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Abstract. We study several multi-criteria undirected network design
problems with node costs and lengths with all problems related to the
node costs Multicommodity Buy at Bulk (MBB) problem in which we
are given a graph G = (V, E), demands {dst : s, t ∈ V }, and a fam-
ily {cv : v ∈ V } of subadditive cost functions. For every s, t ∈ V
we seek to send dst flow units from s to t on a single path, so that
∑

v
cv(fv) is minimized, where fv the total amount of flow through v.

In the Multicommodity Cost-Distance (MCD) problem we are also given
lengths {ℓ(v) : v ∈ V }, and seek a subgraph H of G that minimizes
c(H) +

∑

s,t∈V
dst · ℓH(s, t), where ℓH(s, t) is the minimum ℓ-length of

an st-path in H . The approximation for these two problems is equivalent
up to a factor arbitrarily close to 2. We give an O(log3 n)-approximation
algorithm for both problems for the case of demands polynomial in n.
The previously best known approximation ratio for these problems was
O(log4 n) [Chekuri et al., FOCS 2006] and [Chekuri et al., SODA 2007].
This technique seems quite robust and was already used in order to im-
prove the ratio of Buy-at-bulk with protection (Antonakopoulos et al
FOCS 2007) from log3 h to log2 h. See [3]

We also consider the Maximum Covering Tree (MaxCT) problem which is
closely related to MBB: given a graph G = (V, E), costs {c(v) : v ∈ V },
profits {p(v) : v ∈ V }, and a bound C, find a subtree T of G with
c(T ) ≤ C and p(T ) maximum. The best known approximation algo-
rithm for MaxCT [Moss and Rabani, STOC 2001] computes a tree T
with c(T ) ≤ 2C and p(T ) = Ω(opt/ log n). We provide the first non-
trivial lower bound and in fact provide a bicriteria lower bound on ap-
proximating this problem (which is stronger than the usual lower bound)
by showing that the problem admits no better than Ω(1/(log log n)) ap-
proximation assuming NP 6⊆ Quasi(P) even if the algorithm is allowed

to violate the budget by any universal constant ρ. This disproves a con-
jecture of [Moss and Rabani, STOC 2001].

Another related to MBB problem is the Shallow Light Steiner Tree (SLST)
problem, in which we are given a graph G = (V, E), costs {c(v) : v ∈ V },
lengths {ℓ(v) : v ∈ V }, a set U ⊆ V of terminals, and a bound L. The
goal is to find a subtree T of G containing U with diamℓ(T ) ≤ L and
c(T ) minimum. We give an algorithm that computes a tree T with c(T ) =
O(log2 n) ·opt and diamℓ(T ) = O(log n) ·L. Previously, a polylogarithmic
bicriteria approximation was known only for the case of edge costs and
edge lengths.
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1 Introduction

Network design problems require finding a minimum cost (sub-)network that
satisfies prescribed properties, often connectivity requirements. The most fun-
damental problems are the ones with 0, 1 connectivity requirements. Classic exa-
mples are: Shortest Path, Min-Cost Spanning Tree, Min-Cost Steiner Tree/Forest,
Traveling Salesperson, and others. Examples of problems with high connectivity
requirements are: Min-Cost k-Flow, Min-Cost k-Edge/Node-Connected Spanning
Subgraph, Steiner Network, and others. All these problems also have practical
importance in applications.

Two main types of costs are considered in the literature: the edge costs and
the node costs. We consider the latter, which is usually more general than the
edge costs variants; indeed, for most undirected network design problems there
is a very simple reduction that transforms edge costs to node costs, but the
inverse is, in general, not true. The study of network design problems with node
costs is already well motivated and established from both theoretical as well
as practical considerations [12, 9, 14, 5, 6]. For example, in telecommunication
networks, expensive equipment such as routers and switches are located at the
nodes of the underlying network, and thus it is natural to model some of these
problems by assigning costs on the nodes rather than to the edges.

For some previous work on undirected network-design problems with node
costs see the work of Klein and Ravi [12], Guha et al. [9], Moss and Rabani
[14], and Chekuri et al. [5, 6]. We mostly focus on resolving some open problems
posed in these papers.

