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Abstract

Power optimization is a central issue in wireless network design. Given a (possibly

directed) graph with costs on the edges, the power of a node is the maximum cost of

an edge leaving it, and the power of a graph is the sum of the powers of its nodes.

Motivated by applications in wireless networks, we consider several fundamental undi-

rected network design problems under the power minimization criteria. Given a graph

G = (V, E) with edge costs {ce : e ∈ E} and degree requirements {r(v) : v ∈ V },
the Minimum-Power Edge-Multi-Cover (MPEMC) problem is to find a minimum-power

subgraph of G so that the degree of every node v is at least r(v). We give an O(log n)-

approximation algorithms for MPEMC, improving the previous ratio O(log4 n) of [16].

This is used to derive an O(log n + α)-approximation algorithm for the undirected

Minimum-Power k-Connected Subgraph (MPk-CS) problem, where α is the best known

ratio for the min-cost variant of the problem (currently, α = O(ln k) for n ≥ 2k2 and

α = O(ln2 k · min{ n
n−k ,

√
k

log n}) otherwise). Surprisingly, it shows that the min-power

and the min-cost versions of the k-Connected Subgraph problem are equivalent with re-

spect to approximation, unless the min-cost variant admits an o(log n)-approximation,

which seems to be out of reach at the moment.
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1 Introduction

1.1 Motivation and problems considered

Wireless networks are studied extensively due to their wide applications. The power con-

sumption of a station determines its transmission range, and thus also the stations it can send

messages to; the power typically increases at least quadratically in the transmission range.

Assigning power levels to the stations (nodes) determines the resulting communication net-

work. Conversely, given a communication network, the cost required at v only depends on

the furthest node that is reached directly by v. This is in contrast with wired networks,

in which every pair of stations that need to communicate directly incurs a cost. We study

the design of symmetric wireless networks that meet some prescribed degree or connectivity

properties, and such that the total power is minimized. An important network property

is fault-tolerance, which is often measured by minimum degree or node-connectivity of the

network. Node-connectivity is much more central here than edge-connectivity, as it models

stations failures. Such power minimization problems were vastly studied. See for example

[1, 4, 15, 16, 22, 24, 9, 5] for a small sample of papers in this area. The first problem we

consider is finding a low power network with specified lower bounds on node degrees. This is

the power variant of the fundamental b-Matching/Edge-Multi-Cover problem, c.f., [10]. The

second problem is the Min-Power k-Connected Subgraph problem which is the power variant

of the classic Min-Cost k-Connected Subgraph problem. We devise approximation algorithms

for these problems, improving significantly the previously best known ratios.

Definition 1.1 Let G = (V, E) be a graph with edge-costs {c(e) : e ∈ E}. For v ∈ V , the

power p(v) = pG(v) of v in G (w.r.t. c) is the maximum cost of an edge in G leaving v, i.e.,

p(v) = pE(v) = maxvu∈E c(vu). The power of the graph is the sum of the powers of its nodes.

Unless stated otherwise, graphs are assumed to be undirected and simple. Let G = (V, E)

be a graph. For X ⊆ V , ΓE(X) = ΓG(X) = {u ∈ V − X : v ∈ X, vu ∈ E} is the set of

neighbors of X, δE(X) = δG(X) is the set of edges leaving X, and dE(X) = |δG(X)| =

|ΓG(X)| is the degree of X in G. Let G = (V, E ; c) be a network, that is, (V, E) is a

graph and c is a cost function on E . Sometimes, we write G = (V, E) and refer to G as

a graph. Let n = |V | and m = |E|. Given a network G = (V, E ; c), we seek to find a

low power communication network, that is, a low power subgraph G = (V, E) of G that

satisfies some property. Two such fundamental properties are: degree constraints and fault-

tolerance/connectivity. In fact, these problems are related, and we use our algorithm for the

former as a tool for approximating the latter.
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Definition 1.2 Given a requirement function r on V , we say that a graph G = (V, E) (or

that E) is an r-edge cover if dG(v) ≥ r(v) for every v ∈ V , where dG(v) = dE(v) is the

degree of v in G.

Finding a minimum-cost r-edge cover is a fundamental problem in combinatorial opti-

mization, as this is essentially the b-Matching problem, c.f., [10]. The following problem is

the power variant.

Minimum-Power Edge-Multi-Cover (MPEMC):

Instance: A network G = (V, E ; c) and degree requirements {r(v) : v ∈ V }.
Objective: Find a min-power subgraph G of G so that G is an r-edge cover.

