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Abstract

In this paper, we initiate the study of designing approximation algorithms for Fault-
Tolerant Group-Steiner (FTGS) problems. The motivation is to protect the well-studied
group-Steiner networks from edge or vertex failures. In Fault-Tolerant Group-Steiner prob-
lems, we are given a graph with edge- (or vertex-) costs, a root vertex, and a collection of
subsets of vertices called groups. The objective is to find a minimum-cost subgraph that
has two edge- (or vertex-) disjoint paths from each group to the root. We present appro-
ximation algorithms and hardness results for several variants of this basic problem, e.g.,
edge-costs vs. vertex-costs, edge-connectivity vs. vertex-connectivity, and 2-connecting
from each group a single vertex vs. two distinct vertices from each group. Main contribu-
tions of our paper include the introduction of general structural lemmas on connectivity
and a charging scheme that may find more applications in the future. Our algorithmic
results are supplemented by inapproximability results, which are tight in some cases.
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1 Introduction

The fault-tolerant network design problems are well-studied in the theory of combinatorial op-
timization and approximation algorithms. The basic goal in these problems is to design a
minimum-cost network that satisfies some prescribed connectivity requirements. Higher connec-
tivity requirements are usually enforced for fault-tolerance — in order to protect connectivity in
the solution against edge or vertex failures.

In this paper, we study fault-tolerant versions of the Group-Steiner problem. In this problem,
we are given a (undirected or directed) graph G = (V,E) with edge- or vertex- costs, a root
vertex r ∈ V , and a collection of of subsets (groups) S = {S1, . . . , Sq} of V ∖ {r}. The objective
is to find a minimum cost subgraph H of G that contains two edge- or vertex-disjoint paths from
each group Si to the root. This problem models the flexibility, often arising in problems in VLSI
design [27], in connecting any vertices from a given group as well as the fault-tolerance which
requires the solution to be robust under edge- or vertex-failures.

1.1 Previous work on fault-tolerance problems

Fault tolerance problems have been extensively studied in Combinatorial Optimization and Ap-
proximation Algorithms. Consider for example the well known Steiner Network problem. Given
an undirected graph G = (V,E) with edge-costs {ce ∣ e ∈ E}, and requirement rij for every pair
of vertices i, j ∈ V , the goal is to find a minimum cost subgraph H of G that contains at least
rij edge-disjoint paths between i and j, for all i, j. The network H is fault tolerant in the sense
that a pair i, j can sustain rij − 1 link failures and still be connected. The best ratio known for
this problem is 2 due to Jain [15].

The internally-disjoint path version of the Steiner Network problem is very hard to approximate
[18, 22, 9, 20]. The currently best known ratio for this problem is O(k3 log n) for edge-costs due to
Chuzhoy and Khanna [8] and O(k4 log2 n) for vertex-costs [25]. The rooted version, where a root
s is given and rij = 0 for all pairs i, j so that i ∕= s and j ∕= s, has gotten a significant attention
recently [3, 6, 9, 24, 8, 25]. This problem is at least as hard to approximate as Directed Steiner
Tree [20]. The best approximation ratio known for this problem for general rooted demands is
O(k2) for edge-costs and O(k2 log n) for vertex-costs [25], where k = max rij. We mention that
prior to the work of [25], a randomized approximation algorithm with ratio kO(k2) log4 n was
developed by Chakraborty, Chuzhoy, & Khanna [3], then improved to kO(k) log n by Chekuri &
Korula [6], and then improved to O(k2 log n) by Chuzhoy & Khanna [9, 8] and [24]. Note that
k can be as large as Ω(n).

A particular case of fault tolerance problems with 2 disjoint paths has also received an attention
in [1, 21, 6]. Lau et al. [21] presented an O(log2 n)-approximation algorithm for the problem
of finding a minimum-cost 2-edge connected subgraph with at least k vertices. This problem
can be seen as a fault-tolerant generalization of the k-MST problem which requires to find a
minimum spanning tree on k vertices. The best known approximation ratio for the k-MST
problem is 2 [11]. Chekuri and Korula [5] presented an O(log2 n)-approximation for the problem
of finding a minimum-cost 2-vertex connected subgraph with at least k terminals. In [1, 6], the
fault-tolerance version of the Buy-at-Bulk problem was studied, where two edge-disjoint paths
are required to be included from every terminal to the root.
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In the same spirit, in this paper we consider a generalization of the Group-Steiner Tree problem.
In the usual Group-Steiner Tree problem, we are given a graphG = (V,E), edge-costs {ce : e ∈ E},
a root r ∈ V , and a collection of subsets (groups) S = {S1, . . . , Sq} of V ∖ {r}. The objective
is to find a minimum cost subtree T of G that contains r and at least one vertex from each
group Si ∈ S. The best known approximation ratio for this problem is O(log3 n) [12], and an
Ω(log2−�)-approximation threshold was established in [14]. The Fault-Tolerant Group-Steiner Tree
problem, on the other hand, requires obtaining two (edge- or vertex-) disjoint paths between
each group to the root. We are not aware of any previous work on Fault-Tolerant Group-Steiner
problems.

