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1 Introduction

1.1 Problem definition and motivation

Problem definition: The edge-connectivity λG(u, v) between two vertices u and v in

a graph G is the maximum number of edge-disjoint (u, v)-paths; the vertex-connectivity

κG(u, v) between u and v is the maximum number of internally disjoint (u, v)-paths.

In this work we consider connectivity augmentation problems of the following type: given

a graph G = (V,E) and a requirement function r : V × V → Z+ ,where Z+ is the set of

non-negative integers, find a minimum size (or, a min-cost) set F of new edges so that in

G+ F holds:

λ(u, v) ≥ r(u, v) ∀u, v ∈ V (1)

or

κ(u, v) ≥ r(u, v) ∀u, v ∈ V. (2)

When (1) is required, then we get the Edge-Connectivity Augmentation Problem (ECAP);

in this case we use integral weights on the edges to represent multiplicity. When (2) is

required, then we get the Vertex-Connectivity Augmentation Problem (VCAP); in this case

G and G + F are simple graphs. A particular important case arises when the requirements

are uniform, namely, r(u, v) = k for all u, v ∈ V ; in this case we simply want to augment G

to be k-edge-connected (if (1) is required) or k-vertex-connected (if (2) is required).

Motivation: Applications of variants of the problems arise naturally when one needs to

build a cheap network which will survive terminal or link failures; robust networks, in order

to tolerate such failures, should have high pairwise (edge- or vertex-) connectivity. For

example, suppose we are given a network which vertices represent users, and we want to

augment it by adding a set of links of minimum size, or, more generally, of minimum cost,

so that each pair u, v of users will be able to communicate even if r(u, v)− 1 terminal/link

failures occur. If the cost of adding a link u, v is c(u, v), our goal is to find the cheapest set

F of links to ensure the required reliability of communication.

1.2 Previous work

A ρ-approximation algorithm for a minimization problem is a polynomial time algorithm

that produces a solution of value no more than ρ times the value of an optimal solution; ρ

is called the approximation ratio of the algorithm.
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We briefly summaries the complexity status of some special cases (for a survey only of

the cases when polynomial algorithms and/or good characterizations are available for the

minimum see [F94, F98]).

Edge-connectivity: For the case r(u, v) ≡ k for all u, v ∈ V , polynomial algorithms were

given by Eswaran and Tarjan [ET76] and Plesnik [P76] for k = 2, and by Watanabe and

Nakamura [WN93] and Cai and Sun [CS89] for k arbitrary. For general r, a polynomial

algorithm was given by András Frank [F92a], using Mader’s splitting off theorem [M78]. For

the min-cost version, a 2-approximation algorithm was developed by Jain [J01]. We note

that for directed graphs ECAP was shown in [F92a] to be “Set-Cover hard” (that is, there

is a polynomial reduction from set-cover to directed ECAP, for which it was proved by Feige

that for some c > 0 a c lnn-approximation algorithm is not possible, unless P=NP), even if

r is 0, 1-valued.

Vertex-connectivity: The VCAP turned out to be substantially more difficult. A graph

H is `-vertex connected, or simply `-connected if it is simple and κH(u, v) ≥ ` holds for every

vertex pair u, v of H. The (vertex-) connectivity κ(H) of H is the maximum ` such that H

is `-connected. A particular important case of VCAP is where r(u, v) ≡ ` for all u, v ∈ V ,

that is, we want G+F to be `-connected. For this case, polynomial algorithm was given by

Plesnik [P76] and Eswaran and Tarjan [ET76] for ` = 2, by Watanabe and Nakamura [WN93]

for ` = 3, and by Hsu [H00] for ` = 4 and G being 3-connected. The complexity status of this

problem for an arbitrary ` remains a major open question in graph connectivity (a similar

problem for digraphs is solvable in polynomial time [FJ95]); the best known approximation

algorithm due to Jordán [J95, J97] and Jordán and Jackson [JJ00] computes an augmenting

edge set with roughly (at most) d`(`− κ(G))/2e edges over the optimum. Recently, Jordán

and Jackson [JJ01] gave an algorithm that for any fixed ` computes an optimal augmenting

edge set in polynomial time. Another specific case is when r(s, u) ≡ ` for u ∈ U and

r(u, v) = 0 otherwise, where s is a specific vertex, and U is a specific subset of vertices.

In [N04] it was shown that this problem cannot admit an O(lnn)-approximation, unless

P=NP, and an O(lnn ln `)-approximation algorithm was developed. However, for U = V

the complexity status of this problem is an open question (for digraphs, the case U = V

is easily solvable). For general r, no tighter hardness results were known. In [KKL02] the

following problem was considered: given a graph H and a requirement function r, find a

min-size spanning subgraph J of H so that κJ(u, v) ≥ r(u, v) for every vertex pair u, v of

J (this is the {1,∞} costs case). In [KKL02] it was shown that this problem cannot be

approximated within O(2log1−ε n) for any fixed ε > 0, unless NP⊆DTIME(npolylog(n)).
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Let k-VCAP be the particular case of VCAP when the input graph G = (V,E) is k-

connected, and r(u, v) ≡ k + 1 for all u, v ∈ V , that is one wants to augment the vertex

connectivity of a graph from k to k+ 1 by adding a min-size edge set. The following concept

plays an important role in algorithms for k-VCAP. Let G be a k-connected graph. For T ⊆ V

the T -components are the connected components of G− T and let b(T ) denote the number

of T -components; T is a k-separator of G if |T | = k and b(T ) ≥ 2. A k-separator T is a

k-shredder if b(T ) ≥ 3. For an integer p ≥ 3, let S(p, k,G) be the number of k-shredders

in G with at least p components, and let S(p, k, n) = maxS(p, k,G) where the maximum is

taken over all k-connected graphs G on n vertices. Note that S(3, k, G) is just the number

of k-shredders in G. Cheriyan & Thurimella [CT99] showed that in a k-connected graph,

computing the number of k-separators (which may be roughly 2kn2/k2) is #P -complete,

but the number of k-shredders separating two given vertices r, s is O(n) and they all can

be found using one max-flow computation. Using this, they showed an implementation of

Jordán’s algorithm with running time O(k2n2 min{k,√n}) time. Cheriyan & Thurimella

[CT99] also proved that S(3, k, n) = O(n2) and conjectured that S(3, k, n) ≤ n. Answering

this conjecture, Jordán proved that S(3, k, n) ≤ n, [J99]. Recently, Egawa [E04] proved

that S(3, k, n) ≤ 2n/3, and that this bound is (asymptotically) the best possible. However,

Egawa’s proof is long and complicated.

1.3 This work

Survey: In Section 2 we give a short survey of Frank’s solution to ECAP, and Frank’s

proof to a seminal splitting-off theorem due to Mader.

Original results: Section 3 presents our results for VCAP, as follows:

(i) We prove that VCAP cannot be approximated within O(2log1−ε n) for any fixed ε > 0,

unless NP⊆DTIME (npolylog(n)), see Theorem 3.1.

(ii) We show that k-VCAP is polynomially solvable for graphs that have a vertex-cut T

with |T | = k and b(T ) ≥ k + 1. Based on this we provide a simple version of Jordán’s

algorithm, that has a running time comparable with the one in [CT99].

(iii) We give a simple and short proof of a more general bound on the number of shredders,

namely we will prove that S(p, k, n) ≤ 2n/p−3n/p(n−k) ≤ 2n/p, generalizing Egawa

[E04].
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1.4 Notation and Preliminaries

The following will be used throughout the paper.

An edge from u to v is denoted by uv. A uv-path is a path from u to v. For an arbitrary

two sets of nodes and edges (or graphs) A,B we denote by A−B the set (or graph) obtained

by deleting B from A, where deletion of a node implies also deletion of all the edges incident

to it; similarly, A + B denotes the set (graph) obtained by adding B to A. For X ⊆ V let

ΓG(X) = Γ(X) denote the set {v ∈ V −X : uv ∈ E for some u ∈ X} of neighbors of X in

V , and let X∗ = V − (X + Γ(X)).

For a function f related to a graph H the corresponding function related to H ′ will

be denoted by f ′. For X,Y ⊆ V let dH(X, Y ) (or d(X,Y ) when H is clear) denote the

number of edges between X − Y and Y −X in an edge set (or graph) H, and d̄H(X,Y ) =

dH(X ∩ Y, V − (X ∪ Y )); for brevity dH(X) = dH(X, V −X). Given a requirement function

r, we define a requirement set-function R(·) as follows:

R(X) = max{r(u, v)|u ∈ X, v ∈ V −X}
By definition R(V ) = R(∅) = 0.

The following proposition follows from counting the contribution of each edge to both

sides of the equations:

Proposition 1.1 For any graph H = (V,E), and for any X,Y ⊆ V :

d(X) + d(Y ) = d(X ∩ Y ) + d(X ∪ Y ) + 2d(X,Y ) (3)

d(X) + d(Y ) = d(X − Y ) + d(Y −X) + 2d̄(X,Y ) (4)

It is easy to see that we can assume without loss of generality that r satisfies:

r(u, v) ≥ λ(u, v) ∀u, v ∈ V (5)

r(u, v) ≥ min{r(u,w), r(v, w)} (6)

The following claim can be proved using equalities (3) and (4) and easy case analysis.

Claim 1.2 For any X, Y ⊆ V at least one of the following holds:

R(X) +R(Y ) ≤ R(X ∪ Y ) +R(X ∩ Y ) (7)

R(X) +R(Y ) ≤ R(X − Y ) +R(Y −X) (8)

Observe that the inequalities transform into each other by replacing Y with V −Y . Any

function that satisfies the condition of Claim 1.2 is said to be skew-supermodular.
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2 Edge connectivity augmentation

We will survey Frank’s algorithm from [F92a] for solving ECAP, which is based on a seminal

splitting-off theorem due to Mader [M78]; we also survey a short proof due to Frank [F92b]

of Mader’s Theorem.

2.1 Frank’s Algorithm for the Edge Connectivity Augmentation

Problem

2.1.1 The splitting-off method

We start by describing a general scheme developed by A. Frank for solving connectivity

augmentation problems, which is based on the “splitting-off” method.