We now define our connectivity problem. A graph is k-connected (k-edge-connected) if it

contains k internally-disjoint (k edge-disjoint) uv-paths for all u, v ∈ V .

Minimum-Power k-Connected Subgraph (MPk-CS):

Instance: A network G = (V, E ; c), and an integer k.

Objective: Find a minimum-power k-connected spanning subgraph G of G.

We give improved approximation algorithms for these problems. As a tool for approxi-

mating MPEMC, we consider a special case of the following problem:

Budgeted Multi-coverage with Group Constraints (BMGC)

Instance: A bipartite graph G = (A + B, E), costs {c(a) : a ∈ A}, a budget P , degree

requirements {r(b) : b ∈ B}, and a partition A of A.

Objective: Find S ⊆ A with c(S) ≤ P and val(S) =
∑

b∈B min{|ΓG(b) ∩ S|, r(b)} maximum,

so that |S ∩ Ai| ≤ 1 for every Ai ∈ A.

If A is not a partition, but just a collection of subsets of A (even of size 2), then BMGC

includes the Independent Set problem even if r(b) = 1 for all b ∈ B. Hence assuming that A
partitions A is essential. BMGC generalizes both the Budgeted Maximum Coverage problem

(when A is a partition into singletons) which admits a (1 − 1/e)-approximation [18], and

the Maximum Coverage with Group Constraints problem in which there is no global budget P

and all the requirement are 1. For this special case, [7] gave a 1/2-approximation. We also

mention that BMGC belongs to the class of problems that seek to maximize a non-decreasing

submodular function under certain constraints. There exists a 1/2-approximation algorithm

for matroid constrains [14], and there exist a (1−1/e) approximation algorithm for knapsack

constrains [25]. BMGC has both matroid and knapsack constrains, and we are not aware of

a technique that handles both.
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Studying the approximability of BMGC is beyond the scope of this paper. To get the

O(log n) approximation for MPEMC, we give a (1 − 1/e)-approximation algorithm for the

following special case.

Definition 1.3 A BMGC instance has the Star-Property if every Ai ∈ A admits an ordering

a1, a2, . . . so that ΓG(aj−1) ⊆ ΓG(aj). Let BMGC* be the restriction of BMGC to instances

with the Star-Property.

In ”set-cover” terms, in BMGC A is a collection of sets on a ground-set B, and A is a

partition of the sets. The Star-Property requires that every group is a nested family.

1.2 Related Work

Results on MPEMC: The Minimum-Cost Edge-Multi-Cover problem is essentially the fun-

damental b-Matching problem, which is solvable in polynomial time, c.f., [10]. The previ-

ously best known approximation ratio for the min-power variant MPEMC was min{rmax +

1, O(log4 n)} due to [16]. The directed MPEMC generalizes the classic Minimum-Cost Set-

Multi-Cover problem; the latter is a special case when for every v ∈ V all the edges leaving

v have the same cost.

Results on connectivity problems: The simplest connectivity problem is when we re-

quire the network to be connected. In this case, the minimum-cost variant is just the

Minimum-Cost Spanning Tree problem, while the minimum-power variant is APX-hard. A

5/3-approximation algorithm for the Minimum-Power Spanning Tree problem is given in [1].

Minimum-cost connectivity problems for arbitrary k were extensively studied, see surveys

in [17] and [21]. The best known approximation ratios for the Minimum-Cost k-Connected

Subgraph (MCk-CS) problem are O(ln2 k · min{ n
n−k

,
√

k
ln k
}) for both directed and undirected

graphs [20], and O(ln k) for undirected graphs with n ≥ 2k2 [8]. It turns out that (for

undirected graphs) approximating MPk-CS is closely related to approximating MCk-CS and

MPEMC, as shows the following statement.

Theorem 1.1 ([16])

(i) If there exists an α-approximation algorithm for MCk-CS and a β-approximation algo-

rithm for MPEMC then there exists a (2α + β)-approximation algorithm for MPk-CS.