1.2 Problem variants studied in this paper

One can define several variants of the Fault-Tolerant Group-Steiner problem, based on whether
we desire 2-edge- or 2-vertex-connectivity, whether we have edge- or vertex-costs, whether we
wish to 2-connect to the root a single vertex from each group or two distinct vertices from each
group, etc. Below we formally define all the variants studied in this paper. Two paths are
said to be internally-disjoint if they are vertex-disjoint except for their end-points. Each of the
following problems takes a graph G = (V,E) on n vertices with edge-costs {ce ∣ e ∈ E} (or with
vertex-costs {cv ∣ v ∈ V }), a root r ∈ V , and groups S = {S1, . . . , Sq} as input, and is required
to compute a min-cost subgraph H of G with at least two edge/vertex-disjoint paths from each
group Si to the root, so that the endvertices of these paths are distinct. Unless stated otherwise,
we consider the edge-cost version and assume that G is undirected. We also assume that the
groups S1, . . . , Sq are pairwise disjoint.1 The vertices in the groups Si are called terminals. We
add the prefix EC- for edge-connectivity and the prefix VC- for vertex-connectivity. We add the
suffix “-k” after the name of the problem if the instances are restricted to satisfy ∣Si∣ ≤ k for all
i = 1, . . . , q.

∙ EC-FTGS: Here for every i = 1, . . . , q, H should contain at least two edge-disjoint Sir-paths;
the end-points in Si of these paths should be distinct.

∙ VC-FTGS: The same as EC-FTGS, except that the paths should be internally-disjoint.

∙ EC-FTGS-k and VC-FTGS-k: These are EC-FTGS and VC-FTGS, respectively, restricted to
instances with ∣Si∣ ≤ k for all i = 1, . . . , q.

In the edge-connectivity case, for both edge and vertex-costs, the version when the end-points
in Si of the two Sir-paths may or may not be distinct, is easily reduced to EC-FTGS as follows.
For every terminal s, add a new vertex s′ of cost 0 connected to s with an edge of cost 0, and add
s′ to every group S ∈ S that contains s. After this transformation, we can assume, without loss
of generality, that the two edge-disjoint paths from each group start from distinct terminals in
that group. This may double the number of vertices, and cause a constant loss in approximation
ratios that depend on n.

1This can be typically assumed by making multiple copies of the vertices in multiple groups and adding zero-
cost edges connecting the different copies. This reduction, however, increases the number of vertices in the graph,
thus possibly affecting the approximation ratio.
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Because the edge s′s must be used this transformation holds only in the edge-disjoint case.
For the reduction from a single terminal to two terminals in the vertex case we make a copy of
every vertex s′ for every vertex s ∈ S. We connect s′ to the same neighbors of s. Clearly there
are two vertex disjoint paths from s if there are two vertex disjoint paths from s, s′ in the new
graph.

We also consider the version when we insist that a single vertex from each group must be
2-edge-connected to the root. Namely, for every i = 1, . . . , q there should exist a vertex vi ∈ Si
such that H contains 2 edge-disjoint rvi-paths. We call this version Single EC-FTGS.

1.3 Difficulties in approximationg Fault-Tolerant Group-Steiner problems

When two disjoint paths from every group to the root are required, we cannot use the standard
transformation to Bartal trees [2, 10] as done in the approximation of the Group Steiner problem
[12]. This is so because disjoint paths from a group to the root in a Bartal tree do not necessarily
correspond to disjoint paths in the original graph.

We now give an evidence that an approximation that is polylogarithmic in n for either EC-
FTGS-k and VC-FTGS-k may be very hard to obtain as it implies solving a long standing open
problem. Note that we can reduce the usual Group Steiner problem to EC-FTGS-k or VC-FTGS-k
problems by adding a new vertex, which is connected to the root by a zero-cost edge, to each
group. Since we get one path for “free”, any solution to EC-FTGS-k and VC-FTGS-k corresponds
to a solution of the usual Group Steiner problem and vice-versa.

Now, since an algorithm for EC-FTGS-k or VC-FTGS-k cannot use Bartal trees, it must solve
the Group Steiner problem as well without using Bartal trees. Designing a “natural” approxima-
tion algorithm with a polylogarithmic ratio for the Group Steiner problem without first reducing
the graph into trees is a long standing open question, and seemingly a very hard one.

To the best of our knowledge, the best known ratio for Group Steiner problem without using
Bartal trees is O(n�) for any constant � > 0, with running time nf(1/�). The recursive greedy
technique [29, 19, 4], used in this algorithm, is a complex greedy approach with quite delicate
analysis that seems inappropriate for the requirement of two disjoint paths. Thus even an n�

approximation for every universal constant � seems to be a quite significant challenge for our
problems in the current state of knowledge and techniques.

In our opinion, this is a strong evidence that it is quite a challenge to get a polylogarithmic
ratio for either EC-FTGS-k or VC-FTGS-k in polynomial time.