Splitting-off two edges e = su, f = sv means replacing them with the new edge uv, i.e.,

we replace H by Hef = H − {e, f} + uv, where uv a new edge. Given a property P of

H, we say that splitting-off e, f is P-legal, or simply legal, or that e, f are splittable if P is

understood, if P holds for Hef as well. Splitting-off is a basic technique of many algorithms

for graph problems, and is widely used in connectivity augmentation problems. The general

scheme of this method is as follows. Suppose we want to solve the following generic problem:

Input: A graph G = (V,E), some required connectivity property P .

Output: A min-size set F of new edges such that G+ F satisfies P .

A generic scheme based on the splitting off method for solving the above problem is as

follows:

1. Extension: Extend G by adding a vertex s, and edges from s to V until the required

property P holds for the new graph (we assume that such construction is feasible).

2. Deletion: Delete the new edges while preserving the required property P , until each

one of them is critical, i.e. removing the edge will result in a graph that does not fulfill

P . We call the obtained graph H the critical extension of G (w.r.t. P).

3. Splitting-off: Repeatedly perform legal splitting-off operations in H, as long as such

exist.

4. Finish Use the neighbors of s (if there are any) to define an edge-set F ′ (might be

empty) such that H+F ′−s satisfies property P (we assume that such F ′ exists). This

step depends on the problem.
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A famous algorithm of Frank [F92a] uses this scheme to solve the ECAP, and we will

show later a modification of Jordán’s [J95, J97] approximation algorithm for the k-VCAP

that also uses this scheme.

2.1.2 Notation and Preliminaries

Let

q(X) = R(X)− d(X) (9)

be the deficiency of X.

An edge set F is augmenting for an instance (G, r) of ECAP if G′ = G+ F satisfies the

connectivity requirements (1), defined by r, i.e. by Menger’s theorem,

d′(X) ≥ R(X) ∀X ⊆ V. (10)

Since F is a set of new edges, it follows that (10) is equal to:

dF (X) = d′(X)− d(X) ≥ R(X)− d(X) = q(X) ∀X ⊆ V. (11)

In this section splitting-off e, f is legal (for property P) if G′ef preserves the given edge-

connectivity requirements, that is, for any u, v in V , λG′ef (u, v) ≥ r(u, v).

The lower bound An edge set F is (G, r)-augmenting (or simply augmenting if G, r are

understood) if the graph G + F satisfies the connectivity requirements defined by r. Let

opt(G, r) denote the minimum size of an augmenting edge set.

Connectivity augmentation problems can be formulated as a function edge cover problem.

Let p : 2V → Z+ be a set function defined on a groundset V . An edge set F on V is an edge

cover of p, or simply a p-cover, if dF (X) ≥ p(X) for every X ⊆ V . For example, for ECAP,

an appropriate choice of p follows from (11) to be our deficiency function q.

Remark: Several other problems can be defined as function edge cover problems. We note

that for VCAP a more general model is required, where p is a set-pair function defined on

pairs of subsets of V , see [FJ95, FJW01, CVV03].

A family F of pairwise disjoint nonempty subsets of V is called a subpartition. Let

ν(G, r)
.
= max{∑

X∈F
q(X) : F is a subpartition of V }.

Observe that any augmenting edge set F is also an edge cover of q. Since the sets in F
are disjoint, any edge of F can intersect at most two sets. Thus we get:

opt(G, r) ≥ dν(G, r)/2e. (12)
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But this bound is not necessarily achievable, as can be seen by the graph with 4 vertices

and no edges, where r ≡ 1. This graph contains marginal components, which will be defined

and dealt in the next paragraph. We will prove that this bound is achievable if there are no

marginal components, and show how to eliminate marginal components.

Eliminating marginal components: Frank’s algorithm follows the lines of the scheme

described in Section 2.1.1 after a simple preprocessing step.

Definition 2.1 A component C of G is called marginal if the following two conditions hold:

r(u, v) ≤ 1 ∀u ∈ C, v ∈ V − C

r(u, v) ≤ λ(u, v) ∀u, v ∈ C.

We denote by G/C the graph obtained from G after contracting C ⊆ V , that is, the

graph resulting from adding to G − C a vertex vC and d(v, C) parallel edges between v, vC

for any v ∈ V − C.

Lemma 2.1 Let C be a marginal component of G, let G′ = G−C, and r′ be the restriction

of r to V −C (assuming that (5) and (6) hold). If F ′ is an optimal solution to (G′, r′) then:

(i) If q(C) = 0 then F ′ is an optimal solution for (G, r);

(ii) If q(C) = 1 then F ′+vc is an optimal solution for (G, r), for arbitrary c ∈ C, v ∈ V −C
with r(v, c) = 1.

Proof: The case q(C) = 0 is obvious. Assume that q(C) = 1. Suppose, for the sake of

contradiction, that after adding the F ′ and an edge vc as above there is a pair of vertices

v′, c′ with r(v′, c′) = 0. Since c, c′ are connected, from (5) we get r(c′, c) ≥ 1 and from (6)

we get r(v′, c) ≥ 1) and from (6) again we get r(v′, v) ≥ 1. Since F ′ is a solution for G′, r′

there is a v′v-path in G′, and with the edge vc and the cc′-path in C we get that there is a

v′, c′-path in G+F ′+ vc, contradiction. Thus opt(G, r) ≤ opt(G′, r′) + q(C). To see the other

direction, let GC = G/C and rC be r reduced to GC . Observe that the connectivity can only

be improved in the contracted graph, thus opt(GC, rC) ≤ opt(G, r). Let FC be an optimal

augmentation of (GC , rC) with t = |{x : xvC ∈ FC}| minimal. t = 0 implies q(C) = 0, thus

t ≥ 1. Let t = 1 and let f ∈ FC be the edge adjacent to vC , then FC−f is a feasible solution

to G′, r′ and opt(G′, r′) ≤ |FC| − 1 ≤ opt(GC, rC) − q(C) ≤ opt(G, r) − q(C), as required. Let

t ≥ 2, and let u1vC , . . . , utvC be the t edges adjacent to vC in FC . It is easy to see that

replacing each edge uivC , 2 ≤ i ≤ t with uiu1 gives an optimal solution to (GC , rC) with less

edges adjacent to vC , contradicting our choice of FC . This completes the proof. 2
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Using Lemma 2.1 one can reduce ECAP to instances without marginal components,

as follows. Let C1, . . . , Ct be components of G such that Ci is a marginal component of

G− (C1∪· · ·∪Ci−1) and G− (C1∪· · ·∪Ct) has no marginal components. Solve the problem

optimally for G − (C1 ∪ · · · ∪ Ct), and increasingly add the components Ci, i = t, . . . , 1,

adding q(Ci) edges for each Ci as in Lemma 2.1.

Applying the splitting-off method To apply the splitting-off method, one may follow

the steps 1, 2, 3 from the previous section (step 4 is not required here, but it is used in

Section 3 for VCAP). Based on the previous paragraph, it can be assumed w.l.o.g that G

has no marginal components.

Lemma 2.2 Let G′ be a critical extension of G, where P is given by (1). Then d′(s) =

ν(G, r).

Proof: A set X is critical if d′(X) = R(X).

Claim 2.3 For any two critical sets X, Y at least one of the following holds:

1. Both X ∪ Y and X ∩ Y are critical.

2. Both X − Y and Y −X are critical and d̄(X,Y ) = 0

Proof: By case analysis, using the skew supermodularity of R. 2

Let S be the set of neighbors of s in G′. An edge su survived the deletion process only if

there is a critical set X containing u. Let F = {X1, X2, . . . , Xt} be a family of critical sets

covering S such that t is minimal, and given this minimal t,
∑ |Xi| is minimal.

Claim 2.4 Any two sets X, Y in F are disjoint.

Proof: X ∪ Y cannot be critical because of the minimality of F , thus X − Y and Y − X
are critical, and since d̄(X, Y ) = 0 we get that S ∩ (X ∩ Y ) = ∅, and thus since

∑ |Xi| is

minimal we get that |X| = |X − Y |, |Y | = |Y −X|, i.e. X ∩ Y = ∅. 2

Thus F is a subpartition of V and d′(s) =
∑
X∈F(d′(X)− d(X)) =

∑
X∈F q(X) ≤ ν(G, r). 2

If d′(s) is odd, add another edge (parallel to an existing one).

Note that there is no cut-edge adjacent to s, since if e = vs is a cut edge, then the

component of G′ − e containing v is marginal, a contradiction. The theorem follows.

For step 3, use the following version of Mader’s splitting-off theorem due to Frank [F92b]:
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Theorem 2.11 [M78],[F92b] Let G = (V + s, E) be a graph with d(s) even and there is

no cut-edge incident to s, then the set of edges incident to s can be partitioned into d(s)/2

disjoint splittable pairs.

2.1.3 The algorithm

We will use capacitated edges instead of parallel edges, i.e. any edge e will have capacity c(e)

which will define its multiplicity in the graph (an edge which is not in the graph will have

capacity 0). Let rmax = max{r(u, v)|u, v ∈ V } be the maximum value of r.

1. Extension: Extend G by adding a vertex s, and for each v ∈ V , an edge sv with

capacity rmax. Now the graph satisfies (1).

2. Deletion: For each new edge e, lower c(e) by a maximum amount while preserving

(1).

3. Splitting-off: Repeatedly perform (capacitated) legal splitting-off operations, as long

as such exist.

2.1.4 Correctness of the algorithm

Relying on the general scheme that was previously described, the algorithm computes a

feasible solution. From Theorem 2.11 we get that after Step 2 s will have no neighbors (thus

Step 4 is not necessary). By Lemma 2.2, the degree of s after Step 3 equals ν(G). Thus the

number of edges added equals the lower bound dν(G)/2e, which implies that the solution is

an optimal one.

2.1.5 Polynomial time implementation

Step 1 is obviously polynomial.