(ii) If there exists a ρ-approximation algorithm for MPk-CS then there exists a (2ρ + 1)-

approximation for MCk-CS.
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One can combine various values of α, β with Theorem 1.1 to get approximation algorithms

for MPk-CS. In [16] the bound β = min{k + 1, O(log4 n)} was derived. The best known

values for α are: α = d(k + 1)/2e for 2 ≤ k ≤ 7 (see [2] for k = 2, 3, [11] for k = 4, 5,

and [19] for k = 6, 7); α = k for k = O(log n) [19], α = 6H(k) for n ≥ k(2k − 1) [8], and

α = O(ln k · min{
√

k, n
n−k

ln k}) for n < k(2k − 1) [20]. Thus for undirected MPk-CS the

following ratios follow: 3k for any k, k + 2d(k + 1)/2e for 2 ≤ k ≤ 7, and O(log4 n) unless

k = n − o(n). Improvements over the above bounds are known only for k ≤ 2. Calinescu

and Wan [5] gave a 4-approximation algorithm for the case k = 2 of undirected MPk-CS.

They also gave a 2k-approximation algorithm for undirected MPk-ECS for arbitrary k. For

further results on other minimum-power connectivity problems, among them problems on

directed graphs see [4, 16, 24, 22].

1.3 Our Results

The previous best approximation ratio for MPEMC was min{rmax + 1, O(log4 n)} [16]. We

prove:

Theorem 1.2 Undirected MPEMC admits an O(log n)-approximation algorithm.

This result uses the following statement:

Lemma 1.3 BMGC* admits a (1− 1/e)-approximation algorithm.

The previously best known ratio for MPk-CS was O(α + log4 n) [16], where α is the best

ratio for MCk-CS. From Theorems 1.2 and 1.1, and from [8], we get:

Theorem 1.4 MPk-CS admits an O(α+log n)-approximation algorithm, where α is the best

ratio for MCk-CS. In particular, for n ≥ 2k2, MPk-CS admits an O(logn)-approximation

algorithm.

Theorem 1.4 implies that the min-cost and the min-power variants of the k-Connected

Subgraph problem are equivalent with respect to approximation, unless the min-cost variant

admits a better than O(logn)-approximation; the latter seems to be out of reach at the

moment, see [20, 8]; the best known ratio for MCk-CS when k = n − o(n) is Õ(
√

n) [20].

This equivalence can turn useful for establishing a lower bound for MCk-CS. In particular, if

we can show an approximation threshold of Ω(log1+ε n) for MPk-CS, then the same threshold

applies for MCk-CS; on the other hand, if MPk-CS admits a logarithmic ratio, then so does

MCk-CS. Note that for n ≥ 2k2, our ratio for MPk-CS is O(logn), and this matches the best

known ratio for MCk-CS with n ≥ 2k2 of [8].
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Lemma 1.3 is proved in Section 2. Theorem 1.2 is proved in Section 3.

1.4 Techniques

The technique used for approximating MPEMC is new and is not similar to the weaker

approximation given in [16]. For MPk-CS we use the easy reduction from approximating

MPk-CS to approximating MPEMC [16] and rely on our new MPEMC approximation. Thus,

designing new approximation for MPEMC is the crux of the matter. Approximating MPEMC

turned up to be a rather challenging task (some reasons for that are explained in Section

1.5). Intuitively, the difficulty is that adding an edge to the solution may cause the increase

in power for both endpoints of the edge. Thus if we are given a budget and attempt to

satisfy as much demand as possible within the budget, this turns out to be as hard as the

dense k-subgraph problem (see [13]), as explained in Section 1.5. The algorithm of [16] is

unsuited for deriving an O(log n) ratio for MPEMC, as it pays a log2 n factor in the ratio,

from the get-go. Hence, a completely new strategy is required. The ideas of our algorithm

are summarized as follows:

1. Reduction to bipartite graphs: We reduce the problem to a bipartite graph G ′ =

(A + B, E ′), with each of A and B being a copy of V . Thus every node has two

occurrence, one in A and one in B. The side of B has degree requirement while A is

the “covering side” and has no demands. This reduction is simple, but it is crucial for

technical reasons.

2. Ignoring dangerous edges: The algorithm works in iterations. At every iteration

some edges are declared “dangerous”, hence forbidden for use in the current iteration;

this is our main new technique. Classifying edges as dangerous depends not only on

their cost, but also on the residual demand; hence the set of dangerous edges changes

from iteration to iteration. We prove that at any specific iteration, the contribution of

dangerous edges to the cover cannot be too large, as they are too expensive to cover

“too much” of the demand. Intuitively, ignoring dangerous edges is a trick that allows

us to focus on minimizing the power of the nodes in A only; even if every b ∈ B is

touched by its most expensive non-dangerous edge, we are still able to appropriately

bound the increase in the power of the nodes in B. We believe that this technique will

have further applications.

