Frank, Edge-connection of graphs, digraphs, and hypergraphs, EGRES TR No 2001-11,

2001.

[10] A. Frank and T. Jordán, Minimal edge-coverings of pairs of sets, J. on Comb. Theory B, 65:73–

110, 1995.

[11] E. Halperin and R. Krauthgamer, Polylogarithmic Inapproximability, Symposium on the

Theory of Computing (STOC), 585–594, 2003.

[12] B. Jackson and T. Jordán, A near optimal algorithm for vertex connectivity augmentation,

Symposium on Algorithms and Computation (ISAAC), 313–325, 2000.

[13] B. Jackson and T. Jordán, Independence free graphs and vertex connectivity augmentation, J.

Comb. Theory, Ser. B, 94(1):31–77, 2005.

[14] K. Jain, A Factor 2 Approximation Algorithm for the Generalized Steiner Network Problem,

Combinatorica, 21(1):39–60, 2001.

[15] S. Khuller, Approximation algorithms for for finding highly connected subgraphs, Chapter 6 in

Approximation Algorithms for NP-hard problems, D. S. Hochbaum Ed., 236–265, PWS, 1995.

[16] G. Kortsarz and Z. Nutov, Approximating minimum cost connectivity problems, in

Approximation Algorithms and Metahueristics T. F. Gonzales ed., to appear.

[17] G. Liberman and Z. Nutov, On shredders and vertex-connectivity augmentation, Journal of
Discrete Algorithms, 5:91–101, 2007.

[18] W. Mader, A reduction method for edge-connectivity in graphs, Annals of discrete Math 3:145–
164, 1978.

[19] H. Nagamochi and T. Ishii, On the minimum local-vertex-connectivity augmentation in graphs,
Discrete Applied Mathematics, 129(2-3):475–486, 2003.

[20] Z. Nutov, Approximating connectivity augmentation problems, Symposium on Discrete
Algorithms (SODA), 176–185, 2005.

[21] Z. Nutov, Approximating rooted connectivity augmentation problems, Algorithmica 44:213–231,
2005.

[22] R. Raz and S. Safra, A sub-constant error-probability low-degree test and a sub-constant error-
probab ility PCP characterization of NP, Symposium on the Theory of Computing (STOC),

475–484, 1997.
[23] Z. Szigeti, On edge-connectivity augmentation of graphs and hypergraphs, manuscript, 2004.

[24] T. Watanabe and A. Nakamura, Edge-connectivity augmentation problems, Computer and
System Sciences, 35(1):96–144, 1987.

[25] L. A. Wolsey, An analysis of the greedy algorithm for the submodular set covering problem,
Combinatorica 2:385–393, 1982.

11