Step 2 can be implemented by considering one edge after another, and for each edge e finding

its minimum capacity such that (1) is preserved by performing binary search for c(e) in the

domain [0, rmax]. Checking whether a graph satisfies (1) is polynomial, and can be done

using max-flow computations; clearly, any edge incident to s will be considered only once.

Step 3 can be implemented by trying to perform capacitated splitting off to any pair of

vertices of V , i.e. for each u, v ∈ V find the maximum α such that after decreasing c(su), c(sv)

by α and increasing c(uv) by α the graph satisfies (1). This can be done by performing binary
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search for α in the domain [0,min{c(su), c(sv)}]. By the following lemma, it will be sufficient

to consider any pair of vertices only once.

Lemma 2.5 If a pair su, sv is not splittable in H, it will not become splittable after splitting

off another pair sx, sy of edges.

Proof: Since the pair su, sv is not splittable, there is a dangerous set X containing u, v.

Observe that after splitting off any other pair sx, sy, where either x 6= u, v, y 6= u, v or

x = u, y 6= v, d(X) will not change (in the latter case, an edge contributing to d(X) will be

replaced by another edge contributing to d(X)), thus X will remain dangerous, and the pair

su, sv will remain not splittable. 2

2.2 Mader’s splitting-off theorem

A short proof due to A. Frank [F92b] to the following splitting-off theorem due to Mader

will be presented:

Theorem 2.11 [M78] Let G = (V + s, E) be a graph with d(s) even and there is no cut-

edge incident to s, then the set of edges incident to s can be partitioned into d(s)/2 disjoint

splittable pairs.

2.2.1 Notation and Preliminaries

Mader’s theorem deals with splitting-off while preserving the local edge-connectivity. Thus,

in this section, splitting-off e, f is legal (i.e. the property P is) if Gef preserves the local

edge-connectivity, i.e. for any x, y in V , λGef (x, y) ≥ λG(x, y), and let the requirement

function be the local edge-connectivity, i.e. r(X) = d(X), and R(X) be the requirement set

function resulting from r(x), as before. Obviously d(X) ≥ R(X). Let s(X) = d(X)− r(X)

be the surplus of X (thus s(X) ≥ 0). A set X is called tight if s(X) = 0 (i.e. d(X) = R(X)),

and dangerous if s(X) ≤ 1 (i.e. d(X) ≤ r(X) + 1).

Combining proposition 1.1 and claim 1.2 leads to:

Proposition 2.6 At least one of the following inequalities holds:

s(X) + s(Y ) ≥ s(X ∩ Y ) + s(X ∪ Y ) + 2d(X,Y ) (13)

s(X) + s(Y ) ≥ s(X − Y ) + s(Y −X) + 2d̄(X,Y ) (14)

For the rest of this section, let G = (V + s, E) satisfy

there is no cut-edge incident to s (*)
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For brevity, splitting-off {u, v} ⊂ V means splitting-off {su, sv}. Let S be the neighbor

set of s, i.e. S = {v ∈ V |(s, v) ∈ E}.

Claim 2.7 x, y ∈ S are splittable if, and only if, there is no dangerous set X such that

x, y ∈ X.

Proof: If there is such a dangerous set, then obviously x, y are not splittable. Suppose then

that the pair x, y is not splittable. Let H ′ be H after splitting-off {x, y}. There is a pair u, v

such that the edge-connectivity between u, v has decreased because of the splitting-off, and

there is a tight set X in H ′ separating u, v (i.e. {u, v} ∩ X = 1). Thus d′(X) < d(X) and

thus x, y ∈ X. We have d(X) − 2 = d′(X) = λ′(u, v) ≤ λ(u, v) − 1 ≤ R(X) − 1 and thus

d(X) ≤ R(X) + 1 and X is dangerous, containing x, y, as required. 2

Claim 2.8 Let T be a tight set. A pair {u, v} of vertices is splittable in G if the corresponding

pair {u′, v′} is splittable in G′ = G/T .

Proof: Let Z be a subset of vertices that either contain T or is disjoint from T and let Z ′

be its corresponding set in G′. Clearly d(Z) = d(Z ′) and R(Z ′) ≥ R(Z) (since contracting

T enlarges the ’connectivity’ inside T ). Thus if Z is dangerous in G, Z ′ is dangerous in

G′. Suppose, for the sake of contradiction, that {u′, v′} is splittable in G′ but {u, v} is not

splittable in G. By Claim 2.7, there is a dangerous set X containing u, v. Z = X ∪ T can

not be dangerous in G because then Z ′ would be dangerous in G′, contradicting the fact

that the pair {u′, v′} is splittable. Thus s(X ∪ T ) ≥ 2. By Proposition 2.6 either (5) holds

and then 0 + 1 ≥ s(T ) + s(X) ≥ s(X ∩ T ) + s(X ∪ T ) ≥ 0 + 2 contradiction, or (6) holds

and then 0 + 1 ≥ s(T ) + s(X) ≥ s(X − T ) + s(T −X) + 2d̄(X,T ) ≥ 0 + 0 + 2d̄(X,T ), thus

d̄(X,T ) = 0 and s(X−T ) ≤ 1. d̄(X,T ) = 0 means that u, v ∈ D = X−T and s(X−T ) ≤ 1

means that D is dangerous, thus D′ is also dangerous and u′, v′ can not be splittable in G′,

contradiction. 2

Claim 2.9 Suppose that every tight set consists of one element. Then λ(x, y) = min{d(x), d(y)}
for every x, y.

Proof: There is a tight set X separating x, y, i.e. |X ∩ {x, y}| = 1, and d(X) = λ(x, y).

Since X is a one-element set, the claim follows. 2

The graph K1,4 where s is the unique vertex connected to all the others shows that when

(*) does not hold, it may be possible that there is no splittable pair incident to s. The graph

K4 where s is one of the vertices shows that when d(s) = 3 holds, it may be possible that

there is no splittable pair incident to s. This leads to the following theorem by Mader:
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Theorem 2.10 [M78] Let G = (V + s, E) be a connected graph with d(s) 6= 3 for which

(*) holds, then there is a splittable pair e, f of edges.

(this is the original theorem. Observe that the ’connected’ is redundant, because λ is relevant

only inside connected components, and the theorem can be applied to connected components

of a graph). The following theorem is equivalent:

Theorem 2.11 Let G = (V + s, E) be a graph with d(s) even and for which (*) holds, then

the set of edges incident to s can be partitioned into d(s)/2 disjoint splittable pairs.

Claim 2.12 If {e, f} is splittable in G satisfying (*), then Gef satisfies (*).

Proof: (*) implies that λ(u, v;Gef ) = λ(u, v;G) ≥ 2 for any u, v ∈ Γ(S), Thus Gef also

satisfies (*). 2

Claim 2.13 Theorems 2.10 and 2.11 are equivalent.

Proof: ⇒: Observe that a pair that is splittable in Gef is also splittable in G. Given

a graph as in Theorem 2.11, all the condition remains valid through repeatedly applying

Theorem 2.10 d(s)/2 times, and thus partitioning the edges incident to s as required.

⇐: If d(s) is even there’s nothing to prove. Otherwise, d(s) ≥ 5. Add to G a new vertex

x and 3 parallel edges sx. Now G satisfies the conditions of Theorem 2.11, thus it has at

least 4 splittable pairs of edges, thus at least one pair not containing a new edge sx, thus

splittable in the original graph. 2

2.2.2 Proof of Mader’s splitting-off theorem

Let G = (V + s, E) be a counter-example with the minimal number of vertices (fix s for

splitting-off). Then d(s) is even, (*) holds, and by Claim 2.12, it is sufficient to prove that

there is one splittable pair. Since G is minimal, Claim 2.8 means that every tight set consists

of one element as in Claim 2.9. Let t ∈ S hold d(t) = min{d(v)|v ∈ S}.
Claim 2.14 R(X − t) ≥ R(X) for every non-dangerous set X containing t.

Proof: Let u ∈ ((X ∩ S)− t). Let (v, z) be a pair of vertices such that v ∈ X, z ∈ V −X,

λ(v, z) = R(X). If v 6= t, then R(X−t) ≥ λ(v, z) = R(X). Otherwise, remembering that the

condition in Claim 2.9 holds, we get R(X) = λ(t, z) = min{d(t), d(z)} ≤ min{d(u), d(z)} =

λ(u, z) ≤ R(X − t), as required. 2

Claim 2.15 For a dangerous set X, d(s,X) ≤ d(s, V −X).

Proof: R(V −X) = R(X) ≥ d(X)−1 = d(V −X)−d(s, V −X)+d(s,X)−1 ≥ R(V −X)−
d(s, V −X)+d(s,X)−1 (remember that V does not contain s), thus d(s, V −X) ≥ d(s,X)−1.
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d(s, V −X) 6= d(s,X), because otherwise d(s) would be odd. The claim follows. 2

No pair u, t, u ∈ S is splittable, thus every vertex of S is in a dangerous set containing t.

Let L be a minimal family of dangerous sets containing t such that S ⊆ ⋃X∈LX.

Claim 2.16 |L| ≥ 3.

Proof: Suppose |L| = 2, i.e. L = {X, Y }. By Claim 2.15 d(s,X) ≤ d(s, V −X) < d(s, Y ) ≤
d(s, V − Y ) < d(s,X), a contradiction, using twice the fact that t is in both X,Y but not

in their complement. 2

Fix {X1, X2, X3} = F ⊆ L. Each Xi contains a vertex xi that is not contained in any other

set of L (and of F) because of the minimality of L.

Claim 2.17 For every two members X,Y of F (6) holds.

Proof: Suppose otherwise, i.e. by Proposition 2.6 (5) holds. L is minimal, thus X ∪ Y is

not dangerous, i.e. s(X ∪Y ) ≥ 2. Hence 1+1 ≥ s(X)+s(Y ) ≥ s(X ∩Y )+s(X ∪Y ) ≥ 0+2

and thus X ∩ Y is tight, and thus is a one-element set, i.e. by their definition X ∩ Y = {t}.
Then X − Y = X − t, Y − X = Y − t and with Claim 2.14 we get s(X) + s(Y ) ≥ s(X −
Y ) + s(Y −X) + 2d̄(X, Y ), so (6) holds, contradiction. 2

Claim 2.18 For every two members X, Y of F , |X − Y | = |Y −X| = 1 and d̄(X, Y ) = 1 .

