
Approximating Interval Scheduling Problems with

Bounded Profits

Israel Beniaminy∗ Zeev Nutov† Meir Ovadia‡

Abstract

We consider the Generalized Scheduling Within Intervals (GSWI) problem: given

a set J of jobs and a set I of intervals, where each job j ∈ J has in interval I ∈ I

length (processing time) `j,I and profit pj,I , find the highest-profit feasible schedule.

The best approximation ratio known for GSWI is (1/2 − ε). We give a (1 − 1/e − ε)-

approximation scheme for GSWI with bounded profits, based on the work by Chuzhoy,

Rabani, and Ostrovsky [5], for the {0, 1}-profit case. We also consider the Scheduling

Within Intervals (SWI) problem, which is a particular case of GSWI where for every

j ∈ J there is a unique interval I = Ij ∈ I with pj,I > 0. We prove that SWI is

(weakly) NP-hard even if the stretch factor (the maximum ratio of job’s interval size

to its processing time) is arbitrarily small, and give a polynomial-time algorithm for

bounded profits and stretch factor < 2.

Key-words. Interval scheduling, Approximation algorithm.

1 Introduction

We consider the following problem:

Generalized Scheduling Within Intervals (GSWI):

Instance: A set J of jobs and a set I of intervals, where each job j ∈ J has in interval I ∈ I

length `j,I and profit pj,I , and each interval I ∈ I is given by [rI , dI).

Objective: Find a maximum profit feasible schedule.

∗ClickSoftware Technologies, israel@clicksoftware.com
†The Open University of Israel, nutov@openu.ac.il
‡The Open University of Israel, meiro@cadance.com

1

More precisely, a schedule S consists of a subset J ′ ⊆ J of jobs, and for every j ∈ J ′: an

assignment to an interval I(j) ∈ I and a start time sj, so that [sj, sj + `j,I(j)) ⊆ I(j). A

schedule is feasible if the intervals [sj, sj + `j,I(j)), j ∈ J ′, are pairwise disjoint. The profit of

such schedule is p(S) =
∑

j∈J ′ pj,I(j). We sometimes use S to denote only the corresponding

set J ′ of jobs, if this does not cause ambiguity. Throughout this paper we assume that all

the problem parameters are integers. Let n = |J |, m = |I|, and let P = maxj,I pj,I .

GSWI and related problems have been used to model many applications of scheduling

problems, including service and delivery, project planning, communication scheduling, space-

mission-planning and optimization of production lines, c.f., [2, 1, 4, 7]. The following three

particular cases of GSWI were studied extensively.

• Max-Profit Generalized Assignment (MAX-GAP):

the intervals in I are pairwise disjoint.

• Scheduling Within Intervals (SWI):

for every j ∈ J exactly one interval I ∈ I has pj,I > 0.

• Job Interval Selection Problem (JISP):

for every pair j ∈ J, I ∈ I, either pj,I = 0 or `j,I = |I|.

Each one of these particular cases is strongly NP-hard [8]. Bar-Noy et al. [2] gave an

approximation scheme for SWI (in fact, also for GSWI) with ratio of 1/2 − ε, see also [1],

and a faster algorithm due to Berman and DasGupta [4]. MAX-GAP admits a (1 − 1/e)-

approximation algorithm [7], see also [9]. Recently, Feige and Vondrak [6] showed that

MAX-GAP admits a ratio better than (1− 1/e). However, MAX-GAP is much ”easier” than

GSWI, and the algorithms in [7, 9, 6] do not extend even to very special instances (e.g., {0, 1}

profits and unit lengths) of SWI/JISP. Chuzhoy, Rabani, and Ostrovsky [5] considered JISP

with {0, 1}-profits, and gave for this case a randomized approximation scheme with ratio

(1 − 1/e − ε). We extend this result to arbitrary bounded profits. Our algorithm for GSWI

uses as a subroutine an arbitrary constant ratio approximation algorithm SC for GSWI; let

1/α be its approximation ratio and Q = Q(n,m) its running time (e.g., the algorithm of [4]

with α = 3 has running time Q(n,m) = O(n2m)). A packing-type linear program is of the

form max{p · y : yA ≤ b, y ≥ 0}, where A is an n′ ×m′ {0, 1}-matrix, and b is an m′ {0, 1}

vector. We assume that the time required to solve such program is L(n′,m′).