1.1 Problems considered

Given a length function ℓ on edges/nodes of a graph H , let ℓH(s, t) denote the
ℓ-distance between s, t in H , that is, the minimum ℓ-length of an st-path in H
(including the lengths of the endpoints). Let diamℓ(H) = maxs,t∈V (H) ℓH(s, t)
be the ℓ-diameter of H , that is the maximum ℓ-distance between two nodes in
H . We consider the following two related problems on undirected graphs.

Multicommodity Buy at Bulk (MBB)
Instance: A graph G = (V, E), a family {cv : v ∈ V } of sub-additive monotone

non-decreasing cost functions, a set D of pairs from V , and positive
demands {dst : {s, t} ∈ D}.

Objective: Find a set {Pst : {s, t} ∈ D} of st-paths so that
∑

v∈V cv(fv) is
minimized, where fv =

∑{dst : {s, t} ∈ D, v ∈ Pst}.
Multicommodity Cost-Distance (MCD)
Instance: A graph G = (V, E), costs {c(v) : v ∈ V }, lengths {ℓ(v) : v ∈ V }, a set



D of pairs from V , and positive integral demands {dst : {s, t} ∈ D}.
Objective: Find a subgraph H of G that minimizes

w(H, D) = c(H) +
∑

{s,t}∈D

dst · ℓH(s, t) (1)

As linear functions are subadditive, MCD is a special case of MBB. The
following statement shows that up to a factor arbitrarily close to 2, MCD and
MBB are equivalent w.r.t. approximation.

Proposition 1 ([2]). If there exists a ρ-approximation algorithm for MCD then
there exists a (2ρ + ε)-approximation algorithm for MBB for any ε > 0.

We consider two other fundamental problems closely related to MBB (see an
explanation below):

Maximum Covering Tree (MaxCT)
Instance: A graph G = (V, E), costs {c(v) : v ∈ E}, profits {p(v) : v ∈ V }, and

a bounds C.
Objective: Find a subtree T of G with c(T ) ≤ C and p(T ) maximum.

Shallow-Light Steiner Tree (SLST)
Instance: A graph G = (V, E), costs {c(v) : v ∈ V }, lengths {ℓ(v) : v ∈ V }, a set

U ⊆ V of terminals, and a bound L.
Objective: Find a subtree T of G containing U with diamℓ(T ) ≤ L and c(T )

minimum.

Each one of the problems MBB and SLST has an ”edge version”, where the
costs/lengths are given on the edges. As was mentioned, the edge version admits
an easy approximation ratio preserving reduction to the node version.

1.2 The unifying theme of the problems considered

A bicriteria approximation algorithm for the following problem was used to
derive an O(log4 n)-approximation algorithm for MBB [10].

k-Buy at Bulk Steiner Tree (k-BBST)
Instance: A graph G = (V, E), costs {c(v) : v ∈ V }, lengths {ℓ(v) : v ∈ V }, a

set U ⊆ V of terminals, a root r ∈ V − U , diameter bound L, cost
bound C, and an integer k.

Question: Does G has a subtree T containing r and at least k terminals so that
diamℓ(T ) ≤ L and c(T ) ≤ C?

Theorem 1 ([10]). Suppose that there exists a polynomial time algorithm that
given a YES-instance of k-BBST finds a tree T containing r with Ω(k) terminals
so that c(T ) = ρ1 ·C and diamℓ(T ) = ρ2 ·L. Then MBB admits an approximation
algorithm with ratio O(log n) · ρ1 + O(log3 n) · ρ2.



Theorem 2 ([10]). There exist a polynomial time algorithm that given a YES-
instance of k-BBST finds a a tree T containing at lest k/8 terminals so that
c(T ) = O(log3 n) · C and diamℓ(T ) = O(log n) · L.

Thus improved algorithm for k-BBST would imply a better approximation al-
gorithm for MBB. It seems hard to improve the bicriteria O(log3 n, logn) ap-
proximation for k-BBST given in [10]. Hence we consider relaxations of k-BBST,
hoping that they may shed light on MBB. Also, MaxCT and SLST are interesting
in their own right. The MaxCT problem is similar to k-BBST. For unit terminal
costs, setting cost bound k is the same as seeking a tree with k terminals, and
maximizing the profit. What makes MaxCT much easier than k-BBST is that
MaxCT has no length constrains. In particular, the primal-dual approach of [14]
does not seem suitable to handle lengths constrains as well hence does not seem
suited to handle k-BBST. The SLST is easier than k-BBST from another point of
view. In SLST, given a cost and diameter bounds, a tree that is both shallow and
light is required. But this is the case k = |U | namely the problem of covering all
terminals (and not only k as in k-BBST). The difference seems quite significant,
and thus k-BBST seems significantly harder to handle than SLST. In summary,
one may hope that techniques for MaxCT that are able to find a tree with k
terminals and low cost (but cant handle lengths), could somehow be combined
with techniques that do produce a tree that is both shallow and light, but work
only for k = |U |, getting a better approximation for k-BBST.