Proof: From the last claim it stems that 1 + 1 ≥ s(X) + s(Y ) ≥ s(X − Y ) + s(Y −X) +

2d̄(X,Y ) ≥ 0 + 0 + 2. Thus d̄(X,Y ) = 1 and X − Y, Y − X are tight, and thus consist of

one element. 2

Let M = X1 ∩X2 ∩X3. By the last claim Xi = M + xi, and thus M is the intersection of

every two sets of F . d̄(Xi, Xj) = 1 leads to d(M) = 1, i.e. the only edge leaving M is st, a

cut edge adjacent to s, contradiction. 2
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3 Vertex connectivity augmentation

This section contains our results for VCAP.

3.1 Hardness of approximation of VCAP

In this section we will prove the following theorem:

Theorem 3.1 The augmentation version of VCAP cannot be approximated within O(2log1−ε n)

for any fixed ε > 0, unless NP⊆DTIME(npolylog(n)).

We will show that approximating VCAP is at least as hard as approximating the following

problem that was introduced in [K01] and used in [KKL02] (for establishing the hardness of

the {1,∞} costs case):

Let δG(X, Y ) denote the set of edges of G with one end-vertex in X and the other in Y .

The MinRep Problem:

Input: A bipartite graph H = (A+ B, I), and equitable partitions (i.e. partitions to equal-

sized sets) A of A and B of B.

Output: A minimum size vertex set A′ ∪ B′, where A′ ⊆ A and B′ ⊆ B, so that for any

Ai ∈ A, Bj ∈ B with dH(Ai, Bj) > 0 there are a ∈ A′ ∩ Ai, b ∈ B′ ∩Bj such that ab ∈ I.

An instance of MINREP has the star property if every vertex b ∈ B has at most one

neighbor in any of the sets Ai. The following result was stated in [KKL02, Theorem 4.1].

Theorem 3.2 ([KKL02]) MINREP with star property on n vertices cannot be approximated

within O(2log1−ε n) for any fixed ε > 0, unless NP⊆DTIME(npolylog(n)).

The proof of Theorem 3.1 follows. Given an instance H = (A + B, I),A,B of MINREP

we construct an instance (G = (V,E), r) of augmentation VCAP as follows. Let

E = {ij : Ai ∈ A, Bj ∈ B, dH(Ai, Bj) > 0}.

The graph G = (V,E) is obtained from H as follows (see Fig. 1a):

1. Add to H: a set {a1, . . . , a|A|, b1, . . . , b|B|} of |A| + |B| vertices, and for every ij ∈ E a

pair of vertices aij, bij. Thus

V = A ∪B ∪ {a1, . . . , a|A|, b1, . . . , b|B|} ∪ {aij : ij ∈ E} ∪ {bij : ij ∈ E}.

and |V | = (|A|+ |B|) + (|A|+ |B|+ 2|E|).
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Figure 1: Illustration of the reduction

2. For every ij ∈ E connect: aij to every vertex that is not in Āij = Ai ∪ Bj ∪ {bj, bij},
and bij to every vertex that is not in B̄ij = Ai ∪Bj ∪ {ai, aij}. Thus

E = I ∪
(
{aijw : ij ∈ E , w ∈ V − Āij} ∪ {bijw : ij ∈ E , w ∈ V − B̄ij}

)
.

For ij ∈ E let

Cij = V − (Āij + B̄ij) = ΓG(aij) ∩ ΓG(bij).

Since the partitions A,B are equitable, the sets Cij are all of the same size, say k. Every

vertex in Cij is an internal vertex of an aijbij-path of length 2. By the construction, in

Gij = G − Cij there is no aijbij-path (see Fig. 1b). Thus Cij is a minimum vertex cut

separating aij and bij and

κG(aij, bij) = k ∀ij ∈ E .
The requirement function r is defined by:

r(aij, bij) = k + 1 for ij ∈ E

and r(u, v) = 0 otherwise. Clearly, the construction is polynomial.

For an edge set F and ij ∈ E let Fij be the edges in F with both end-vertices in Gij.

The following statement is immediate.
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Claim 3.3 For every ij ∈ E there is no aijbij-path in Gij, and a set F of edges is a feasible

solution to (G, r) if, and only if, Gij + Fij contains an aijbij-path for every ij ∈ E .

Let us say that a new edge is proper if it connects bj to some vertex in Bj, or ai to some

vertex in Ai. An edge set F is proper if all its edges are proper.

Claim 3.4 Let F be a feasible solution to (G, r). If e is a non-proper edge of F then there

exist proper edges e′, e′′ such that F − e + {e′, e′′} is also a feasible solution to (G, r). Thus

there exists a proper feasible solution F ′ with |F ′| ≤ 2|F |.

Proof: Assume that F − e is not a feasible solution, as otherwise the statement is trivial.

Then, by Claim 3.3, one of the following three cases holds, where for each case we indicate

an appropriate choice of e′, e′′:

• e ∈ δF (Ai + ai + aij, Bj + bi + bij) for some ij ∈ E :

in this case set {e′, e′′} = {aia, bjb}, for some ab ∈ I (such edge ab exists, since ij ∈ E).

• e = aija for some a ∈ Ai or e = bijb for some b ∈ Bj:

set e′ = e′′ = aia or e′ = e′′ = bjb, respectively.

• e = a′a′′ for some a′, a′′ ∈ Ai or e = b′b′′ for some b′, b′′ ∈ Bj:

set {e′, e′′} = {aia′, aia′′} or {e′, e′′} = {bjb′, bjb′′}, respectively.

In each one of the cases, it is easy to see that for any ij ∈ E with e ∈ Fij holds: the end-

vertices of e′, e′′ are vertices of Gij, and in Gij + (Fij − e + {e′, e′′}) there is an aijbij-path.

Thus F − e+ {e′, e′′} is a feasible solution as well, by Claim 3.3. 2

To finish the proof of Theorem 3.1 it is sufficient to prove:

Claim 3.5 A proper edge set F is a feasible solution to (G, r) if, and only if, the end-vertices

of F contained in A+B form a feasible solution to the original MINREP instance.

Proof: Note that there is a bijective correspondence between proper edge sets and subsets

A′ +B′ of A+B, where A′ ⊆ A,B′ ⊆ B. Namely:

F = {aia : a ∈ Ai ∩ A′, 1 ≤ i ≤ |A|} ∪ {bjb : b ∈ Bj ∩B′, 1 ≤ j ≤ |B|}.

Let A′ +B′ and F be such corresponding pair.

Recall that A′+B′ is a feasible solution to MINREP if and only if for any ij ∈ E there are

a ∈ A′ ∩Ai, b ∈ B′ ∩Bj such that ab ∈ I. Note that for ij ∈ E there are a ∈ A′, b ∈ B′ such

that ab ∈ I if and only if there is an aijbij path aij, ai, a, b, bj, bij of length 5 in Gij +Fij; this
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is true since our MINREP instance has the star property. The statement now follows from

Claim 3.3. 2

Since in the construction |V | = O(n2), where n = |A| + |B|, Theorem 3.2 implies Theo-

rem 3.1. (for any ε > 0, we can choose a big enough n such that ∃ε0 < ε, where MINREP on√
n nodes cannot be approximated within O(2log1−ε0 √n), and 2log1−ε0 √n ≥ 2log1−ε n).

Remark: The best known approximation ratio for MINREP is O(
√
|A|+ |B|) due to Bar-

Yehuda. Claim 3.5 implies that if MINREP with star property has ”approximation threshold”

(|A|+ |B|)ε, then the augmentation VCAP has ”approximation threshold” (|A|+ |B|)ε =

Ω(|V |ε/2).

3.2 VCAP with uniform requirements

In this section we will consider the following problem:

Instance: A k-connected graph G.

Objective: Find a smallest set F of new edges so that the graph G+F is (k+ 1)-connected.

Recall that we have denoted this problem by k-VCAP.

3.2.1 Preliminaries

Let G = (V,E) be a k-connected graph. We say that X ⊂ V is tight if |Γ(X)| = k and

X∗ 6= ∅. It follows from Menger’s Theorem that G + F is (k + 1)-connected if, and only if,

G+ F has no tight sets, that is, for every tight set X of G there is an edge in F between X

and X∗. The following property of tight sets (cf., [J95, Lemma 1.2]) will be repeatedly used.

Lemma 3.6 Let X, Y be two intersecting tight sets in a k-connected graph G on n nodes.

If X∗ ∩ Y ∗ 6= ∅ then X ∩ Y and X ∪ Y are both tight. If n − |X ∪ Y | ≥ k then X ∩ Y is

tight, and if a strict inequality holds then also X ∪ Y is tight.

Let t∗(G) denote the number of inclusion minimal tight sets in G. T ⊆ V is a tight

set cover (of G) if T intersects every (minimal) tight set of G. Given a graph, we call

the new edges that can be added to the graph links, to distinguish them from the existing

edges. Let opt(G) denote the minimum cardinality of an augmenting link set that makes G

(k + 1)-connected. Following [J97], we use the following lower bound on opt(G):

Lemma 3.7 ([J97], Lemma 2.1) Let T be an arbitrary inclusion minimal tight set cover

of a k-connected graph G. Then opt(G) ≥ dt∗(G)/2e ≥ d|T |/2e. Furthermore, if |T | ≥ k+ 2
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then the minimal tight sets are pairwise disjoint.

Proof: Clearly t∗(G) ≥ |T |. We prove that opt(G) ≥ dt∗(G)/2e. Let F(H) denote the

family of inclusion minimal tight sets of a graph H. It would be enough to show that

|F(H + e)| ≥ |F(H)| − 2 for any k-connected graph H and a link e. If not, then there is a

link e = uv and X,Y ∈ F(H) such that u ∈ X∩Y and v ∈ V −(X+Y +Γ(X+Y )) = X∗∩Y ∗.
By Lemma 3.6 X ∩ Y is also a tight set of H, contradicting the minimality of X, Y .