Remark: The above simple reduction shows that the Ω(log2−� n) approximation hardness of
[14] for the Group Steiner problem applies also for EC-FTGS-k and VC-FTGS-k. However, from
the above evidence,EC-FTGS-k and VC-FTGS-k may in fact be much harder to approximate than
Ω(log2−� n), and it may be that a polynomial ratio is the best we can hope for.

1.4 Our results

We start with a definition. For two optimization problems P1 and P2, we say that P1 is P2-
hard if existence of a polynomial time �-approximation algorithm for P1 implies existence of a
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Problem Edge-Connectivity (EC) Vertex-Connectivity (VC)

FTGS-2 3.55, Vertex-Cover-hard O(log2 n)
O(log n), Ω(log n)-hard (vertex-costs)

FTGS-k O(k log2 n) O(k log2 n)
FTGS O(

√
n log n) O(

√
n log n)

Group Steiner Tree-hard Group Steiner Tree-hard
Single FTGS Label Cover-hard (directed) Label Cover-hard (directed)

Table 1: Approximation ratios and hardness results for FTGS variants. The extra assumptions,
if any, are given in the parentheses.

polynomial time �-approximation for P2. Similarly, P1 is Ω(f(n))-hard if there exists a constant
� > 0 so that P1 admits no �f(n)-approximation algorithm, unless P=NP.

Our main results are summarized in Theorem 1.1 and in Table 1.

Theorem 1.1

(i) EC-FTGS-2 admits the following approximation ratios:
(2 + 
) for edge costs, where 
 < 1.55 is the best ratio for the Steiner Tree problem, and
O(log n) for vertex costs. Moreover, the edge-cost version is Vertex-Cover-hard and the
vertex-cost version is Ω(log n)-hard.

(ii) EC-FTGS-k and VC-FTGS-k admit an O(k log2 n)-approximation algorithm. EC-FTGS and
VC-FTGS admit an O(

√
n log n)-approximation algorithm. EC-FTGS and VC-FTGS are

Group Steiner Tree-hard and thus are O(log2−� n)-hard for any constant � > 0.

(iii) The directed version of Single EC-FTGS problem admits no 2log1−� n-approximation for any
constant � > 0, unless NP ⊆ DTIME(npolylog(n)).

The results (i), (ii) and (iii) are proved in Sections 2 and 3 and 4, respectively.

1.5 A summary of our techniques

In Part (i), we observe that all terminals need to be connected to the root, thus our algorithm
first computes a Steiner tree connecting all the terminals to the root (not necessarily by disjoint
paths). We then note that the residual problem can be reduced to the one of covering an
uncrossable set-family by edges. In the case of edge-costs, this problem can be solved using the
primal-dual method of Goemans et al. [13], or via the iterative rounding technique of Jain [15].
Overall we obtain a (2+
)-approximation for this problem if we use a 
-approximation algorithm
for Steiner Tree as a subroutine. Since 
 < 1.55 is known [28], we get a 3.55-approximation. A
similar approach works for vertex-costs using the O(log n)-approximation algorithm of [16] for
computing the Steiner tree, and using in the augmentation step the algorithm of [23] instead of
that of [13].

Our main technical contribution is in our algorithms for problems in Part (ii). Our algorithm
for VC-FTGS-2 also reduces the problem to an augmentation problem, by first computing a
Steiner tree connecting all the terminals to the root. To solve this augmentation problem, we
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introduce an interesting graph theoretic lemma (Lemma 3.4). Our lemma provides an equivalence
between 2-connecting two vertices to the root and 2-connecting a single carefully chosen vertex
to the root. We believe that this lemma may be of independent interest. For every such vertex
v, we let the profit p(v) of v be the number of groups that will be satisfied if v is 2-connected
to the root. The density version of the residual problem seeks a subgraph that minimizes the
ratio of its cost over the total profit of vertices that are 2-vertex-connected to the root. We then
use the O(log n)-approximation algorithm by Chekuri and Korula [5] for this density problem,
combined with the greedy method.

Our algorithms for VC-FTGS-k derives the intuition from that for VC-FTGS-2, and also uses
other techniques. Let us call a pair of terminals from a group that are connected to the root via
vertex-disjoint paths a twin pair (see Definition 3.1). We divide the progress of our algorithm
into logarithmically many phases. In each phase, our algorithm first tries to connect the twin
pairs from at least half of the remaining groups to the root (not necessarily by vertex-disjoint
paths). Unfortunately, we do not know the twin pairs a-priori. Nevertheless, we show that one
can use several applications of the p-Steiner tree algorithm [7] to obtain a relatively low-cost tree
that achieves this. The residual problem is now similar to the augmentation problem considered
for the case of VC-FTGS-2. We once again use our graph theoretical lemma (Lemma 3.4), relate
2-connecting a twin pair to 2-connecting a carefully chosen vertex, define p(v) of such a vertex
as in the VC-FTGS-2 algorithm. It turns out that a naive application and analysis of the greedy
method as in our VC-FTGS-2 algorithm gives an approximation ratio of O(k2 log2 n), since there
could be Ω(k2) pairs that may claim profit for a single group. An important component in our
analysis is a careful counting of how the profit can be claimed to prove an overall approximation
factor of O(k log2 n).