3. Reduction to the BMGC*: At every iteration of the algorithm the goal is to pay

O(opt) in the power increase, and reduce the sum of the (residual) demands by a
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constant fraction. Hence, after O(logn) iterations, all the requirements are satisfied,

and the O(log n) ratio follows. In every iteration, after the dangerous edges are ignored,

we are able to cast the problem we need to solve as an instance of BMGC*.

4. Approximating BMGC*: We design a simple “local-replacement” (1−1/e)-approximation

algorithm for BMGC*. The analysis, which is quite involved, generalizes the analysis

of the algorithm of [18] for the Budgeted Maximum Coverage problem. The difference

is that the [18] algorithm only adds elements, and hence it is not a local replacement

algorithm.

Finally, since the problem in question is of considerable practical importance, we mea-

sure the performance of our algorithms in practice. We perform some experiments by imple-

menting our algorithm for k-connectivity and show improvements for randomly generated

networks compared to some known algorithms.

1.5 Power Optimization vs. Cost Optimization: A Comparison

Theorem 1.4 implies that, unless MCk-CS admits a better than O(log n) approximation

ratio, the minimum-power version MPk-CS and the minimum-cost version MCk-CS of the

k-Connected Subgraph problem are equivalent with respect to approximation: one of the

problems admits a polylogarithmic approximation if, and only if, the other does, and the

same holds for superlogarithmic approximation thresholds. This near approximability equiv-

alence of MPk-CS and MCk-CS is a rare and surprising example in power versus cost prob-

lems. Typically, problems behave completely differently in the minimum-power versus the

minimum-cost models. Power problems are “threshold” type of problems, in the sense that,

if many edges of the same (maximum) cost touch a node v, or just one such edge touches v,

the power of v is the same.

We now compare in detail some additional aspects of power versus cost problems. Note

that p(G) differs from the ordinary cost c(G) =
∑

e∈E c(e) of G even for unit costs; for unit

costs, if G is undirected, then c(G) = |E| and (if G has no isolated nodes) p(G) = |V |. For

example, if E is a perfect matching on V then p(G) = 2c(G). If G is a clique then p(G)

is roughly c(G)/
√

|E|/2. For directed graphs, the ratio of the cost over the power can be

equal to the maximum outdegree, e.g., for stars with unit costs. The following statement

(c.f., [16]) shows that these are the extremal cases for general edge costs.

Proposition 1.5 c(G)/
√

|E|/2 ≤ p(G) ≤ 2c(G) for any undirected graph G = (V, E), and

if G is a forest then c(G) ≤ p(G) ≤ 2c(G). For any directed graph G holds: c(G)/∆(G) ≤
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p(G) ≤ c(G), where ∆(G) is the maximum outdegree of a node in G.

Minimum-power problems are usually harder than their minimum-cost versions. The

Minimum-Power Spanning Tree problem is APX-hard. The problem of finding minimum-cost

k pairwise edge-disjoint paths is in P (this is the Minimum-Cost k-Flow problem, c.f., [10])

while both directed and undirected minimum-power variants are unlikely to have even a

polylogarithmic approximation [16, 22]. Another example is finding an arborescence rooted

at s, that is, a subgraph that contains an sv-path for every node v. The minimum-cost case

is in P (c.f., [10]), while the minimum-power variant is at least as hard as the Set-Cover

problem. For more examples see [1, 4, 22, 24].

For min-cost problems, a standard reduction from the undirected variant to the directed

one is replacing every undirected edge e = uv by two opposite directed edges uv, vu of the

same cost as e, finding a solution D to the directed variant and take the underlying graph

G of D. However, this reduction does not work for min-power problems. The power of G

can be much larger than that of D, e.g., if D is a star. In the power model, directed and

undirected variants behave rather differently, as illustrated by the following example.

Example: Suppose that we are given an instance of MPEMC and a budget P and our goal

is to solve the ”budgeted coverage” version of MPEMC: to cover the maximum possible

demand using power at most P . We will show that this problem is harder than the Densest

k-Subgraph problem, which is defined as follows: given a graph G = (V, E) and an integer k,

find a subgraph of G with k nodes that has the maximum number of edges. The best known

approximation ratio for Densest k-Subgraph is roughly n−1/3 [13], and in spite of numerous

attempts to improve it, this ratio holds for over 11 years. We prove:

Proposition 1.6 If there exists a ρ-approximation algorithm for the budgeted coverage ver-

sion of MPEMC with unit costs, then there exists a ρ-approximation algorithm for Densest

k-Subgraph.