Now let T be an inclusion minimal tight set cover of G with |T | ≥ k+ 2. The minimality

of T implies that for every u ∈ T there exist Xu ∈ F(G) with |Xu ∩ T | = {u}. If the sets

{Xu : u ∈ T} are pairwise disjoint, the statement is obvious. Suppose therefore that there

are u, v ∈ T so that Xu ∩Xv 6= ∅. If |T | ≥ k + 2, then |V − (Xu ∪Xv)| ≥ |T | − 2 ≥ k. Thus

by Lemma 3.6 Xu ∩Xv is also a tight set, contradicting the minimality of Xu, Xv. 2

We note that the (inclusion) minimal tight sets, and thus also an (inclusion) minimal tight

set cover can be computed in O(min{k,√n}kn(n+ k2)) time, see Section 3.2.4.

Another lower bound on opt(G) is as follows. For C ⊆ V the C-components are the

connected components of G − C and let b(C) denote the number of C-components; C is a

k-separator of G if |C| = k and b(C) ≥ 2. Let b(G) = max{b(C) : C ⊆ V, |C| = k}. If

G+F is (k+ 1)-connected then |F | ≥ b(G)− 1, since for any k-separator C, F must induce

a connected graph on the C-components. Combining with Lemma 3.7 gives that for any

minimal tight set cover T of G:

opt(G) ≥ max{dt∗(G)/2e, b(G)− 1} ≥ max{d|T |/2e, b(G)− 1} . (15)

In [J95, J97] Jordán gave a polynomial algorithm that for |V | ≥ 2k + 1 computes a

solution which size exceeds this lower bound by at most d(k − 1)/2e edges; (for |V | ≤ 2k he

used an additional lower bound). Jordán’s algorithm relies on two key theorems, and one of

them is:

Theorem 3.8 ([J95],Theorem 2.4) There exists a polynomial time algorithm that given

a k-connected graph G with b(G) ≥ k+ 1 and b(G)− 1 ≥ dt∗(G)/2e finds a link set F of size

max{dt∗(G)/2e, b(G)− 1} such that G+ F is k-connected.

We will show that the second condition in the above theorem is not necessary, see Theo-

rem 3.16 in Section 3.2.3. This implies a new “splitting-off” theorem for node-connectivity,

see Section 3.2.5.

Cheriyan and Thurimella [CT99] showed that the number of k-shredders separating two

given nodes r, s is O(n) and that they all can be found using one max-flow computation, as
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follows. First, compute a set of k internally disjoint paths between r and s, and set P to

be the the union of the nodes of these paths. Second, for every connected component X of

G − (P − {r, s}) check whether Γ(X) is a shredder. The algorithm is correct since if C is

a k-shredder so that r and s belong to distinct C-components, then every C-component X

with X∩{r, s} = ∅ is a connected component of G−(P−{r, s}). Indeed, any (r, s)-path that

contains a node from X must contain at least two nodes from C, implying C ⊆ P − {r, s}
and X ∩ P = ∅. Using this, [CT99] showed an O(k2n2 min{k,√n}) time implementation of

Jordán’s algorithm from [J95] (that computes an augmenting edge set of size opt(G)+k−2).

Based on our Theorem 3.16, we will show a simple version of Jordán’s algorithm [J95, J97],

and (with the help of [J95, J97]) prove the following theorem, see Section 3.2.4.

Theorem 3.9 There exists an algorithm that given a k-connected graph G on n nodes finds

in O(kn3 +k3nmin{k,√n})) time an augmenting edge set F with |F | ≤ opt(G)+d(k−1)/2e
such that G+ F is (k + 1)-connected. Moreover, |F | = max{dt∗(G)/2e, b(G)− 1} if b(G) ≥
k + 1, and |F | ≤ dt∗(G)/2e+ d(k − 1)/2e if b(G) ≤ k and n ≥ 2k + 1.

We note that the term t∗(G) in theorem 3.9 can be replaced by |T |, where T is a given

minimal tight set cover of G.

For an integer p ≥ 2, let S(p, k,G) be the number of k-separators in G with at least

p components, and let S(p, k, n) = maxS(p, k,G) where the maximum is taken over all

k-connected graphs G on n nodes. Note that S(3, k, G) is just the number of k-shredders

in G. Cheriyan and Thurimella [CT99] proved that S(3, k, n) = O(n2) and conjectured

that S(3, k, n) ≤ n, which was proved by Jordán [J99]. Recently, Egawa [E04] proved that

S(3, k, n) ≤ 2n/3, and that this bound is (asymptotically) the best possible. However,

Egawa’s proof is long and complicated. In the next section we will give a simple and short

proof of a more general bound and derive some properties of shredders.

3.2.2 Properties of shredders

Theorem 3.10 For p ≥ 3 a k-connected graph on n nodes has at most 2n
2p−3

(
1− 1

n−k
)
<

2n
2p−3

k-shredders with at least p components; thus S(p, k, n) < 2n/(2p− 3). In particular, a

k-connected graph on n nodes has less than 2n/3 k-shredders.

Remark: The bound 2n/(2p− 3) in Theorem 3.10 is asymptotically tight for k ≥ 2(p− 1).

Let p, q be integers. Let G be a (p−1)-blow-up of a q-cycle, that is G is obtained from a cycle

of length q by replacing every node a by a set Va of p−1 nodes, and every edge ab by (p− 1)2

edges, so that Va ∪ Vb induces a complete bipartite graph Kp−1,p−1. For k = 2(p − 1), G is

k-connected and n = qk/2 = q(p−1). Thus 2n/(2p−3) = 2q(p−1)/(2p−3) = q+q/(2p−3).
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On the other hand, G has q k-shredders with at least p components. For 2p− 3 = k− 1 > q,

the bound 2n/(2p − 3) is tight. This example easily extends for the case k > 2(p − 1), by

adding k − 2(p− 1) nodes to G and connecting every added node to all the other nodes.

The proof of Theorem 3.10 follows. Two intersecting sets X, Y are crossing, (or Y crosses

X) if none of them contains the other. Two disjoint sets A,B are adjacent (in G) if there

is an edge in G with one end in X and the other end in Y . The following statement can be

deduced from results in [N04]; we give a proof for completeness of exposition.

Lemma 3.11 Let C be a k-shredder of a k-connected graph G = (V,E) and let Y be a tight

set such that Y ∗ intersects some C-component Z. Then Y does not cross V − C − Z nor a

C-component distinct from Z.

Proof: Let C, Y , and Z be as in the lemma. We need the following claim:

Claim: Let Xi, Xj be two C-components distinct from Z and suppose that Y ∩Xi 6= ∅.
(i) If Y ∩Xj 6= ∅ then Xi, Xj ⊂ Y .

(ii) If Y ∩Xj = ∅ then Γ(Y ∪Xi) = C.

Proof: Note that if A,B are disjoint nonadjacent tight sets in G so that A∪B is tight, then

Γ(A) = Γ(B). Observe that ∅ 6= Y ∗ ∩ Z ⊆ Y ∗ ∩X∗i ∩X∗j , since Z ⊆ X∗i ∩X∗j . This implies,

by Lemma 3.6 that the following sets are tight: Y ∩Xi, Y ∪Xi, Y ∩ (Xi∪Xj), Y ∪ (Xi∪Xj).

For part (i), suppose that Y ∩Xj 6= ∅. By Lemma 3.6, the sets A = Y ∩Xi, B = Y ∩Xj,

and A ∪ B = Y ∩ (Xi ∪ Xj) are tight. Moreover, A,B are nonadjacent, since Xi, Xj are

nonadjacent. From this it is easy to see that Γ(Y ∩Xi) = Γ(Y ∩Xj) = C. This implies (i).

For part (ii), suppose that Y ∩Xj = ∅. Let A = Y ∪Xi. Then Γ(A ∪Xj) ⊆ Γ(A) since

Γ(Xi) = Γ(Xj) and Xi ⊆ A. But A ∪Xj and A are both tight, so Γ(A ∪Xj) = Γ(A). This

implies that A,Xj are nonadjacent. Summarizing, A,Xj, A ∪ Xj are tight and A,Xj are

nonadjacent. Thus Γ(A) = Γ(Xj) = C, as claimed. 2

Let Y intersect some C-component Xi 6= Z. By (i), if Y intersects all C-components

distinct from Z, then it contains all of them. Assume therefore that there is a C-component

Xj 6= Z disjoint to Y . By (ii), Γ(Y ∪ Xi) = C. Consequently, Y ∪ Xi must be a union of

some C-components. Now, if Y intersects a C-component distinct from Xi, then Xi ⊂ Y ,

by (i); otherwise, Y ⊆ Xi holds, and the proof of the lemma is complete. 2

Let Q(p, k,G, r) be the number of k-separators in G with at least p components that do

not contain a node r of G. Let Q(p, k, n) = maxQ(p, k,G, r) where the maximum is taken

over all pairs (G, r) so that G is a k-connected graphs on n nodes and r is a node of G.
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Lemma 3.12 S(p, k, n) ≤ Q(p, k, n) · n/(n− k) for any integer p ≥ 2.

Proof: Let G = (V,E) be k-connected graph on n nodes with S = S(p, k, n) k-separators

with at least p components. For u ∈ V let s(u) be the number of such separators containing u.

Since
∑{s(u) : u ∈ V } = kS, there is r ∈ V with s(r) ≤ kS/n. Thus Q(p, k,G, r) + kS/n ≥

S, implying Q(p, k, n) + kS/n ≥ S. Consequently, S ≤ Q(p, k, n) · n/(n− k), as claimed. 2

Lemma 3.13 Let p ≥ 3 and let r be a node of a k-connected graph G on n nodes. Then

Q(p, k,G, r) ≤ 2(n− |Γ(r)| − 1)/(2p− 3). In particular, Q(p, k, n) ≤ 2(n− k − 1)/(2p− 3).