The last statement in Part (ii) of Theorem 1.1 then easily follows. To “cover” small groups,
i.e., groups of size at most k =

√
n/ log n, we use the algorithm above. Since the groups are

disjoint, the number of large groups is at most n/k =
√
n log n. We cover the large groups one

at a time. Overall, the approximation ratio is O(min{k log2 n, n/k}) = O(
√
n log n).

The proof of part (iii) follows from a reduction from the Min-Rep problem.

2 Proof of Part (i)

We start with some definitions. An edge e is said to cover a subset X ⊂ V of vertices if exactly
one end-point of e lies in X. Let ℱ be a collection of subsets of V . We say that an edge-set E ′

covers ℱ if for each X ∈ ℱ , there is an edge e ∈ E ′ that covers X. The Set-Family Edge-Cover
problem with edge-cost is to find a minimum-cost collection of edges E ′ that covers ℱ . In the
vertex-cost version, we wish to minimize the total cost of vertices incident to E ′ that covers ℱ .
The family ℱ may not be given explicitly, but we require that certain queries related to ℱ can
be answered in polynomial time. Specifically, we assume that, in the edge-cost version, for any
edge-set E ′, the inclusion minimal members of ℱ that are not covered by E ′ can be computed
in polynomial time; while, in the vertex-cost version, for any s, t ∈ V , one can compute in
polynomial time a min-cost cover of all members of ℱ that separate s and t.

We call a family ℱ of sets uncrossable if X∩Y,X∪Y ∈ ℱ or X∖Y, Y ∖X ∈ ℱ for any X, Y ∈ ℱ .
Our algorithms for EC-FTGS-2 problem with edge-costs or vertex-costs use the following results,
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respectively.

Theorem 2.1 (Goemans et al. [13]) The Set-Family Edge-Cover problem with edge-costs and
with uncrossable set-family ℱ admits a 2-approximation algorithm.

Theorem 2.2 ([23]) The Set-Family Edge-Cover problem with vertex-costs and with uncrossable
set-family ℱ admits an O(log n)-approximation algorithm.

2.1 Algorithmic results

Since the problem insists that the two edge-disjoint paths from each group must start at distinct
terminals in the group, the optimum solution contains a Steiner tree containing all the terminals
and the root. Our algorithm first finds a Steiner tree T that connects all the terminals to the
root. If we use an �-approximation algorithm for this step (� < 1.55 for edge-costs [28] and
� = O(log n) for the vertex-costs [16]), we get cost(T ) ≤ � ⋅ opt, where opt denotes the
optimal cost of a solution.

For X ⊂ V , let degT (X) denote the number of edges in T from X to V ∖X. Define an instance
of Set-Family Edge-Cover by setting

ℱ = {X ⊆ V ∖ {r} ∣ degT (X) = 1, S ⊆ X for some S ∈ S}.

We now present two important observations.

Lemma 2.3 For I ⊆ E ∖ E(T ), the set T ∪ I is a feasible solution to EC-FTGS-2 if, and only
if, I covers ℱ .

Proof: Note that T has a path from each terminal to the root. Thus by Menger’s Theorem,
H = T ∪ I is a feasible solution to EC-FTGS-2 if, and only if, degH(X) ≥ 2 for every set
X ⊆ V ∖ {r} that contains some group S ∈ S. As degT (X) ≥ 1 for any X ⊆ V ∖ {r} that
contains at least one vertex from some group, we obtain that the latter condition is equivalent
to degI(X) ≥ 1 for every X ∈ ℱ .

Lemma 2.4 The set family ℱ is uncrossable.

Proof: Note that by the definition of ℱ , X ∈ ℱ if, and only if, X is a union of a rooted proper
subtree of T that contains a group S ∈ S and some subset of vertices not in T . Let X, Y ∈ ℱ .
Then X ∩ T, Y ∩ T are disjoint, or one of them contains the other. In the former case, we have
X ∖ Y, Y ∖ X ∈ ℱ ; e.g., X ∖ Y ∈ ℱ since (X ∖ Y ) ∩ T = X ∩ T , hence X ∖ Y is a union of
the subtree contained in X and the vertex subset X ∖ (T ∪ Y ) disjoint to T . In the latter case,
X ∩Y,X ∪Y ∈ ℱ ; e.g., if X ⊆ Y , then X ∩Y is a union of the subtree contained in X and some
vertices not in T , while X ∪ Y is the union of the subtree contained in Y and some vertices not
in T .

It is easy to check that for any edge set I ⊂ E ∖E(T ), the minimal members of the family ℱ
not covered by I can be computed in polynomial time. Moreover, for any s, t ∈ V , a min-cost
cover of all members in ℱ that separate s and t can also be computed in polynomial time. Thus,
we can use the algorithms in Theorems 2.1 and 2.2 respectively to complete the solutions for the
edge- and vertex-cost versions.
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2.2 Hardness of approximation results

We now show that EC-EFTGS-2 is Vertex-Cover-hard in the case of edge-costs, and that it is
Hitting-Set-hard, i.e., Ω(log n)-hard, in the case of vertex-costs.