Proof: Given an instance G = (V, E), k of Densest k-Subgraph, define an instance (G, r, P ) of

budgeted coverage version of MPEMC with unit costs as follows: r(v) = k − 1 for all v ∈ V

and P = k. Then the problem is to find a node subset U ⊆ V with |U | = k so that the

number of edges in the subgraph induced by U in G is maximum. The later is the Densest

k-Subgraph problem. 2

The most natural heuristic for approximating MPEMC is as follows. Guess opt (more

precisely, using binary search, guess an almost tight lower bound on opt). Cover maximum

amount of the demand within budget opt, and iterate. Proposition 1.6 shows that this

strategy fails.
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2 Approximating BMGC* (Proof of Lemma 1.3)

We will give a (1− 1/e)-approximation algorithm for a generalization of BMGC*, when the

nodes in B also have weights {w(b) : b ∈ B}, and the goal is to maximize

val(S) =
∑

b∈B

min{|ΓG(b) ∩ S|, r(b)} · w(b) .

We may assume that in each part, the costs defined by the ordering of the Star-Property,

are strictly increasing. Clearly, we may also assume that c(a) ≤ P for each a ∈ A. For

S ⊆ A and b ∈ B, let rS(b) = max{r(b) − |ΓG(b) ∩ S|, 0} be the residual requirement of b

w.r.t. S (so r(b) = r∅(b)). S ⊆ A is a feasible solution if c(S) ≤ P and S obeys the group

constraints |S ∩ Ai| ≤ 1 for every Ai ∈ A.

Our algorithm and its analysis resemble the proof of Khuller, Moss, and Naor [18] for the

Budgeted Maximum Coverage problem; the main difference is that our algorithm is a local

replacement algorithm, while the [18] algorithm only adds elements.

Let S satisfy the group constraints, and set si = Ai ∩ S (possibly si = ∅). Let BS =

{b ∈ B : rS(b) > 0} be the set of deficient nodes w.r.t. S. For a ∈ Ai with c(a) > c(si), the

density of a w.r.t. S is:

σc,w(S, a) =
val(S − si + a)− val(S)

c(a)− c(si)

=
w((Γ(a)− Γ(si)) ∩ BS|)

c(a)− c(si)

The algorithm “guesses” a set S0 with 3 elements. The goal is to find 3 elements belonging to

some optimal solution, that cover the largest demand among all 3 elements in this solution.

Hence we go over all possible sets S0 of size 3, run our algorithm for all choices of S0 and

return the best solution over all S0. Our algorithm augments a given S0 to a feasible solution.

Procedure GREEDY(S0)

Initialization: S ← S0, r ← rS0
, and remove from A the parts corresponding to S0.

While A 6= ∅ do:

1. Find a ∈ A of maximum density, and let Ai be the part with a ∈ Ai.

2. If c(S − si + a) ≤ P then S ← S − si + a, where si = Ai ∩ S (possibly si = ∅).

3. A← A− a.
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End While

The algorithm for directed BMGC is as follows. Let k > e be some fixed integer.

Algorithm for BMGC*

1. For every feasible S0 ⊆ A with |S0| ≤ 3 do GREEDY(S0).

2. Among the sets S returned, output one with maximum val(S).

We now prove that the approximation ratio is (1− 1/e).

Remark: It may seem that starting with some “best” triplet of elements going over all

possible triplets can not have crucial effect on the ratio of the algorithm. Indeed, if the final

solution is very large, three elements make little difference. However, they can make a big

difference in case the final solution is very small. The goal of these three elements is to

overcome a “knapsack type” difficulty the algorithm encounters. The fact that the elements

have costs and the budget bound P creates a problem with the last element GREEDY tries

to add. Thus, if we are able to add this element (say in the best case that adding this element

leads to a cost of exactly P ) there would be no need for “guessing” the “correct” first three

elements. Indeed if for the next element a budget overflow occurs, but this element is added

nevertheless, it is easy to see that the 1−1/e ratio holds. However, this can bring the cost to

around 2P . Thus, since the last element may create a budget overflow, sometimes it can not

be taken. The selection of the “correct” three first elements compensate for the last element

not being added. We remark that with the choice of k = 1 (guessing only one element)

the ratio is unbounded and with k = 2 the ratio is 1
(1−1/e)+1/2

. So k = 3 is the minimum

possible to get the optimal 1− 1/e ratio (this ratio is optimal as our problem generalizes the

Maximum-Coverage problem that admits no better than 1− 1/e ratio, unless P=NP [12]).