Proof: Consider the set family L obtained by picking for every k-shredder C with b(C) ≥ p

and r /∈ C: each one of the C-components not containing r which we color blue, and also

their union which we color red. The number of red sets equals Q(p, k,G, r). Let U be the

union of the sets in L. Note that |U | ≤ n − |Γ(r)| − 1, and that L is laminar (that is, its

members are pairwise noncrossing), by Lemma 3.11. We can represent L as a forest T of

rooted trees if we order the sets in L by inclusion: X is a child of Y if X is the largest

set in L properly contained in Y . Note that if Y is red then the connected components of

G[Y ] (the graph induced by Y in G) are the Γ(Y )-components not containing r; they are the

children of Y and their number is at least p− 1. On the other hand, if Y is blue then G[Y ]

is connected. This implies that the nodes (sets) of this forest have the following properties:

(i) every node is either blue or red, but not both;

(ii) the children of every red node are all blue, and there are at least p− 1 of them;

(iii) every child (if any) of a blue node is red.

Let B be the family of blue sets that have at most one (red) child, and let ` = |B|. Note that

every set in B must contain a node from U not contained in its child (if any). Thus ` ≤ |U |,
implying ` ≤ n − |Γ(r)| − 1. We claim that in any tree (and thus in any forest) T with

properties (i),(ii),(iii), the number of red sets is at most 2`/(2p− 3). If T has one red node

the statement is obvious. Otherwise, T has a blue node B so that every red descendant of

B is a child of B. Let q be the number of children of B. By deleting the q children of B and

their descendants (which are all blue leaves) we get a tree with the same properties, and `

decreases by at least: q(p− 1)− 1 if q ≥ 2 (at least q(p− 1) blue leaves are deleted, but B

becomes a new member of B) and by at least p − 1 if q = 1 (at least q(p − 1) blue leaves

are deleted and B remains a member of B). Thus the decrease in ` per red node is at least:

p − 1 − 1/q if q ≥ 2 and p − 1 if q = 1, so at least p − 3/2 in the worst case q = 2. Thus

the number of red nodes is at most `/(p− 3/2) = 2`/(2p− 3). 2

Theorem 3.10 follows immediately from Lemmas 3.12 and 3.13.
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Lemma 3.11 implies the following statement, generalizing [J95, Lemma 2.2] and [CT99,

Lemma 4.3].

Lemma 3.14 For a k-shredder C and a tight set Y exactly one of the following holds:

(i) Γ(Y ) = Γ(Y ∗) = C (thus each of Y, Y ∗ is a union of some but not all C-components);

(ii) exactly one of Y, Y ∗ is properly contained in a C-component (thus the other properly

contains all the other C-components);

(iii) Γ(Y ) intersects every C-component, (and C intersects every Γ(Y )-component) and

exactly one of the following holds:

(a) Y, Y ∗ ⊂ C ∪X for some C-component X;

(b) one of Y, Y ∗ is contained in C while the other intersects c and at least two C-

components and is a Γ(Y )-component;

(c) C ∪ Γ(Y ) = V .

Proof: It is easy to see that the cases of the lemma are exclusive. If C ∪ Γ(Y ) = V then

every C-component is contained in Γ(Y ) (and every Γ(Y )-component is contained in C),

thus (iiic) holds. Assume therefore that there is r ∈ V − (C ∪ Γ(Y )) and that none of (i)

and (ii) holds; we will show that then (iiia) or (iiib) must hold. Let R be the C-component

containing r. Since r /∈ Γ(Y ) then r ∈ Y or r ∈ Y ∗, and without loss of generality assume

that the former holds. By interchanging the roles of Y and Y ∗ in Lemma 3.11, we obtain

that Y ∗ does not cross V − C − R nor a C-component distinct from R. This implies that

Y ∗ ⊂ R ∪C and that Y ∗ ∩C 6= ∅, as otherwise (i) or (ii) holds. Assume that Y intersects a

C-component R′ distinct from R, as otherwise (iiia) holds. Then using a similar argument

with R′ instead of R we get that Y ∗ ⊆ C ∪R′. Consequently, since R and R′ are disjoint, we

conclude that Y ∗ ⊆ C. Since C intersects every Γ(Y )-component, we have C ∩ Y 6= ∅. To

arrive at case (iiib) it remains to show that the subgraph G[Y ] = G−Γ(Y )−Y ∗ of G induced

by Y is connected. We will show that G[Y ] contains a path between r and any t ∈ C ∩ Y .

Recall that Γ(Y ) = Γ(Y ∗) intersects every C-component, and thus |Γ(Y ) ∩ (C ∪ R)| < k.

Consider a set of k internally disjoint paths from r to t in G. Any such path that contains a

node from Y ∗ ∪ Γ(Y ) must contain a node from Γ(Y ) ∩ (C ∪ R), hence the number of such

paths is at most |Γ(Y ) ∩ (C ∪ R)| < k. Thus at least one of these paths does not contain a

node from Y ∗ ∪ Γ(Y ). This proves the claim. 2

Note that if case (iii) of Lemma 3.14 holds, then Y has at least one neighbor in every

C-component, which implies b(C) ≤ k. Thus we get the following statement from [J95]:
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Lemma 3.15 (Lemma 2.2,[J95]) Let C be a shredder of a k-connected graph G with

b(C) ≥ k + 1. Then for every tight set Y holds: either one of Y, Y ∗ is properly contained in

a C-component and the other properly contains all the other C-components, or each one of

Y, Y ∗ is a union of some but not all C-components. Thus every minimal tight set of G is

contained in some C-component, and the minimal tight sets of G are pairwise disjoint.

3.2.3 Augmenting graphs with b(G) ≥ k + 1

Theorem 3.16 There exists an algorithm with running time O(kn3) that given a k-connected

graph G determines whether b(G) ≥ k+ 1, and if so, finds an (optimal) augmenting edge set

F of size max{dt∗(G)/2e, b(G)− 1} such that G+ F is (k + 1)-connected.

The proof of Theorem 3.16 follows. Henceforth assume that the input graph G has

O(kn) edges (otherwise, replace G by its “sparse k-connected certificate” G′ that has the

same tight sets as G, see [FIN93, Corollary 2.3]). Also, computing a maximum flow in G

with unit capacities on the nodes can be done in O(knmin{k,√n}) time (see [G80]).

Lemma 3.17 There exists an algorithm with running time O(k2n2) that given a k-connected

graph G finds a k-separator C of G such that: if b(C) ≥ k + 1 then b(C) = b(G), and if

b(C) ≤ k then b(G) ≤ k.

Proof: Let C ′ be an arbitrary k-separator of G; such can be found in O(k2n2) time by the

algorithm of [HRG00] for testing k-connectivity. Let r1, r2 belong to distinct C ′ components.

If C is a k-separator with b(C) ≥ k + 1 then, by Lemma 3.15, at least one of r1, r2 does

not belong to C; thus there is v ∈ V such that one of r1, r2 and v belong to distinct C-

components. For every v ∈ V − ri we compute all shredders separating ri and v, i = 1, 2,

and among them output one C with the maximal number of components. Then C is as

required. Computing all shredders separating two nodes r and v can be done in O(k2n) time

[CT99]. We apply this procedure O(n) times. Thus the total running time is as claimed. 2

After a shredder C with b(C) ≥ k + 1 is found the minimal tight sets can be computed

using n max-flow computations, thus in O(kn2 min{k,√n}) total time. Indeed, for every

v ∈ V − C we can find the minimal tight set containing v or determine that such does not

exist by computing a maximum (r, v)-flow so that r and v belong to distinct C-components.

Given a minimal tight set cover T of G let us say that a link uv with u, v ∈ T is (G, T )-

saturating if T − {u, v} is a tight set cover of G+ uv. The algorithm relies on the following

statement, which will be proved later.
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Lemma 3.18 Let G be a k-connected graph G, let T be a minimal tight set cover of G, and

let C be a k-shredder of G with b(C) ≥ k + 1.

(i) If there is a C-component X with |T ∩X| ≥ b(G) then there exists a (G, T )-saturating

link e = uv with u, v ∈ T ∩X.

(ii) If |T ∩ X| ≤ b(C) for every C-component X, then an (optimal) augmenting edge set

for G of size max{d|T |/2e, b(G)− 1} can be found in O(k2n2) time.

Proof of Theorem 3.16: Given a shredder C with b(C) = b(G) ≥ k + 1 and a min-

imal tight set cover T , the following algorithm finds an augmenting edge set F of size

max{d|T |/2e, b(G)− 1} such that G+ F is (k + 1)-connected.

Phase 1: While there exists a C-component C with |T ∩X| ≥ b(C) do:

find a (G, T )-saturating link uv and set G← G+ uv, T ← T − {u, v}.
End While

Phase 2: Add to G an edge set as in part (ii) of Lemma 3.18.

The condition in the loop of Phase 1 ensures that an appropriate (G, T )-saturating link

exists, by Lemma 3.18 (i). Consequently, the algorithm is correct since at the beginning

of Phase 2 G satisfies the assumption of Lemma 3.18 (ii). Let us show that the size of the

augmenting edge set F found is max{d|T |/2e, b(C)−1}. Let F1 and F2 be the link sets added

during Phase 1 and Phase 2, respectively. If F1 = ∅ then |F | = |F2| = max{d|T |/2e, b(C)−1},
by Lemma 3.18 (ii). Assume therefore that F1 6= ∅. Let T2 be the set of nodes in T at the

beginning of Phase 2. Clearly, |T2| = |T | − 2|F1|. We claim that |F2| = d|T2|/2e and thus

|F | = |F1|+ |F2| = |F1|+ d(|T | − 2|F1|)/2e = d|T |/2e.
To see that |F2| = d|T2|/2e, note that if F1 6= ∅ then there is a C-component X with

|X ∩T2| ≥ b(C)− 2, while any other C-component contains at least one node from T2. Thus

|T2| ≥ (b(C)− 2) + (b(C)− 1) = 2b(C)− 3. Consequently, |F2| = max{d|T2|/2e, b(C)− 1} =

d|T2|/2e.
Finding a shredder C with b(C) = b(G) ≥ k + 1 or determining that b(G) ≤ k can be

done in O(k2n2) time, by Lemma 3.17. The minimal tight sets, and thus also a minimal tight

set cover, can be computed in O(kn2 min{k,√n}) time. To finish the proof of Theorem 3.16

it remains to show that Phase 1 of the algorithm can be implemented in O(kn3) time. This

will be discussed in Section 3.2.4. 2

The proof of Lemma 3.18 follows, starting with part (i).
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Following [J95, J97], we call a link e saturating if t∗(G+e) = t∗(G)−2 holds. For minimal

tight sets Di, Dj (possibly Di = Dj) let Sij be the family of tight sets containing Di∪Dj and

not containing any other minimal tight set. Let Sij be the union of the sets in Sij, where

Sij = ∅ if Sij = ∅; for simplicity, Si = Sii and Si = Sii.