Let J = (VJ , EJ) be an instance of Vertex-Cover. Define an instance {G = (V,E), {ce : e ∈
E}, r,S} of 2-EC-FTGS-2 as follows. Set V = VJ ∪{a, r}, connect every vertex in VJ to a with an
edge of cost 0 and connect a to r with an edge of cost 0. Let T denote the set of these zero-cost
edges. Connect each vertex in VJ to r with an edge of cost 1 each. The set S of pairs is defined
by edges of EJ , namely, S = {{u, v} ∣ (u, v) ∈ EJ}. Note that the optimum solution, without
loss of generality, picks all the edges in T . It is now easy to see that T +H is a feasible solution
to the obtained instance of EC-FTGS-2 if and only if the set of end-points of the edges in H is a
vertex-cover in J .

In the case of vertex-costs, EC-FTGS-2 is easily reduced to the Steiner Tree problem with
vertex-costs which is known to be Hitting-Set-hard [16]. Given an instance {J = (VJ , EJ), r, S}
of Steiner Tree with vertex-costs, for every s ∈ S add a copy s′ of cost 0 and connect s′ to r.
The set of pairs is S = {{s, s′} ∣ s ∈ S}. It is easy to see that T is a feasible solution to Steiner
Tree with vertex-costs if and only if T ∪ {(r, s′) ∣ s ∈ S} is a feasible solution to the constructed
2-EC-FTGS-2 instance.

The proof of Part (i) of Theorem 1.1 is thus complete.

3 Proof of Part (ii)

3.1 Algorithm for VC-FTGS-2

In this section, we introduce our main technical ideas. We present an O(log2 n)-approximation
algorithm for VC-FTGS-2.

As in the edge-connectivity case, we first compute a Steiner tree T of cost cost(T ) ≤ � ⋅opt
connecting all terminals to the root. We have � < 1.55 for edge-costs and � = O(log n) for
vertex-costs. Our algorithm uses set-cover like approach in which we iteratively add partial
solutions with low density, i.e., low cost to profit ratio, till we complete the solution. We get one
logarithmic factor in the approximation from the set-cover analysis (and since the number of
groups is O(n)) and another logarithmic factor from the fact that we can only compute O(log n)
approximation to the minimum-density subproblem.

Given a partial solution I ⊂ E ∖ E(T ), let the deficiency of I be the number of groups in S
that are not 2-vertex-connected to r in T ∪ I. Let the density of an edge set F ⊂ E ∖ (E(T )∪ I)
be cost(F ) divided by the decrease in the deficiency caused by adding F to T ∪I. The following
two lemmas captures the essence of our algorithm for VC-FTGS-2.

Lemma 3.1 Given a partial solution T ∪ I, the problem of computing a minimum density aug-
menting edge set F ⊂ E∖(E(T )∪I) for VC-FTGS-2 admits an O(log n)-approximation algorithm.

Lemma 3.2 The algorithm in Lemma 3.1 can be used to obtain O(log2 n) approximation for
VC-FTGS-2.
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Figure 1: An example of converting the instance into one satisfying Property P.

As mentioned, the proof of Lemma 3.2 follows from the standard set-cover like analysis and is
omitted. In the rest of this section we prove Lemma 3.1. We ignore the groups in S that are
already connected in T ∪ I to the root via 2 vertex-disjoint paths starting from distinct vertices.

We start by recalling some definitions. A vertex v ∈ V is a cut-vertex of a graph H if H ∖ {v}
has more connected components than H. A cut-vertex v of H is said to separate vertex r and
set S ⊂ V ∖{r, v} if r and S belong to the same connected component of H but H ∖{v} does not
contain a path from r to any vertex in S. Consider a group {s1, s2} ∈ S. By Menger’s Theorem
we have:

Proposition 3.1 A subgraph that contains an rs1-path and an rs2-path, contains such paths
that are internally vertex disjoint if and only if it has no cut-vertex that separates r and {s1, s2}.

Now think of the tree T as being rooted at r. For any two vertices s1, s2 ∈ T , we define
lca(s1, s2) to be the least common ancestor of s1 and s2 in T . Consider S = {s1, s2} ∈ S with
u = lca(s1, s2) in T . Note that u ∕= r since S is not 2-vertex connected to r via paths starting
from s1 and s2. Let U(S) = {u1, u2} be two (possibly identical) vertices defined as follows.

∙ If u ∕∈ {s1, s2}, then let u1 (resp. u2) be the child of u that lies on the rs1- (resp. rs2-)
path in T .

∙ If u ∈ {s1, s2}, then let u1, u2 = u.

Define a family U = U(S, T ) of pairs (groups) as U = {U(S) ∣ S ∈ S}. Note that the pairs in
U may not be disjoint, and that some “pairs” in U are in fact singletons. The following lemma
captures the “equivalence” between covering pairs in S and pairs in U .