Let OPT be an optimal solution. Clearly, if |OPT| ≤ 3 the algorithm returns an optimal

solution. Henceforth assume |OPT| > 3. Let s1, s2, . . . be an ordering of nodes of OPT by

non-decreasing coverage value.

Consider the computation at Step 1 of the algorithm when S0 = {s1, s2, . . . , sk} was

considered. Let OPT′ = OPT−S0 and P ′ = P − c(S0). Let ` be the number of nodes added

by GREEDY to S0 until first node from OPT′ is considered but not added to S because

its addition would violate the budget P ; let a ∈ Ai be this node. Let Sj be the set of

the first j nodes added to S0 by GREEDY, where we set S`+1 = S` − si + a. Note that
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c(S`+1) = c(S`− si + a) > P ′, since a was not added. Let ∆ival(S) = val(Si)− val(Si−1) and

∆ic(S) = c(Si)− c(Si−1), i = 1, . . . , `+1. The following two statements can be derived from

[18].

Lemma 2.1 For each j = 1, . . . , ` + 1,

∆jval(S)

∆jc(S)
≥ val(OPT′)− val(Sj−1)

P ′ .

Lemma 2.2 For every j = 1, . . . , ` + 1

val(Sj) ≥


1−
j
∏

i=1

(

1− ∆ic(S)

P ′

)



 · val(OPT′).

Remark: Note that the Star-Property is essential in our proof. If the Star-Property does

not hold then there are elements in the partial solution that can be replaced improving the

density by decreasing the number of covered elements. This makes this proof incorrect.

Applying Lemma 2.2 with j = ` + 1, we get (see [18] for details):

val(S`+1) ≥
(

1− 1

e

)

· val(OPT′).

Let S be the set returned by GREEDY(S0), and let S ′ = S − S0. Then

val(S ′) + ∆`+1val(S) ≥ val(S`+1) ≥
(

1− 1

e

)

· val(OPT′).

In addition, ∆`+1val(S) ≤ 1
k
val(S0) by the way the nodes in OPT were ordered. Thus:

val(S) = val(S0) + val(S ′)

≥ val(S0) +
(

1− 1

e

)

· val(OPT′)−∆`+1val(S)

≥ val(S0) +
(

1− 1

e

)

· val(OPT′)− 1

k
val(S0)

≥
(

1− 1

k

)

· val(S0) +
(

1− 1

e

)

· val(OPT′)

≥
(

1− 1

e

)

· (val(S0) + val(OPT′))

=
(

1− 1

e

)

· (val(S0) + val(OPT− S0))

=
(

1− 1

e

)

· val(OPT)

The last inequality follows from the fact that k > e.

The proof of Lemma 1.3 is complete.
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3 Approximating MPEMC (Proof of Theorem 1.2)

3.1 Reduction to bipartite graphs

We will show an O(log n)-approximation algorithm for (undirected) bipartite MPEMC where

G = (A + B, E) is a bipartite graph and r(a) = 0 for every a ∈ A. The following state-

ment shows that getting an O(log n)-approximation algorithm for the bipartite MPEMC is

sufficient.

Lemma 3.1 If there exists a ρ-approximation algorithm for bipartite MPEMC then there

exists a 2ρ-approximation algorithm for general MPEMC.

Proof: Given an instance (G = (V, E), c, r) of MPEMC, construct an instance (G ′ = (V ′ =

A+B, E ′), c′, r′) of bipartite MPEMC as follows. Let A = {av : v ∈ V } and B = {bv : v ∈ V }
(so each of A, B is a copy of V ) and for every uv ∈ E add two edges: auav and avau each with

cost c(uv). Also, set r′(bv) = r(v) for every bv ∈ B and r′(av) = 0 for every av ∈ A. Given

F ′ ⊆ E ′ let F = {uv ∈ E : aubv ∈ F ′ or avbu ∈ F ′} be the edge set in E that corresponds to