Theorem 1.1 GSWI admits a (1 − 1/e − ε)-approximation algorithm for any ε > 0 and

constant P = maxj,I pj,I . The running time of the algorithm is O(n · Q(n,m) · ln(P/ε) +

(nm)q+1L((nm)q+1, n)), where q = 6kk ln k+3 for k = d(P + 2α + 1)/εe = O(P/ε), and

2

L(n′,m′) is the time required to solve a packing type linear program with n′ variables and m′

constraints.

For P = 1 we get the algorithm of [5]. The running time, although polynomial for any ε > 0,

is not practical. We leave an open question whether the time complexity can be reduced to

be polynomial in the input size and 1/ε, or whether GSWI admits a (1− 1/e)-approximation

algorithm. Such a better algorithm is known for MAX-GAP, but is not known even for the

{0, 1}-profit JISP/SWI.

Recall that in SWI every job j ∈ J can be scheduled in a unique interval Ij ∈ I (as j

has profit 0 in the other intervals); let j have length `j and profit pj in Ij. Note that GSWI

includes the ”multiple machine” version of SWI. We consider SWI with bounded profits and

small stretch factor, which is maxj∈J |Ij|/`j. Formally, let θ-SWI be the restriction of SWI to

instances with maxj∈J |Ij|/`j < θ, where θ > 1. Berman and DasGupta [4] gave a pseudo-

polynomial algorithm for θ-SWI with running time O(θTn log log T) and with approximation

ratio 1/2 + 1/(2a+2− 4− 2a), where T = maxj dj and a is the largest integer strictly smaller

than θ; this was used to derive an approximation scheme with ratio (1/2−ε)+1/(2a+2−4−2a)

and running time O(n2/ε). For 2-SWI a = 1 and thus the approximation ratio is 1 − ε (in

[2] and in [4] 2-SWI was mistakenly mentioned to be in P, but this is so only for bounded

profits). We prove:

Theorem 1.2 θ-SWI is NP-hard for any θ > 1 even if pj = `j for every job j ∈ J and all

the time windows have the same length. 2-SWI can be solved in O(min{nP , rnr log n}) time,

where P =
∑

j∈J pj and r is the number of distinct profits.

Theorems 1.1 and 1.2 are proved in Sections 2 and 3, respectively.

A preliminary version of this paper is [3].

2 Proof of Theorem 1.1

Our algorithm extends the algorithm of [5] for {0, 1}-profit JISP/SWI, to GSWI with any

profits bounded by a constant P . Here is a high-level description of the algorithm. Let

[0, T) be the timeline, namely, the smallest interval that contains all the intervals in I. The

algorithm has two phases. In Phase I, the algorithm computes a partition B of [0, T) into

blocks (intervals) and:

(i) A schedule SI within a subset BI ⊆ B of blocks (no job intersects a boundary of a

block);

3

(ii) Subsets J II ⊆ J \ SI of jobs and BII ⊆ B \ BI of blocks.

The computed partition B has the property that the restriction ”no job intersects a

boundary of a block in B” decreases the optimum by a small amount (if ε is small). We

also have an upper bound on the profit of jobs from J II scheduled by any optimal solution

within any block in BII . In Phase II, the algorithm schedules jobs from J II within blocks

of BII using an LP-relaxation created by enumerating all feasible schedules in each such

block. LP-rounding gives a feasible schedule with expected approximation ratio (1 − 1/e),

and the algorithm is derandomized using the method of conditional expectations. The main

differences between our algorithm and that of [5] is that in Phase I our algorithm partitions

the timeline according to the profit of jobs we can schedule in each block, and that at Phase II

we use a more general linear program.