Lemma 3.19 ([J95]) Let Di, Dj be distinct minimal tight sets in a k-connected graph G

that has a minimal tight set cover of size at least k + 2. Then Si, Sj are tight and disjoint,

and a link connecting Di, Dj is not saturating if, and only if:

Dj ⊆ Γ(Si) or Di ⊆ Γ(Sj) or Sij 6= ∅ . (16)

Theorem 3.20 Let F be a family of at least k+1 minimal tight sets in a k-connected graph

G = (V,E) that has a minimal tight set cover T of size at least k + 2. Let S = ∪Di,Dj∈FSij.
If there is r ∈ V − (S ∪ Γ(S)) then exactly one of the following holds:

(i) there exists a (G, T )-saturating link connecting two sets in F ;

(ii) the sets {Si : Di ∈ F} are C ′-components for some k-shredder C ′.

Proof: It is easy to see that if (ii) holds, then (i) cannot hold. We prove that if (i) does not

hold, then (ii) must hold.

Let us say that X ⊆ V − r is r-tight if |Γ(r) ∩X|+ |Γ(X)− r| = k. In [N04] it is shown

that if G contains k internally disjoint rv-paths for every v ∈ V − r (note that this is so if

G is k-connected) then the minimal r-tight sets are pairwise disjoint. Let tr(G) denote the

number of minimal r-tight sets in G. A link e is r-saturating if tr(G+ e) = tr(G)− 2 holds.

Let Srij be the family of r-tight sets containing Di∪Dj and not containing any other minimal

r-tight set. Let Srij be the union of the sets in Srij, where Srij = ∅ if Srij = ∅; for simplicity,

Sri = Srii and Sri = Srii. In [N04] it is proved:

Let F be a family of at least k+1 minimal r-tight sets in a graph G that contains k internally

disjoint rv-paths for every v ∈ V − r. Then exactly one of the following holds:

(i) there exists a pair of sets in F such that any link connecting them is r-saturating;

(ii) the sets {Sri : Di ∈ F} are C ′-components for some k-shredder C ′ with r /∈ C ′.
Note that if X ⊆ V − r is r-tight then X − Γ(r), if nonempty, is tight. In particular, if

r /∈ X ∪ Γ(X), then X is tight if, and only if, X is r-tight. Thus, by the condition of the

theorem, each Di ∈ F is also a minimal r-tight set, and Sij ⊆ Srij for Di, Dj ∈ F . Therefore,

the theorem will be proved if we show that:

If an edge e connecting distinct Di, Dj ∈ F is not saturating, then e is not r-saturating.

By [N04], Sri , S
r
j are r-tight and disjoint, and e is not r-saturating if, and only if:

Dj ⊆ Γ(Sri ) or Di ⊆ Γ(Srj ) or Srij 6= ∅ . (17)
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Under the condition of the theorem, (16) implies (17): if Dj ⊆ Γ(Si) then Dj ⊆ Γ(Sri ) since

Si ⊆ Sri ; if Di ⊆ Γ(Sj) then Di ⊆ Γ(Srj ), since Sj ⊆ Srj ; if Sij 6= ∅ then Srij 6= ∅ since

Sij ⊆ Srij. 2

Note that if F is a family of at least k+1 minimal tight sets contained in a C-component

X of a shredder C with b(C) ≥ k + 1, then, by Lemma 3.15, F and any r ∈ V − (X + C)

satisfy the condition of Theorem 3.20. Thus we have:

Corollary 3.21 Let F be a family of at least k+ 1 minimal tight sets contained in the same

C-component of a shredder T with b(C) ≥ k + 1. Then either there exists a pair of minimal

tight sets in F such that every link connecting them is saturating, or there exists a shredder

C ′ such that the corresponding sets {Si : Di ∈ F} are C ′-components.

Corollary 3.21 easily implies part (i) of Lemma 3.18. Recall that we need to show that

if |T ∩X| ≥ b(G) then there exists a (G, T )-saturating link with u, v ∈ T ∩X. If not, then

by Corollary 3.21, there is a k-shredder C ′ in G that has at least |T ∩ X| C ′-components

that are contained in X (the sets Si), and there is one more C ′-component that contains X∗.

Thus b(C ′) ≥ |T ∩X|+ 1 ≥ b(G) + 1, which is a contradiction.

The proof of part (i) of Lemma 3.18 is done. We now prove part (ii).

Given a nontrivial partitionW of a groundset W , an edge set F on W is aW-connecting

cover (of W ) if the following three conditions hold: (a) degF (w) ≥ 1 for every w ∈ W ;

(b) every edge in F connects distinct parts of W ; (c) F induces a connected graph on

the parts of W . Let max(W) denote the largest cardinality of a set in W . The following

statement was proved in [N04]; we restate the proof for completeness of exposition.

Lemma 3.22 ([N04]) Let W be a nontrivial partition of a groundset W . Then the mini-

mum cardinality of aW-connecting cover equals max{d|W |/2e,max(W), |W|−1}, and given

W a minimum cardinality W-connecting cover can be found in linear time.

Proof: Let F be a W-connecting cover (satisfying conditions (a),(b),(c) above). Then: (a)

implies |F | ≥ d|W |/2e, (a) and (b) imply |F | ≥ max(W), and (c) implies |F | ≥ |W| − 1;

hence |F | ≥ max{d|W |/2e,max(W), |W| − 1}. The following algorithm starts with F = ∅
and computes a W-connecting cover for which equality holds.

While |W| ≥ 2 and max(W) ≥ 2 do:

add a link zw to F where z belongs to the largest set Z ∈ W , and w belongs to:

- the largest set in W − Z if max(W) ≥ |W|;
- to the smallest set in W otherwise.

W ← W − {z, w}, and replace W by its restriction to W (discarding empty sets).
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End while

If |W| = 1 then for every z ∈ W add to F an arbitrary link zw that satisfies condition (b);

Else (applies if |W | ≥ 2 and max(W) = 1) add to F an arbitrary tree on W .

It is easy to see that at every iteration of the loop the bound max{d|W |/2e,max(W), |W|−1}
decreases by 1. Thus at the end of the algorithm F has size as claimed. Also, (a) and (b)

hold for F by the construction, while (c) can be easily proved by induction on the number

of iterations in the loop. Thus at the end of the algorithm F is as required. The algorithm

can be implemented to run in linear time, by maintaining an array A of size |W |, where

A[i] has a pointer to a linked list of the sets in W of size i, pointers to the sizes in A of the

largest, the second largest, and the smallest sets in W , and a variable indicating |W |. It is

easy to see that this data structure enables to answer every query during the algorithm in

O(1) time, and can be maintained during the algorithm in O(|W |) total time. 2

We now finish the proof of part (ii) of Lemma 3.18. The inclusion in the C-components

induces a partition T of T , and let F be a minimum cardinality T -connecting cover. Using

Lemma 3.15 it is easy to see that for any tight set Y of G there is a link in F that connects

Y and Y ∗, thus G+F is (k+1)-connected. Note that |T | = b(C), and max(T ) ≤ b(C)−1 =

|T |−1. Hence, by Lemma 3.22, |F | = max{d|T |/2e, |T |−1} = max{d|T |/2e, b(C)−1}. The

dominating time for computing F as above is spent for computing T ; as was mentioned, this

can be done in O(kn2 min{k,√n}) = O(k2n2) time. Thus the time complexity is as claimed.

The proof of part (ii) of Lemma 3.18 is done, and the proof of Lemma 3.18 is complete.

3.2.4 Implementation

Cheriyan and Thurimella [CT99] showed that Jordán’s algorithm from [J95] (that computes

a solution of size at most opt(G)+(k−2)) can be implemented to run in O(min{k,√n}k2n2)

time. The algorithm of [CT99] finds all shredders, and incrementally maintains them under

edge insertions. Based on Theorem 3.16 we will show a simple version of Jordán’s algorithm

from [J97] (that computes a solution of size at most opt(G)+ d(k−1)/2e) with running time

O(kn3 + k3nmin{k,√n})). Our algorithm does not compute all shredders, but only finds a

shredder as in Lemma 3.17.

The second key theorem in [J95] is (for an earlier slightly weaker version see [BBM90],

and for a generalization see [CJN01, Theorem 3]):

Theorem 3.23 ([J95]) Let T be a minimal tight set cover of a k-connected graph G =

(V,E) with |V | ≥ 2k + 1 and |T | ≥ k + 3. Then either b(G) = |T |, or there exists a
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(G, T )-saturating link.

We also need the following statements for treating the cases |T | ≤ k + 2 and |V | ≤ 2k.

Lemma 3.24 ([J95]) Let T be a tight set cover of a k-connected graph G. Then there exists

a forest F ′ on T such that G+ F ′ is (k + 1)-connected.

Lemma 3.25 ([J97]) Let G be a k-connected graph with |V | ≤ 2k, and let F1 = {u1v1, . . . , ujvj}
be a sequence of links such that uivi is (Gi, Ti)-saturating, where for i = 1, . . . , j: G1 = G,

T1 = T , Gi+1 = Gi + uivi, and Ti+1 = Ti − {ui, vi}. If Tj+1 ≥ k + 3 and if no (Gj+1, Tj+1)-

saturating link exists, then one can find in O(k2n2) time an optimal augmenting edge set F2

for G+ F1 such that |F1|+ |F2| ≤ opt(G) + dk − 1/2e.

Remark: Provided that the sets Si (as defined in the previous section) and Γ(Si) are given,

[J95] shows that a set F2 as in Lemma 3.25 can be computed in linear time.