Lemma 3.3 For any edge set F ⊂ E ∖ (E(T )∪ I), the solution H = T ∪ I ∪F contains 2-vertex
disjoint paths (with distinct starting points) between r and S if, and only if, it contains 2-vertex
disjoint paths (with distinct starting points) between r and U(S).

Proof: Let u = lca(s1, s2) where S = {s1, s2}. By Proposition 3.1, S is 2 vertex-connected to
r in H = T ∪ I ∪F if and only if H has no cut-vertex separating S from r; namely, no vertex on
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the ur-path in T is a cut-vertex of H. By the definition of U(S) = {u1, u2} and Proposition 3.1,
this is equivalent to the property that U(S) is 2-connected to r in H.

The above lemma implies that the densities of F w.r.t. S and w.r.t. U are equal. Furthermore,
T ∪ I ∪ F is a feasible solution w.r.t. S if and only if it is w.r.t. U . Note that the groups U
satisfy a special property, which is crucial in rest of the analysis.

Property P: For all groups {u1, u2} ∈ U , either u1 = u2 or u1, u2 have the same
parent in T .

Lemma 3.4 Let U = {u1, u2} ∈ U . For F ⊂ E ∖ (E(T ) ∪ I), the graph H = T ∪ I ∪ F
contains a u1r-path and a u2r-path that are internally vertex-disjoint if and only if H contains
2 internally-disjoint paths to r from either u1 or u2.

Proof: The proof uses Menger’s Theorem and Property P of the groups in U .
Suppose that H contains 2 internally vertex-disjoint paths from u1 to r. Then H has no cut-

vertex separating r and u1, by Menger’s Theorem. In particular, there is no cut-vertex separating
r and {u1, u2}. Thus H contains a u1r-path and a u2r-path that are internally vertex-disjoint,
by Proposition 3.1.

Suppose now that H contains a u1r-path and a u2r-path that are internally vertex-disjoint.
Now we use Property P. If u1 = u2, the proof is complete. Assume therefore that u1 ∕= u2
and that they have a common parent u in T and assume to the contrary that H has no pair
of internally vertex-disjoint uir-paths for i = 1, 2. Then by Menger’s Theorem, there are cut-
vertices v1, v2 in H, where vi separates ui from r. As u1, u2 have a common parent u ∕= r, any
vertex separating r from one of u1, u2 must lie on the ur-path in T . If v1 = v2 = v, then v
separates both u1, u2 from r contradicting the assumption (by Proposition 3.1). Thus v1 ∕= v2,
so one of v1, v2 is distinct from u, say v1 ∕= u. The graph H ∖ {v1} contains a u2r-path. As
T ∖ {v1} contains a u1u2-path, this implies that H ∖ {v1} contains a u1r-path. This contradicts
that v1 separates u1 and r.

Thus the original density problem can be reduced to the following problem. Given a collection
of groups {ui1, ui2} for i = 1, 2, . . ., find a subset F ⊂ E∖(E(T )∪I) such that the ratio of cost(F )
to the number of groups i such that at least one of ui1 or ui2 has 2-vertex-disjoint paths to r in
E(T ) ∪ I ∪ F .

The problem of finding a subgraph that minimizes the ratio of its cost over the total profit of
vertices that are 2-vertex-connected to the root was studied by Chekuri and Korula [5], who gave
an O(log n)-approximation for the problem. We use their algorithm to compute an O(log n)-
approximation for the density version of our problem, as follows. The input to the algorithm
of Chekuri and Korula is the original graph with root r and with profits on vertices defined as
follows. Let the profit p(u) of a vertex u be the number of groups i such that u ∈ {ui1, ui2}. Thus
p(u) denotes the number of new groups that would get connected to the root via 2 vertex-disjoint
paths provided u gets connected to the root via 2 vertex-disjoint paths. Note that since both ui1
or ui2 may claim profit for covering group i, we may overestimate the profit of 2-vertex connecting
a subset of vertices to r by a factor of 2. This introduces another factor 2 in the ratio. Using the
Chekuri-Korula algorithm, we compute a subgraph which yields an O(log n) approximation for
minimizing the ratio of its cost over the total profit of its vertices that are 2-vertex-connected to
the root. This subgraph yields an O(log n) approximation to the problem defined in Lemma 3.1.

Thus the proof is complete.
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(i) Initialize subgraph ℋ ← ∅ and q′ ← q to be the number of uncovered groups.

(ii) If q′ > 0, begin a phase:

(a) Assign a cost of zero to all vertices in ℋ.

(b) Find Twin-pairs: Compute a subgraph H of cost O(opt ⋅k log n) that contains twin pairs
(Definition 3.1) from at least q′/2 uncovered groups.

(c) Cover: Compute a subgraph I of cost O(opt ⋅ k log n) that covers at least q′/2 uncovered
groups.

(d) Update ℋ ← ℋ∪H ∪ I and update q′ to be the number of uncovered groups in ℋ.

(iii) Output ℋ.

Figure 2: An outline of our algorithm for VC-FTGS-k with vertex-costs.

3.2 Algorithm for EC-FTGS-k and VC-FTGS-k with edge/vertex costs

We present an algorithm for VC-FTGS-k with vertex-costs, which is more general than the case
of edge-costs. Adaptation of this algorithm to EC-FTGS-k is easy.