Formally, let OPTB(J) be any optimal schedule of jobs from J under the constraint that

no job’s schedule intersects the boundary of a block from B, and let optB(J) = p(OPTB(J))

be its profit; for brevity OPT(J) = OPT{[0,T]}(J) and opt(J) = p(OPT(J)). Given a set

J ′ of jobs and a block B, let SC(J ′, B) be any 1/α-approximation algorithm for scheduling

jobs from J ′ within the block B, and let us denote by Q = Q(n,m) its running time.

As was mentioned, we may substitute α = 3 and Q(n,m) = O(n2m). Given ε > 0 let

k = d(P + 2α + 1)/εe. We prove:

Lemma 2.1 GSWI admits an algorithm that for any ε > 0 computes in time O(n ·Q(n,m) ·

ln(P/ε)) a partition B of [0, T) into at most nε blocks, a schedule SI within a subset BI ⊆ B

of blocks, and subsets J II ⊆ J \ SI of jobs and BII ⊆ B \ BI of blocks such that:

(i) p(SI) + optBII (J II) ≥ (1− ε)opt(J).

(ii) In each block B ∈ BII , any optimal solution schedules at most 2α · kk ln k+3 jobs from

J II .

An instance of GSWI is (B, q)-restricted, where B is a set of pairwise disjoint blocks in

[0, T) and q is an integer, if there exists an optimal solution that schedules all its jobs within

the blocks of B with at most q jobs per block.

Lemma 2.2 (B, q)-restricted GSWI admits a (1−1/e)-approximation algorithm with running

time O(|B|(nm)q · L(|B|(nm)q, n + |B|)).

Lemmas 2.1, 2.2 easily imply Theorem 1.1. Execute the algorithm as in Lemma 2.1 to

compute BI ,BII , SI , J II as in the lemma. Then apply Lemma 2.2 on the (BII , q)-restricted

GSWI instance with q = 2α · kk ln k+3 and the set of jobs J II to compute a schedule SII . The

4

running time is as claimed. Clearly, SI ∪ SII is a feasible solution, since SII ⊆ J \ SI and

since no block in BI intersects a block in BII . The approximation ratio is as claimed since:

p(SI) + p(SII) ≥ p(SI) + (1− 1/e)optBII (J II)

≥ (1− 1/e)
(

p(SI) + optBII (J II)
)

≥ (1− 1/e)(1− ε)opt(J) ≥ (1− 1/e− ε)opt(J) .

2.1 Proof of Lemma 2.1

In the following procedure PartitionTimeLine, in iteration i, Bi is the set of blocks par-

titioning the timeline [0, T) and Si is the schedule (or the set of jobs scheduled) within the

blocks of Bi; only these jobs are available for scheduling in the next iteration. Eventually, the

algorithm returns a partition B of [0, T) into blocks, a schedule SI within a subset BI ⊆ B

of blocks, and subsets J II ⊆ J \ SI of jobs and BII ⊆ B \ BI of blocks.

Procedure PartitionTimeLine(J ,ε)

Initialization: i← 1; B0 ← {[0, T)}; S0 ← J ; k ← d(P + 2α + 1)/εe.

Loop

Si ← ∅, Bi ← Bi−1

For every block B ∈ Bi in ascending time order do:

If p(SC(Si−1 \ Si, B)) ≥ ki+2 then do:

- Si ← Si ∪ SC(Si−1 \ Si, B);

- In ascending time order, scan the jobs scheduled by SC in B and partition B

into blocks, each with largest possible profit ≤ ki+2, and add this partition to Bi.

EndFor

Termination Condition 1: If i = dk ln ke then do:

SI ← ∅; BI ← ∅;

J II ← J \ Si; B
II ← Bi; STOP.

Termination Condition 2: If p(Si) ≥ (1− 1/k)p(Si−1) then do:

SI ← Si;

BI ← the blocks in Bi containing jobs from SI ;

J II ← J \ Si−1; B
II ← Bi−1 \ B

I ; STOP.