1.3 Related work

We survey some results on relevant network design problems with node costs.
Klein and Ravi [13] showed that the Node-Weighted Steiner Tree problem is Set-
Cover hard, thus it admits no o(log n) approximation unless P=NP [15]. They
also obtained a matching approximation ratio using a greedy merging algorithm.
Guha et al. [9] showed O(log n) integrality gap of a natural LP-relaxation for
the problem. The MBB problem is motivated by economies of scale that arise in
a number of applications, especially in telecommunication. The problem is stu-
died as the fixed charge network flow problem in operations research. The first
approximation algorithm for the problem is by Salman et al. [16]. For the multi-
commodity version MBB the first non-trivial result is due to Charikar and Kara-
giazova [4] who obtained an O(log |D| exp(O(

√
log n log log n)))-approximation,

where |D| is the sum of the demands. In [5] an O(log4 n)-approximation algo-
rithm is given for the edge costs case, and further generalized to the node costs
case in [6]. See [1] for an Ω(log1/2−ε n)-hardness result.

The MaxCT problem was introduced in [9] motivated by efficient recovery
from power outage. In [9] a pseudo approximation algorithm is presented that
returns a subtree T with c(T ) ≤ 2C and p(T ) = Ω(P/ log2 n), where P is the
maximum profit under budget cost C. This was improved in [14] to produce
a tree T with c(T ) ≤ 2C and p(T ) = Ω(P/ log n). For a related minimization
problem when one seeks to find a minimum cost tree T with p(T ) ≥ P [14] gives
an O(ln n)-approximation algorithm.



1.4 Our results

The previously best known ratio for MCD/MBB was O(log4 n) both for edge costs
[5] and node costs [6], and this was also so for polynomial demands. We improve
this by using, among other things, a better LP-relaxation for the problem.

Theorem 3. MCD/MBB with polynomial demands admits an O(log3 n)-appro-
ximation algorithm.

The technique used is quite robust. It was already used in [3] to improve the
approximation ratio for Buy-at-bulk with protection (see [3]) from O(log3 h) to
O(log2 h).

Our next result is for the MaxCT problem. In [14] it is conjectured that
MaxCT admits an O(1) approximation algorithm (which would have been quite
helpful for dealing with k-BBST). We disprove this conjecture. Since the upper
bound is a bicriteria upper bound, we give a bicriteria lower bound (which is
stronger than the usual lower bound).

Theorem 4. MaxCT admits no constant approximation algorithm unless NP ⊆
DTIME(nO(log n)) even if the algorithm is allowed to use a budget of ρ · B for
any universal constant ρ. MaxCT admits no o(log log n) approximation algorithm

unless NP ⊆ DTIME(npolylog(n)) even if the algorithm is allowed to use ρ · B
budget for any universal constant ρ.

Our last result is for the SLST problem. For SLST with edge costs and edge
lengths, the algorithm of [13] computes a tree T with c(T ) = O(log n) · opt and
diamℓ(T ) = O(log n) · L. We consider the more general case of node costs and
node lengths.

Theorem 5. SLST with node costs and lengths admits an approximation al-
gorithm that computes a tree T with c(T ) = O(log2 n) · opt and diamℓ(T ) =
O(log n) · L.

Theorems 3 and 4 are proved in Sections 2 and 3. Theorem 5 is proved in
the Appendix, due to space limitation.

2 Improved algorithm for MBB

In this section we prove Theorem 3. We give an O(log2 n · log N)-approximation
algorithm for MCD with running time polynomial in N , where N is the sum of
the demands plus n. If N is polynomial in n, the running time is polynomial
in n, and the approximation ratio is O(log3 n). We may assume (by duplicating
nodes) that all demands are 1. Then our problem is:

Instance: A graph G = (V, E), costs {c(v) : v ∈ V }, lengths {ℓ(v) : v ∈ V }, and
a set D of node pairs.