F ′. Now compute an r′-edge cover E ′ in G ′ using the ρ-approximation algorithm and output

the edge set E ⊆ E that corresponds to E ′, namely E = {uv ∈ E : aubv ∈ E ′ or avbu ∈ E ′}.
It is easy to see that if F ′ is an r′-edge cover then F is an r-edge cover. Furthermore, if

for every edge in F correspond two edges in F ′ (|F ′| = 2|F |), then F is an r-edge cover if,

and only if, F ′ is an r′-edge cover. The later implies that opt′ ≤ 2opt, where opt and opt′ is

the optimal solution value to G, c, r and G ′, c′, r′, respectively. Consequently, E is an r-edge

cover, and pE(V ) ≤ pE′(V ′) ≤ ρopt′ ≤ 2ρopt. 2

3.2 Am O(log n)-approximation for bipartite MPEMC

We prove that bipartite MPEMC admits an O(log n)-approximation algorithm. The residual

requirement of v ∈ V w.r.t. an edge set I is defined by rI(v) = max{r(v)− dI(v), 0}. One

of the main challenges is achieving the following reduction, which will be proved in the next

section using our algorithm for BMGC.

Lemma 3.2 For bipartite MPEMC there exists a polynomial time algorithm that given an

integer τ and γ > 1 either establishes that τ < opt or returns an edge set I ⊆ E such that

for β = (1− 1/e)(1− 1/γ) the following holds:

pI(V ) ≤ (γ + 1)τ (1)

rI(B) ≤ (1− β)r(B) (2)
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Note that if τ < opt the algorithm may return a edge set I that satisfies (1) and (2); if

the algorithm declares ”τ < opt” then this is correct. An O(logn)-approximation algorithm

for the bipartite MPEMC easily follows from Lemma 3.2:

While r(B) > 0 do

- Find the least integer τ so that the algorithm in Lemma 3.2

returns an edge set I so that (1) and (2) holds.

- E ← E + I, E ← E − I, r ← rI .

End While

We note that the least integer τ as in the main loop can be found in polynomial time

using binary search. For any constant γ > 1, say γ = 2, the number of iterations is

O(log r(B)), and at every iteration an edge set of power at most (1 + γ)opt is added. Thus

the algorithm can be implemented to run in polynomial time, and has approximation ratio

O(log r(B)) = O(log(n2)) = O(logn).

3.3 Proof of Lemma 3.2

Let τ be an integer and let R = r(B) =
∑

b∈B r(b). An edge ab ∈ E , b ∈ B, is dangerous if

c(ab) ≥ γτ · r(b)/R. Let I be the set of non-dangerous edges in E .

Lemma 3.3 Assume that τ ≥ opt. Let F be a set of dangerous edges with pF (B) ≤ τ . Then

rF (B) ≥ R(1− 1/γ). Thus rI(B) ≤ R/γ.

Proof: Let D = {b ∈ B : dF (b) > 0}. We show that r(D) ≤ R/γ, implying rF (V ) ≥
R − r(D) ≥ R(1 − 1/γ). Since all the edges in F are dangerous, pF (b) ≥ γτ · r(b)/R for

every b ∈ D. Thus

τ ≥ opt ≥
∑

b∈D

pF (b) ≥
∑

b∈D

(γτ · r(b)/R) =
γτ

R

∑

b∈D

r(b) =
γτ

R
r(D) .

For the second statement, note that there exists E ⊆ E with pE(V ) ≤ τ so that rE(B) = 0.

Thus rI(B) ≤ R/γ holds for the set I of non-dangerous edges in E. As I ⊆ I, the statement

follows. 2

Lemma 3.4 pI(B) ≤ γτ .

Proof: Note that pI(b) ≤ γτ · r(b)/R for every b ∈ B. Thus:

pI(B) =
∑

b∈B

pI(b) ≤
∑

b∈B

(γτ · r(b)/R) =
γτ

R

∑

b∈B

r(b) = γτ .

13



2

Lemmas 3.3 and 3.4 imply that we may ignore the dangerous edges and still be able

to cover a constant fraction of the total demand. Once dangerous edges are ignored, the

algorithm does not need to take the power incurred in B into account, as the total power

of B w.r.t. all the non-dangerous edges is γτ = O(opt). Therefore, the problem we want to

solve is similar to the bipartite MPEMC, except that we want to minimize the power of A

only. Formally:

Instance: A bipartite graph G = (A + B, I) with edge-costs {c(e) : e ∈ I}, requirements

{r(b) : b ∈ B}, and a budget τ = P .

Objective: Find I ⊆ I with pI(A) ≤ P and maximum
∑

b∈B min{dI(b), r(b)}.

Lemma 3.5 The above problem admits a (1− 1/e)-approximation algorithm.