Else (Termination Conditions 1,2 do not apply) i← i + 1.

EndLoop

The following statement uses only the fact that the number of iterations in Partition-

5

TimeLine is dk ln ke ≤ k2, and it is independent of the algorithm SC used.

Lemma 2.3 |B| ≤ |OPT(J)|/k holds for the partition B produced by PartitionTimeLine.

Thus optB(J) ≥ (1− P/k)opt(J).

Proof: The number of new blocks created in iteration i is at most p(Si)/k
i+2 ≤ p(Si)/k

3.

Each new block eliminates at most one job from OPT. Since all jobs in Si can be scheduled,

and every job in OPT(J) has profit at least 1 we have |OPT(J)| ≥ |Si|. The maximum

number of iterations is dk ln ke. Therefore, the number of jobs eliminated from the optimal

solution by all iterations is at most

dk ln ke
∑

i=1

|Si|

k3
≤
dk ln ke

k3
|OPT(J)| ≤

1

k
|OPT(J)| .

The second statement follows from the first since every job has profit at most P . 2

In the rest of this section we prove the following lemma, that implies Lemma 2.1:

Lemma 2.4 In each block B ∈ Bi computed by any iteration i of PartitionTimeLine,

OPT(J) schedules jobs with at most total profit αki+2 from Si−1 \ Si.

Proof: Consider two cases. In one case, block B may have been present in Bi−1 and

unmodified by iteration i. This could happen only if SC(Si−1 \ Si, B) could not schedule

jobs with total profits more than ki+2 in B. In the second case, block B was created by

subdividing a block from Bi−1 into blocks containing jobs with profit at most ki+2 by SC.

In both cases, all the jobs from Si−1 \ Si were available for scheduling when SC started

processing block B and SC gives 1/α-approximation. 2

Lemma 2.5 p(SI) + optBII (J II) ≥ (1− ε)opt(J).

Proof: Consider the two termination conditions of PartitionTimeLine.

Termination Condition 1: PartitionTimeLine terminated after dk ln ke iterations, and

J II = J \ Si = J \ Sdk ln ke. For all iterations 1 ≤ i < dk ln ke, the Termination Condition 2

was not satisfied, and thus p(Si) < (1− 1/k)p(Si−1) . Therefore

p(Sdk ln ke) ≤ (1− 1/k)dk ln kep(S1) ≤ p(S1)/k ≤ opt(J)/k .

In this case, BII = B. By Lemma 2.3, optBII (J) ≥ (1− P/k)opt(J). Thus

optBII (J II) ≥ optBII (J)− p(Sdk ln ke) ≥ (1− P/k)opt(J)− opt(J)/k ≥ (1− ε)opt(J) .

6

Termination Condition 2: PartitionTimeLine terminated at iteration i < dk ln ke,

because the condition p(Si) ≥ (1 − 1/k)p(Si−1) was satisfied. In this case, SI = Si, J II =

J \ Si−1, B
I includes all the blocks containing jobs from SI , and BII = Bi−1 \ B

I . Thus:

optBII (J II) ≥ optBi−1
(J II)− optBI (J II) =

= optBi−1
(J \ Si−1)− optBI (J II) ≥

≥ optBi−1
(J)− p(Si−1)− optBI (J II).

From which we get:

p(SI) + optBII (J II) ≥ optBi−1
(J)− (p(Si−1)− p(Si))− optBI (J II). (1)

We bound each term in (1) separately. By Lemma 2.3, optBi−1
(J) ≥ (1 − P/k)opt(J).

Since Termination Condition 2 applied, p(Si) ≥ (1 − 1/k)p(Si−1), and (p(Si−1) − p(Si)) ≤

p(Si−1)/k ≤ opt(J)/k.