Fix an optimum solution opt with cost also denoted by opt. To simplify the presentation,
the algorithm given below is assumed to know the value of opt. In reality, the algorithm tries
all possible guesses for the power of 2 that is closest to opt and picks the cheapest solution
among those computed for each of these guesses.

Our algorithm has logarithmic number of phases. In each phase, it covers at least half of
the remaining groups. A high-level pseudo-code of the algorithm is given in Figure 2. At the
beginning of each phase, we make the cost of the vertices that are already picked in the solution
ℋ zero. In what follows, we analyze a single phase which begins with q′ uncovered groups
overall. The groups in S that are already covered are ignored. In what follows, we explain how
to implement steps Find Twin-pairs and Cover respectively.

3.2.1 How to implement step Find Twin-pairs

Definition 3.1 For a group S ∈ S, we say that the terminals s1, s2 ∈ S form a twin pair if
opt contains two internally-disjoint paths from s1 and s2 to r. If there are more than one such
pairs for a group, we designate exactly one of these pairs as twin pair arbitrarily.

We do not know which terminals form twin pairs a-priori. Nevertheless, we can compute a
low-cost tree that connects the twin pairs from at least half of the remaining groups to the root,
as shown below. We iteratively use p-Steiner tree algorithm for p = q′. Recall that the p-Steiner
Tree problem is to compute a minimum-cost tree that connects at least p terminals to the root.
Let H denote the union of the p-Steiner trees computed so far. Assume that the number of
uncovered groups is at least q′/2.

Lemma 3.5 Assign a cost of zero vertices in H. Now apply (c log n)-approximation algo-
rithm [7] for the p-Steiner tree problem (where c is a constant) for the instance given by H,
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root r, p = q′ and terminals as the vertices in the the union of uncovered groups in S but not in
H: {v ∈ S ∣ S ∈ S is uncovered, v ∕∈ H}. If the cost of the computed Steiner tree is more than
(c log n) ⋅ opt, then H contains the twin pairs for at least q′/2 uncovered groups.

Proof: Assume on the contrary that H does not contain twin pairs for at least q′/2 uncovered
groups. Thus the opt solution connects at least 2 ⋅ q′/2 = q′ terminals in this p-Steiner tree
instance to the root. Since we use a (c log n)-approximation, the cost of the computed Steiner
tree is at most (c log n) ⋅ opt. This is a contradiction, and the lemma follows.

We run the p-Steiner tree algorithm iteratively while the cost of the new tree computed is
at most c log n ⋅ opt. Since H contains at least p = q′ new terminals in each iteration, the
total number of invocations of such p-Steiner tree algorithm is at most 2q′ ⋅ k/q′. This holds
since the size of each group is at most k. Thus the total cost of the step Find Twin-pairs is
cost(H) ≤ O(opt ⋅ k log n).

3.2.2 How to implement step Cover

Even if H contains the twin pairs of at least q′/2 uncovered groups, we still do not know which
of the terminals in H form twin pairs. We therefore need one more definition.

Definition 3.2 Let T be a spanning tree of H. We say that a vertex u1 can help an uncovered
group S if there exist distinct vertices s1, s2 ∈ S∩T and another vertex u2 so that u1, u2 have the
same parent u = lca(s1, s2) in the tree T . The profit p(u) of vertex u is defined as the number
of uncovered groups in S that u can help.

The intuition of the above definition comes from our algorithm for VC-FTGS-2, and in particular,
from Lemma 3.4. Note that the profit of a vertex u is the number of uncovered groups that will
get covered if u gets connected to the root via 2 internally-disjoint paths.

Since more than one vertex can claim a profit for covering a single group, it is important to
understand how many vertices can help a particular group. Since there are at most k terminals
in any group S ∈ S, it is obvious that there can be at most O(k2) vertices that can help S. This
crude upper bound comes from the fact that there are O(k2) pairs s1, s2 ∈ S that can give rise
to such vertices. However the following lemma presents a careful counting of such vertices.

Lemma 3.6 There are O(k) vertices that can help any single group S ∈ S.

Proof: Consider tree T with terminals in group S marked as s (see Figure 3). Further consider
a subtree T ′ restricted to terminals in S. The vertices u ∈ T ′ that can play a role of lca(s1, s2)
for s1, s2 ∈ S (these are shown as red squares in Figure 3) have a degree of at least 3 in T ′,
i.e., degT ′(u) ≥ 3. Thus if a vertex v can help group S, it must be a child of a vertex u with
degT ′(u) ≥ 3. The number of children of a vertex u is degT ′(u) − 1. Therefore, the number of
vertices v that can help S is at most Σu{u∣degT ′ (u)≥3}(degT ′(u)− 1).

Since T ′ is a tree induced on at most k terminals of S, the tree has at most k leaves. By a
simple counting argument, it therefore follows that the desired sum Σu{u∣degT ′ (u≥3}(degT ′(u)− 1)
is O(k). The lemma thus holds.