Proof: We show that the problem above can be reduced, while preserving approximation

ratio, to BMGC*. Given an instance of the above problem, construct an instance of BMGC*

as follows. For every a ∈ A do the following. Let e1, ..., ek be the edges incident to a sorted

by increasing costs. For every ei add a node ai of cost c(ai) = c(ei) and for every edge ab

of cost ≤ c(ei) add an edge aib. The group corresponding to a ∈ A is Aa = {a1, . . . , ak}, so

A = {Aa : a ∈ A}. Clearly, the groups are disjoint, hence we obtain a BMGC instance. The

Star-Property holds by the construction. Every node in Aa corresponds an edge incident

to a and has the cost of this edge; thus choosing one node from Aa also determines the

power level of a. Thus, keeping costs, to every solutions to the obtained BMGC instance,

corresponds a unique solution to the problem defined above, and vice versa. The statement

now follows from Lemma 1.3. 2

The algorithm for Lemma 3.2 is as follows:

1. With budget τ , compute I ⊆ I using the (1 − 1/e)-approximation algorithm from

Lemma 3.5.

2. If rI(B) ≤ (1− β)R (recall that β = 1/2(1− 1/γ)) then output I;

Else declare ”τ < opt”.

We show that if τ ≥ opt then the algorithm outputs an edge set I that satisfies (1) and (2).

By Lemma 3.3, if the algorithm returns an edge set I then (1) holds for I, and if the algorithm

declares ”τ < opt” then this is correct. All the edges in I are not dangerous, thus pI(B) ≤ γτ

by Lemma 3.4. As we used budget τ , pI(A) ≤ τ . Thus pI(V ) = pI(A) + pI(B) ≤ (1 + γ)τ .

14



4 Performance evaluation

In the previous sections, we proved a worst-case bound for the performance of our algorithms

compared to the optimal solution. In this section, we report our observations on the im-

plementation of the algorithm for MPk-CS. In order to understand the effectiveness of our

algorithm, we compare its output to previous heuristic, namely the Cone-Based Topology

Control Heuristic CBTC of Wattenhofer et. al [26] and Li et. al [23] and Bahramgiri et.

al [3]. In this heuristic, each node increases transmission power until the angle between any

pair of adjacent neighbors is at most 2π
3k

. Bahramgiri, Hajiaghayi, and Mirrokni [3] proved

that if the original graph is k-connected, the resulting graph after this heuristic is also k-

connected. This algorithm has an advantage of being localized; however we show that the

power consumption of the resulting solution can be much worse than our algorithm based

on approximating MPEMC.

We generate random networks, each with at most 50 nodes. The maximum possible

power at each node is fixed at Emax = (250)2. We assume that the power is with exponent

c = 2. This implies a maximum communication radius R of 250 meters. We evaluate the

performance of our algorithms on networks of varying density. For the performance measure,

we compute the average expended energy ratio (EER) of both algorithms for these random

networks:

EER =
Average Power

Emax
× 100.

We assume that the MAC layer is ideal. Our sample networks are similar to the sample

networks used by Wattenhofer et. al [26] and Cartigny et. al [6]. Our experimental results

are summarized in Table 1.

As expected, our algorithm outperforms CBTC for all networks in our experiment. Note

that the worst-case approximation factor of the algorithm based on approximating MPEMC

does not depend on k. As a result, we expect that the performance of this algorithm is better

compared to CBTC as k increases. One can verify this fact by observing that the performance

of CBTC heuristic decreases by a larger factor from 2-connectivity to 4-connectivity. For

example, EER for CBTC increases from 54.76 to 90.37 for one instance and from 76.15 to

98.02 for another instance. However, for the same instances, the EER for the algorithm

based on approximating MPEMC increases from 30.83 to 44.03 and from 44.32 to 64.07,

respectively. This indicates the faster diminishing performance of CBTC compared to our

algorithm as k increases.
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CBTC Heuristic Algorithm based on MPEMC

Connectivity # 2 3 4 2 3 4

Density Degree ERR

17 33.12 76.15 92.66 98.02 44.32 58.01 64.07

20 42.76 61.19 83.60 94.73 28.16 58.85 64.62

25 49.18 61.62 83.70 93.19 29.21 35.95 40.18

30 54.56 58.82 75.12 92.43 16.32 25.52 41.90

35 59.32 54.76 75.04 90.37 30.83 39.51 44.03

Table 1: Expended Energy Ratio for 2,3, and 4-connectivity and c = 2.
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