To bound optBI (J II), note that BI is non-empty only if PartitionTimeLine was termi-

nated due to Termination Condition 2. In that case, J II = J \Si−1 =
⋃r−1

j=1(Sj−1 \Sj), where

r is the number of iterations performed by PartitionTimeLine. Since each block in BI is

contained within blocks produced in each iteration, it follows from Lemma 2.4 that the profit

of jobs from J II scheduled by OPT(J) in each block B ∈ BI is at most
∑r−1

i=1 αki+2 ≤ 2αkr+1.

From the operation of PartitionTimeLine, jobs with total profit at least kr+2 from SI were

scheduled in each block B ∈ BI . Therefore, optBI (J II) ≤ 2α
k

p(SI) ≤ 2α
k

opt(J).

Substituting these bounds into (1) gives:

p(SI) + optBII (J II) ≥ (1− P/k)opt(J)− opt(J)/k − 2α · opt(J)/k

= (1− ε)opt(J) .

2

Lemma 2.6 In each block B ∈ BII , OPT(J) schedules at most 2α · kk ln k+3 jobs from J II .

Proof: Each job in J II was removed from the schedule during one of the iterations. Thus,

J II =
⋃r

i=1(Si−1\Si), where r is the number of iterations performed by PartitionTimeLine.

Since each block in BI is contained within blocks produced in each iteration, it follows from

Lemma 2.4 that the total profits of jobs from J II scheduled by OPT(J) in each block B ∈ BII

is at most
∑r

i=1 αki+2 ≤ 2αkr+2 ≤ 2αkklnk+3 (recall that the maximum number of iterations

is dk ln ke). 2

To complete the proof of Lemma 2.1 it remains to show that PartitionTimeLine runs

in time O(n ·Q(n,m) · ln(P/ε)). This is so since the loop has at most dk ln ke iterations, and

7

in each iteration the dominating time is O(Q(n,m)|B|) for executing SC at most |B| times,

and |B| ≤ nε.

The proof of Lemma 2.1 is complete.

2.2 Proof of Lemma 2.2

The first step for proving Lemma 2.2 is defining a linear program whose integer solutions

are feasible schedules. Then, we solve the program, and use randomized rounding to obtain

a feasible schedule with expected approximation ratio 1 − 1/e. Finally, the algorithm is

derandomized using the method of conditional expectations.

Let S = S(J, I) be the set of all sequences (j1, . . . , jt, I1, . . . , It) of t distinct jobs in J

and t (not necessarily distinct) intervals in I, 0 ≤ t ≤ q. Clearly, |S| <
∑q

i=1 nimi ≤ 2(nm)q.

Given B ∈ B, any (feasible) schedule S of t ≤ q jobs within B defines a unique sequence

(j1, . . . , jt, I1, . . . , It) ∈ S, where each ji is processed in Ii and after ji−1. Given such a

sequence we can find a feasible schedule within B defining it or determine that such does not

exist in time O(t) = O(q) time, by attempting to schedule every job within the corresponding

interval in the sequence. This attempt is done by taking each job from the sequence in turn,

and placing it within B as early as possible given the job’s interval and avoiding overlap with

jobs already scheduled during this attempt. Clearly, any two schedules within B defining

the same sequences have the same profits, thus we identify any feasible schedule S within

B with the sequence it defines. The profit p(S,B) of (S,B) ∈ S × B is the profit of some

schedule that S defines within B, if such schedule exists, and p(S,B) = 0 otherwise (that is,

if no schedule within B defining S exists). Let R = {(S,B) ∈ S × B : p(S,B) > 0} and let

SB = {S ∈ S : p(S,B) > 0}. For (S,B) ∈ R and ji ∈ S let p(S,B)(ji) = pji,Ii
. For every

(S,B) ∈ R introduce a variable y(S,B) which may be interpreted as the “amount of S selected

in the block B”. Then integer feasible solutions to the following linear program correspond

to feasible schedules within the blocks of B.

max
∑

(S,B)∈R y(S,B) · p(S,B) (2)

s.t.
∑

(S,B)∈R,j∈S y(S,B) ≤ 1 ∀j ∈ J
∑

S∈SB
y(S,B) = 1 ∀B ∈ B

y(S,B) ≥ 0 ∀(S,B) ∈ R

Note that this LP has |R| ≤ 2|B|(nm)q variables and n + |B| constraints (that are not

just non-negativity constraints). We will apply a standard randomized rounding on y to

obtain an integral feasible solution ỹ to (2). The rounding procedure is as follows.