Now we have all the ingredients to present the step Cover. We again use the O(log n)-
approximation algorithm of Chekuri and Korula [5] that was also used in Section 3.1, for the
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Figure 3: The vertices marked with s are terminals in a group S. The vertices marked with red
squares can take a role of lca(s1, s2) for a pair {s1, s2} in group S. The children of red squares
that lie on a path from some s ∈ S to r can help S. There are O(k) such vertices.

problem of finding a subgraph that minimizes the ratio of its cost over the total profit of vertices
that are 2-vertex-connected to the root. Recall that the subgraph induced by opt has cost
at most opt and profit at least q′/2 (since T contains twin pairs from at least q′/2 uncovered
groups). Thus the cost-to-profit ratio of the solution computed by our algorithm is at most
O(log n ⋅ opt/q′). From Lemma 3.6, we get that the ratio of the cost of this subgraph to the
number of uncovered groups covered is at most O(k log n ⋅ opt/q′).

We apply such algorithm iteratively till end of the phase, i.e., at least q′/2 previously uncovered
groups are covered in this phase, and call this subgraph I. From the above analysis, it is clear
that the total cost of step Cover is cost(I) = q′ ⋅O(k log n ⋅opt/q′) = O(k log n ⋅opt). Thus the
total cost of a phase is cost(H)+cost(I) = O(opt⋅k log n). Since there are O(log q) = O(log n)
phases overall, the total cost of the algorithm is O(opt ⋅ k log2 n) as desired.

As was mentioned in the Introduction, an O(
√
n log n)-approximation algorithm for VC-FTGS

immediately follows from the O(k log2 n)-approximation for VC-FTGS-k, and thus the proof of
Part (ii) of Theorem 1.1 is now complete.

4 Proof of Part (iii)

To present our hardness results, we introduce the Min-Rep problem [26]. The input consists of
a bipartite graph G = (V1, V2, E), and two disjoint partitions V1 =

∪q
i=1Ai and V2 =

∪q
i=1Bi of

V1 and V2 respectively. Let n = ∣V1∣ + ∣V2∣. The above instance induces a bipartite supergraph
G̃ = ({Ai}, {Bi}, Ē). The supervertices of this supergraph are {Ai}qi=1 ∪ {Bi}qi=1. A superedge
between A and B is added if there exist a ∈ A, b ∈ B so that (a, b) ∈ E. We say that two
vertices a ∈ A and b ∈ B Min-Rep-cover (A,B) if (a, b) ∈ E. A subset C ⊆ V1 ∪ V2 of vertices
is said to cover a superedge (A,B) if it contains a pair a ∈ A and b ∈ B that covers (A,B). A
subset C is a Min-Rep-cover if it covers all the superedges.
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Figure 4: A yes instance. The vertices a, x, d, f, b, c, e, g are a Min-Rep-cover of the instance

Theorem 4.1 (Raz [26]) For any constant � > 0, there is a reduction from any NP-complete
problem instance to a Min-Rep instance (G, G̃) so that for a yes instance, there exists a set C
containing one vertex out of any supervertex that is a Min-Rep-cover, but for a no instance, every
Min-Rep-cover contains at least q ⋅ 2log1−� n vertices of V1 ∪ V2.

We reduce Min-Rep instance to an instance Ĝ of directed Single EC-FTGS. Add all the vertices
of the Min-Rep instance to Ĝ. For every edge in e = (a, b) ∈ E, add a vertex ve to Ĝ in the
middle of e and replace e by two directed edges from ve to each of a and b. These edges have
cost 0. Add a root r and add a directed edge of cost 1 from every vertex in V1 ∪ V2 to r. Every
group corresponds to a superedge (A,B). Let gAB be this group. For every e = (a, b) where
a ∈ A, b ∈ B, add ve to gAB. This finishes the description of the reduction.

We show that every solution to the Single EC-FTGS instance Ĝ defines a solution for the Min-
Rep instance of the same cost and a solution for Min-Rep defines a solution for Simple EC-FTGS
instance Ĝ of the same cost.

First consider a solution for the Single EC-FTGS instance Ĝ. Consider a superedge (A,B).
The only way to have two edge-disjoint paths from a single vertex in gAB to r is for some ve,
e = (a, b) to have two edge-disjoint paths to r: ve 7→ a 7→ r and ve 7→ b 7→ r. This incurs a
cost 1 for the edge ar and a cost of 1 for the edge br. From the construction, the collection of
such end-points {a, b} together induces a Min-Rep-cover of cost at most the cost of the Single
EC-FTGS solution.

Conversely, given a Min-Rep solution, every e = (a, b) covering the superedge (A,B) gives in
an obvious way two disjoint paths to r from ve, adding 2 to the cost of the Single EC-FTGS
solution. Thus cost of the solution for Single EC-FTGS is at most the cost (the number of of
vertices of V1 ∪ V2 selected) in the solution for the Min-Rep instance [17]. This completes the
proof of the hardness of approximation part of Part (iii) in Theorem 1.1.

Remark: We note that a similar hardness results hold for the vertex-connectivity version or
vertex-costs.
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