Here is a description of the algorithm.

Phase 1: Determine whether b(G) ≥ k + 1, and if so, find an augmenting edge set F as in

Theorem 3.16, output F , and STOP.

Phase 2: Initialization: Find a minimal tight set cover T of G.

1. While |T | ≥ k + 3 and there exists a (G, T )-saturating link uv do:

G← G+ uv, T ← T − {u, v}.
End While

2. If |T | ≤ k + 2 add to G a forest on T as in Lemma 3.24;

Else (|V | ≤ 2k) add to G an augmenting edge set as in Lemma 3.25

Let us show that the the size of the augmenting link set found is as stated in Theorem 3.9.

If b(G) ≥ k+1 this follows from Theorem 3.16. Suppose therefore that b(G) ≤ k, so Phase 2

applies. Note that T remains a tight set cover of G during the loop of step 1, by Lemma 3.7.

Let F1 and F2 be the link sets added during steps 1 and 2, respectively. Let T2 be the set

of nodes that remain in T at the beginning of step 2. The case |T2| = 0 is obvious, while

|T2| = 1 is not possible. Assume therefore that |T2| ≥ 2. If |T2| ≤ k + 2 then:

|F1|+ |F2| = (|T |−|T2|)/2+(|T2|−1) = d|T |/2e+d(|T2|−1)/2e−1 ≤ d|T |/2e+d(k−1)/2e .

If |T2| ≥ k + 3, then we must have |V | ≤ 2k, by Theorem 3.23. The correctness of this case

follows from Lemma 3.25.

We now discuss the implementation and time complexity of the algorithm. As was

mentioned in Section 3.2.3, if b(G) ≥ k + 1 then a minimal tight set cover can be found
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in O(k2n2) time. Following [J95], we show how one can efficiently find a minimal tight set

cover in the general case. Let G be a k-connected graph. Add to G a new node s and

connect s to every node of G. The obtained graph is (k + 1)-connected. Then repeatedly

remove an edge incident to s as long as (k + 1)-connectivity is preserved. Following [JJ01],

we call the obtained graph H a critical extension of G; it can be constructed using n max-

flow computations (deletion of an edge sv preserves (k + 1)-connectivity if, and only if, it

preserves (k + 1) internally disjoint sv-paths). Clearly, ΓH(s) is a tight set cover. Now, if

|ΓH(s)| ≥ k+ 2, then T = ΓH(s) is a minimal tight set cover. Otherwise, if |ΓH(s)| = k+ 1,

for every tight set X of G there are u, v ∈ ΓH(s) so that u ∈ X and v ∈ X∗. Thus in

this case all the minimal tight sets (and thus also a minimal tight set cover T ) can be

found in O(min{k,√n} · kn(n+ k2)) time, by performing O(n+ |T |2) = O(n+ k2) max-flow

computations.

To apply the “splitting off method” to our problem, construct a critical extension H as

above, and repeatedly apply “legal” splitting off operations; an edge pair su, sv is called legal

if splitting off su, sv preserves (k+1)-(node) connectivity. Let H be a critical extension of G,

and let T = ΓH(s). Assume |T | ≥ k + 2. It is easy to see that a link uv is (G, T )-saturating

if, and only if the pair su, sv is legal for H.

Let us discuss an implementation of successive legal splitting off operations in H or,

equivalently, successive adding (G, T )-legal links to G. We keep a set Πt of (k + 1) in-

ternally disjoint paths between s and every t ∈ T . The preprocessing time required is

O(kn2 min{k,√n}) = O(k2n2). Updating each set Πt after a single splitting off operation

can be done in O(m) = O(kn) time. We need to update O(|T |) = O(n) sets Πt per one

splitting off, and there are at most O(n) splitting off operations. Thus the overall time is

O(kn3). By Lemma 3.19, to check whether a specific pair su, sv is legal, we need to check

that in Huv = H − {su, sv} + uv there are still (k + 1) internally disjoint paths from s to

each one of u, v. Since in Huv we have k − 2 internally disjoint paths from s to each of

u, v, this can be done in O(m) = O(kn) time using the Ford-Fulkerson algorithm. An easy

observation (we omit the details) is that the already checked “rejected” pairs need not be

checked again, since they will not become legal. During the algorithm we might need to

check at most O(n2) pairs, which gives the overall running time O(kn3). This also finishes

the proof of Theorem 3.16.

Let us now analyze the time complexity of Phase 2. Step 1 can be implemented in

O(kn3) total time, as described above. If |T2| ≤ k + 2, then F2 can be found with O(k2)

max-flow computations (by adding a complete graph on T2 and checking every added edge

for deletion), so in O(k3nmin{k,√n}) time. Otherwise, |V | ≤ 2k, and step 3 can be
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implemented in O(k2n2) time, by Lemma 3.25. Thus the time complexity is as claimed.

3.2.5 A new splitting-off theorem

There are several results asserting that the edges incident to a node s can be partitioned

into disjoint pairs such that splitting off all the pairs results in a graph with certain edge-

connectivity properties. For example, a classical result of Lovász states (for a generalization

see [M78] and [F92b]):

Theorem 3.26 ([L79]) If H = (V + s, E) is a graph such that there are at least k edge-

disjoint paths between every pair of nodes u, v ∈ V , k ≥ 2, and the degree of s is even, then

the set of edges incident to s can be partitioned into pairwise disjoint pairs such that splitting

off all the pairs and deleting s results in a k-edge connected graph.

Let bk(s,H) be a maximum number of components of a k-separator of H containing s.

Note that if H = (V + s, E) is a k-(node) connected graph, then the condition deg(s) ≥
2bk(s,H) − 2 is necessary (but, in general, not a sufficient one) for existence of a partition

as above (deg(s) denotes the degree of s in H). Using Theorem 3.16 we will prove:

Theorem 3.27 Let H = (V + s, E) be a k-connected graph with deg(s) ≥ 2bk(s,H) − 2

being even and with every edge incident to s being critical. If bk(s,H) ≥ k, then the set of

edges incident to s can be partitioned into pairwise disjoint pairs such that splitting off all

the pairs and deleting s results in a k-node connected graph. Moreover, checking validity of

the conditions of the theorem, and then finding a partition as above can be done in O(kn3)

time.

Proof: To be consistent with the notation of the paper, we will prove the statement with k

replaced by k+1. That is, we assume that: H is (k+1)-connected, deg(s) ≥ 2bk+1(s,H)−2,

deg(s) is even, H − sv is not (k + 1)-connected for every v ∈ Γ(s), and bk+1(s,H) ≥ k + 1.

We show that then the set of edges incident to s can be partitioned into disjoint pairs such

that splitting off all the pairs and deleting s results in a (k + 1)-node connected graph.

Let T = ΓH(s) and let G = H−s. Clearly, G is k-connected, and C is a k-separator of G

if, and only if, C+s is a (k+1)-separator ofH. Note that |T | = deg(s) ≥ 2bk+1(s,H)−2 ≥ 2k,

implying |T | ≥ k+ 2 unless k = 1 and |T | = 2. Thus henceforth we assume that |T | ≥ k+ 2,

as the case k = 1 and |T | = 2 is trivial. Note that T is a minimal tight set cover of G.

Indeed, every tight set X of G contains at least one node from T , as otherwise X is a tight

set of H, contradicting that H is (k + 1)-connected. Furthermore, T is a minimal tight set

cover; otherwise, if there is v ∈ T so that T − v is a tight set cover of G, then H − sv is
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(k + 1)-connected (since |T − v| ≥ k + 1), contradicting our assumption.

This implies that the set of edges incident to s can be partitioned as required if, and

only if, there exists an edge set F on |T | so that |F | = |T |/2 and G + F is (k + 1)-

connected. By Theorem 3.16, such an edge set exists and can be found in O(kn3) time, since

b(G) = bk+1(s,H) ≥ k + 1 and |T |/2 ≥ bk+1(s,H)− 1 = b(G)− 1. 2

Finally, note that the condition “every edge incident to s being critical” in Theorem 3.27

cannot be dropped. For example, let H be obtained from a (2k + 1)-clique by choosing a

set S of k + 1 nodes and deleting all the edges that have both endpoints in S. It is easy to

verify that H is k-connected. Let s be an arbitrary node of H not belonging to S. Then

bk(s,H) = k + 1, deg(s) = 2k = bk(s,H) − 2, but H has no legal pair of edges incident to

s. One can easily verify that if F is an edge set so that (G− s) + F is k-connected, then F

induces a connected graph on S; thus a partition as in Theorem 3.27 of the edges incident

to s does not exist. Note that in this example, an edge sv is critical if, and only if, v ∈ S.
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4 Conclusions

The main results in this thesis concern the VCAP. We proved that the general case require-

ments cannot be approximated within O(2log1−ε n)) even when the requirement values are

restricted to {0, k}. We note however, that for this version an O(n ln2 n)-approximation

algorithm can be deduced from the results in [N04]. For general requirements, designing an

algorithm with approximation ratio better than the trivial O(n2) is an open problem.

Another interesting observation is that the reduction we used involves high values for

the requirement function with k = Θ(n). For requirement values are only from {0, 2}
the problem was proved to be NP-Hard by Nagamochi & Ishii [NI01], who also gave a

3/2-approximation algorithm for this case when the input graph G is connected. (For the

weighted case with {0, 1, 2}-requirements a 2-approximation algorithm was given by Fleisher,

Jain and Williamson [FJW01]). This suggests that VCAP with bounded requirements may

have an algorithm with a constant approximation ratio.

The complexity status of k-VCAP is unknown. For arbitrary k, there is an approximation

algorithm with additive slack dk−1
2
e due to Jordán. For a fixed k there is a polynomial

algorithm, see [JJ01]. We have proved that the problem is polynomially solvable on instances

with b(G) ≥ k+1; this enabled a substantial simplification of Jordáns algorithm. Improving

the dk−1
2
e slack for some values of 3 ≤ b(G) ≤ k + 1 is an intermediate open question in

order to determine the complexity status of k-VCAP.
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