8

1. For each block B choose randomly with distribution y(S,B) a unique schedule SB as-

signed to block B at this stage (possibly SB = ∅).

2. For every job j assigned to more than one block, remove j from all schedules containing

it, except from one that has maximum p(S,B)(j).

Let ỹ be an integral solution derived from y by such randomized rounding, and let

ν̃ =
∑

(S,B)∈R ỹ(S,B)·p(S,B) be the (random variable corresponding to the) profit of the schedule

specified by ỹ, and let ν be the optimal value of (2). We will prove that the expected value

of ν̃ is at least (1 − 1/e)ν. The proof is similar to the proof of [7, Theorem 2.1] where

MAX-GAP was considered and is presented here only for completeness of exposition. We use

the following statement from [7]:

Lemma 2.7 ([7], Lemma 2.1) Let y1, . . . , y` be a sequence of non-negative reals so that
∑`

i=1 yi ≤ 1 and let p1 ≥ p2 ≥ · · · ≥ p` ≥ 0. Then

p1y1 + p2(1− y1)y2 + · · ·+ p`

[

t−1
∏

i=1

(1− yi)

]

y` ≥ (1− (1− 1/`)`)
∑̀

i=1

piyi .

Lemma 2.8 The expected value of ν̃ is at least (1− 1/e)ν.

Proof: Let j ∈ J . Sort the profits p(S,B)(j), (S,B) ∈ R, in a decreasing order

p(S1,B1)(j) ≥ p(S2,B2)(j) ≥ · · · ≥ p(S`,B`)(j) .

For simplicity, denote pi = p(S1,B1)(j) and yi = y(Si,Bi). Let ν(j) =
∑`

i=1 piyi be the ”profit of

j” in LP (2), and note that ν =
∑

j∈J ν(j). Let ν̃(j) be the (random variable corresponding

to the) profit from job j in the schedule computed by the algorithm. By the linearity of

expectation, it would be sufficient to prove that for every j ∈ J the expected value of ν̃(j)

is at least (1− 1/e)ν(j). This follows from Lemma 2.7, since the expected value of ν̃(j) is:

p1y1 + p2(1− y1)y2 + · · ·+ p`[
t−1
∏

i=1

(1− yi)]y` ≥ (1− (1− 1/`)`)
∑̀

i=1

piyi ≥ (1− 1/e)ν(j) .

2

The algorithm can be derandomized using the method of conditional probabilities. We

state the algorithm for the analysis of the time complexity, but omit the proof of its validity,

as it is identical to the one in [9] where MAX-GAP was considered. Given B ′ ⊆ B and J ′ ⊆ J

let ν(J ′,B′) denote the optimal value of (2) with J replaced by J ′ and B by B′. The algorithm

is as follows.

9

Initialization: J ′ ← J , B′ ← B.

For every B ∈ B do:

Schedule in B a set SB ⊆ J ′ of jobs that maximizes p(S,B) + ν(J ′ \ S,B′ \ {B});

J ′ ← J ′ \ SB, B ← B′ \ {B}.

EndFor

To complete the proof of the Lemma 2.2 it remains to show the time complexity. The

time required to compute the profits p(S,B) is O(q|B|(nm)q), O(q) time per variable. We

assume that this time is dominated by the time required to solve the linear program (2),

which is O (L(|B|(nm)q, n + |B|)). This is the time complexity of the randomized version.

The time complexity of the deterministic version is O(|B|(nm)q · L(|B|(nm)q, n + |B|)), as

claimed.

The proof of Lemma 2.2, and thus also of Theorem 1.1, is complete.

3 Proof of Theorem 1.2

We reduce the following NP-complete problem [8] to θ-SWI.

Subset-Sum

Instance: A set A = {a1, . . . , an} of positive integers, and another integer B.

Question: Is there A′ ⊆ A such that the integers in A′ sum to exactly B?

The reduction is as follows. Let 1 < α < min{2, θ} be arbitrary. Let K = B · d1/(α−1)e,

and let T = nK + B. For each j = 1, . . . , n there are two jobs j− and j+ each having the

same single interval Ij = [(j − 1)K, jK + B), and processing time `j− = K and `j+ = K+aj,

respectively. The profit of each job equals to its processing time, and set T = nK + B.

Since |Ij| = K+B and `j+ , `j− ≥ K for each j, the stretch factor of the obtained instance

of SWI is at most (K+B)/K = 1+d1/(α− 1)e−1 ≤ α < θ. Thus we obtain a θ-SWI instance.

Lemma 3.1 The answer to Subset-Sum is YES if, and only if, the SWI instance can achieve

a total profit of T .

Proof:

The if part.

Let S be a feasible set of jobs that achieves a total profit of T . We claim that then for each

j exactly one of j−, j+ is in S. To see this note that for each 1 ≤ j ≤ n:

10

(i) at most one of j−, j+ is in S, since |Ij| = K + B < 2K + aj = `j− + `j+ ;

(ii) at least one of j−, j+ is in S, since each time window Ij contains the non-empty sub-

interval [(j − 1)K + B, jK) that is disjoint to all the other time windows.

For j = 1, . . . , n let bj be the boolean variable with bj = 1 if j+ ∈ S and bj = 0

otherwise (that is, if j− ∈ S). The total profit of the jobs in S is exactly
∑n

j=1(K + bjaj) =

nK +
∑n

j=1 bjaj. Comparing this to the total profit T = nK + B, we get
∑n

j=1 bjaj = B.

This defines a solution to the Subset-Sum instance.

The only if part.

Let A′ ⊆ A such that A′ sums to B. We will show a solution to the SWI instance that

achieves a profit of T . Let bj = 1 if aj ∈ A′ and bj = 0 otherwise. Create the following

solution S to SWI. For each j = 1, . . . , n do: if bj = 1 add the job j+ to S, with the start

time (j − 1)K +
∑

i<j biai; otherwise, add the job j− to S, with the same start time. It is

easy to verify that this is a feasible solution to SWI with a total profit of T . 2

The following dynamic-programming algorithm computes an optimal solution for 2-SWI.

Define the latest start of job j as tj = dj−`j. The jobs are sorted in order of non-decreasing tj,

breaking ties arbitrarily, so assume t1 ≤ t2 ≤ · · · ≤ tn. For 1 ≤ i ≤ n and 0 ≤ p ≤
∑

j pj = P

define D[i, p] as the minimal ending time of a feasible schedule S ⊆ {1, . . . , i} with total

profit exactly p; D[i, p] = ∞ if no such feasible S exists. The optimal profit eventually

equals to max{p : D[n, p] <∞}.

The table D can be computed using the following recurrence. Set D[1, p] = r1 + `1 if

p = p1 and r1 + `1 ≤ d1, and D[1, p] = ∞ otherwise. Let 2 ≤ i ≤ n. If pi+1 > p set

D[i, p] = D[i− 1, p]. For pi+1 ≤ p set

si = max {D[i− 1, p− pi], ri} .

If si + `i > di set D[i, p] = D[i− 1, p]. Otherwise,

D[i, p] = min{si + `i, D[i− 1, p]}.

Lemma 3.2 The table D is computed correctly in O(min{nP , rnr log n}) time, where P =
∑

j pj.

Proof: Note that if sj < si are feasible start times of jobs i, j, then tj < ti. Indeed, for

θ-SWI, tj < sj + (θ − 1)`j ≤ si + (θ − 1)`j ≤ ti + (θ − 1)`j. In particular, for θ = 2 we

have tj < ti. Clearly, every entry is computed using previous entries. Any feasible solution

defines a sequence of jobs according to their starting times. By the above, any such sequence

11

must be a subsequence of the latest start sequence. Therefore, the step of computing D[i, p]

from previous entries requires examining just two options: whether or not to append job

i to the constructed schedule. The decision is made by choosing the earliest-finishing one

from these two options. The initial sorting of jobs requires O(n log n) time. The number of

entries in the table D is O(nP), and each entry is computed in constant time. The time

bound O(n log n + nP) = O(nP) follows.

For the O(rnr log n) time bound, we compute all possible profits Π = {p(S) : S ⊆ J}

of subsets of the items (assuming any set of items can be chosen) and sort these profits in

an increasing order. This can be done in O(rnr log n) time, as follows. Let p1, . . . pr be the

possible distinct item profits, and let ni be the number of items in J of profit pi. Then

|Π| ≤ (n1 +1)(n2 +1) · · · (nr +1) ≤ (n/(r + 1))r = O(nr), and Π can be computed in O(rnr)

time. Thus the total time required including sorting is O(rnr + nr log(nr)) = O(rnr log n).

Then we use the same dynamic programming algorithm, but define and fill in the table only

the relevant entries. The number of entries in the table is O(nr), and each entry is computed

in constant time. 2

The proof of Theorem 1.2 is complete.

Remark: A standard profit-truncation algorithm may be utilized to give a FPTAS for

2-SWI with running time O(n2/ε), which is the same as the one of [4]. This FPTAS is

based on algorithm pseudo-polynomial in P , while the one of [4] is based on an algorithm

pseudopolynomial in T = maxj∈J dj. It remains open whether θ-SWI is APX-hard for any

θ > 2.

4 Conclusions and open problems

In this paper we gave a (1− 1/e− ε)-approximation scheme for GSWI with bounded profits,

while showing that SWI with small stretch factor are NP-hard. One open problem is obtaining

a ratio better than 1/2 for arbitrary profits. Another open problem is whether SWI with

{0, 1}-profits (or JISP) admits a better ratio than (1− 1/e).

Acknowledgment: We thank anonymous referees for useful comments.

12

References

[1] A. Bar-Noy, R. Bar-Yehuda, A. Freund, J. Naor, and B. Shieber. A unified approach

to approximating resource allocation and scheduling. J. of the ACM, 48(5):1069–1090,

2001.

[2] A. Bar-Noy, S. Guha, S. Naor, and B. Schieber. Approximating the throughput of

multiple machines in real-time scheduling. SIAM J.Comput., 31(2):331–352, 2001.

[3] I. Beniaminy, Z. Nutov, and M. Ovadia. Approximating interval scheduling problems with

bounded profits. In Proc. European Symposium on Algorithms (ESA), pages 487–497,

2007.

[4] P. Berman and B. DasGupta. Multi-phase algorithms for throughput maximization for

real-time scheduling. J. Comb. Optim., 4(3):307–323, 2000.

[5] J. Chuzhoy, R. Ostrovski, and Y. Rabani. Approximation algorithms for the job interval

selection problem and related scheduling problems. In Proc. Symposium on Foundations

of Computer Science (FOCS), pages 348–356, 2001.

[6] U. Feige and J. Vondrák. Approximation algorithms for allocation problems: Improving

the factor of 1−1/e. In Proc. Symposium on Foundations of Computer Science (FOCS),

pages 667–676, 2006.

[7] L. Fleischer, M. X. Goemans, V. S. Mirrokni, and M. Sviridenko. Tight approximation

algorithms for maximum general assignment problems. In Proc. Symposium on Discrete

Algorithms (SODA), pages 611–620, 2006.

[8] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory

of NP-Completeness. W. H. Freeman, San-Francisco, 1979.

[9] Z. Nutov, I. Beniaminy, and R. Yuster. A (1 − 1/e)-approximation algorithm for the

generalized assignment problem. Oper. Res. Lett., 34(3):283–288, 2006.

13