Objective: Find a subgraph H of G minimizing w(H, D) = c(H)+
∑

{s,t}∈D

ℓH(s, t).

For the latter problem, we give an O(log2 n·log |D|)-approximation algorithm.



2.1 Approximate greedy algorithm and junction trees

We use a result about the performance of a Greedy Algorithm for the following
type of problems:

Covering Problem
Instance: A groundset Π and functions ν, w on 2Π with ν(Π) = 0.
Objective: Find P ⊆ Π with ν(P) = ν(Π) and with w(P) minimized.

Let ρ > 1 and let opt be the optimal solution value for the Covering Problem.
The ρ-Greedy Algorithm starts with P = ∅ and iteratively adds subsets of Π−P
to P one after the other using the following rule. As long as ν(P) > ν(Π) it
adds to P a set R ⊆ Π − P so that

σP(R) =
w(R)

ν(P) − ν(P + R)
≤ ρ · opt

ν(P) − ν(Π)
. (2)

The following known statement follows by a standard set-cover analysis, c.f.,
[12].

Theorem 6. If ν is decreasing and w is increasing and subadditive, then the ρ-
Greedy Algorithm computes a solution P with w(P) ≤ ρ·[ln(ν(∅)−ν(Π))+1]·opt.

In our setting, Π is the family of all st-paths, {s, t} ∈ D. For a set R ⊆ Π of
paths connecting a set R of pairs in D, let ν(R) = |D| − |R| be the number of
pairs in D not connected by paths in R, and let w(R) = c(R)+

∑

{s,t}∈R ℓ(Pst),

where c(R) denotes the cost of the union of the paths in R, and Pst is the shortest
st-path in R. Note that ν(Π) = 0 and ν(∅) = |D|. We will show how to find such
R satisfying (2) with ρ = O(log2 n). W.l.o.g., we may consider the case P = ∅.
(Otherwise, we consider the residual instance obtained by excluding from D all
pairs connected by P and setting P = ∅; it is easy to see that if R satisfies (2)
for the residual instance, then this is also so for the original instance.) Assuming
P = ∅, (2) can be rewritten as:

σ(R) =
c(R)

|R| +

∑

{s,t}∈R ℓ(Pst)

|R| ≤ ρ · opt

|D| . (3)

The quantity σ(R) in (3) is the density of R; it is a sum of ”cost-part” c(R)/|R|
and the remaining ”length-part”. The following key statement from [5] shows
that with O(log n) loss in the length part of the density, we may restrict ourselves
to very specific R, as given in the following definition; in [5] it is stated for edge-
costs, but the generalization to node-costs is immediate.

Definition 1. A tree T with a designated node r is a junction tree for a subset
R ⊆ D of node pairs in T if the unique paths in T between the pairs in R all
contain r.

Lemma 1 ([5], The Junction Tree Lemma). Let H∗ be an optimal solu-
tion to an MCD instance with {0, 1} demands. Let C = c(H∗) and let L =
∑

{s,t}∈D ℓH∗(s, t). Then there exists a junction tree T for a subset R ⊆ Q of

pairs, so that diamℓ(T ) = O(log n) · L/|D| and c(T )/|R| = O(C/|D|).



If we could find a pair T, R as in Lemma 1 in polynomial time, then we would
obtain an O(log |D| · log n)-approximation algorithm, by Theorem 6. In [5] it is
shown how to find such a pair that satisfies (3) with ρ = O(log3 n). We will show
how to find such a pair with ρ = O(log2 n).

Theorem 7. There exists a polynomial time algorithm that given an instance of
MCD with {0, 1} demands computes a set R of paths connecting a subset R ⊆ D
of pairs satisfying (3) with ρ = O(log2 n).

Motivated by Lemma 1, the following LP was used in [5, 6]. Guess the com-
mon node r of the paths in R of the junction tree T . Let U be the union of pairs
in D. Relax the integrality constraints by allowing ”fractional” nodes and paths.
For v ∈ V , xv is the ”fraction of v” taken into the solution. For u ∈ U , yu is
the total amount of flow v delivers to r. In the LP, we require ys = yt for every
{s, t} ∈ D, so ys = yt amount of flow is delivered from s to t via r. For u ∈ U
let Πu be the set of all ur-paths in Π , and thus Π = ∪u∈UΠu. For P ∈ Π , fP is
the amount of flow through P . Dividing all variables by |R| (note that this does
not affect the objective value), gives the following LP:

(LP1) min
∑

v∈V c(v) · xv +
∑

P∈Π ℓ(P ) · fP

s.t.
∑

u∈U yu = 1
∑

{P∈Πu|v∈P} fP ≤ xv v ∈ V, u ∈ U
∑

P∈Πu
fP ≥ yu u ∈ U

ys − yt = 0 {s, t} ∈ D
xv, fP , yu ≥ 0 v ∈ V, P ∈ Π, u ∈ U

2.2 The LP used

Let A · log n ·L/|D| be the bound on the lengths of the paths in R guaranteed by
Lemma 1. We use almost the same LP as (LP1), except that we seek to minimize
the cost only, and restrict ourselves to paths of length at most A · log n · L/|D|,
which reflects better the statement in Lemma 1. For Π ′ ⊆ Π let Π̃ ′ = {P ∈ Π ′ :
ℓ(P ) ≤ A · log n · L/|D|}. Again recall that yu is the flow delivered from u to r.
The LP we use is:

(LP2) min
∑

v∈V c(v) · xv

s.t.
∑

u∈U yu = 1
∑

{P∈Π̃u|v∈P} fP ≤ xv v ∈ V, u ∈ U
∑

P∈Π̃u
fP ≥ yu u ∈ U

ys − yt = 0 {s, t} ∈ D

xv, fP , yu ≥ 0 v ∈ V, P ∈ Π̃, u ∈ U

Although the number of variables in (LP2) might be exponential, any basic
feasible solution to (LP2) has O(N2) non-zero variables.

Lemma 2. (LP2) can be solved in polynomial time.



Proof. See the Appendix.

By Lemma 1 there exists a solution to (LP2) of value O(C/|D|). Indeed, let
T, R,R be as in Lemma 1; in particular, c(T )/|R| = O(C/|D|). For u ∈ T let
Pu be the unique ur-path in T . Define a feasible solution for (LP2) as follows:
xv = 1/|R| for every v ∈ T , yu = fPu

= 1/|R| for every u that belongs to some
pair in R, and xu, yu, fP are zero otherwise. It easy to see that this solution is
feasible for (LP2), and its value (cost) is c(T )/|R| = O(C/|D|).

2.3 Proof of Theorem 3

We now proceed similarly to [5, 6]. We may assume that max{1/yu : u ∈ U} is
polynomial in n, see [6]. Partition U into O(log n) sets Uj = {u ∈ U : 1/2j+1 ≤
yu ≤ 1/2j}. There is some Uj that delivers Ω(1/ lnn) flow units to r. Focus
on that Uj. Clearly, |Uj | = Θ(2j)/ log n. Setting x′

v = min{Θ(2j) · xv, 1} for all
v ∈ V and f ′

P = min{Θ(2j) · fP , 1} for all P ∈ Π , gives a feasible solution for
the following LP that requires from every node in Uj to deliver a flow unit to r.

(LP3) min
∑

v∈V c(v) · x′
v +

∑

P∈Π ℓ(P ) · f ′
P

s.t.
∑

{P∈Πu|v∈P} f ′
P ≤ x′

v v ∈ V, u ∈ Uj
∑

P∈Πu
f ′

P ≥ 1 u ∈ Uj

x′
v, f ′

P ≥ 0 v ∈ V, P ∈ Π

We bound the value of the above solution x′, f ′ for (LP3). Since we have
∑

v∈V c(v)xv = O(C/|D|),
∑

v∈V

c(v)x′
v = O(2j) · C/|D| .

We later see that, since |Uj | = Θ(2j/ logn), an extra log n factor is invoked
in the cost-density part of our solution; if, e.g., |Uj | = 2j would hold, this log n
factor would have been saved. Our main point is that the length-part of the
density does not depend on the size of Uj. We show this as follows. All paths
used in (LP2) are of length O(log n ·L/|D|). First, assure that

∑

P∈Π̃u
f ′

P is not
too large. For any u ∈ Uj the fractional values of {f ′

P : P ∈ Πu} only affect u,

namely, if u 6= u′ then Π̃u ∩ Π̃u′ = ∅. Therefore, if
∑

P∈Π̃u
fP >> 1, we may

assure that the sum is at most 3/2 as follows. If a single path carries at least
1/2 a unit of flow then (scaling values by only 2) this path can be used as the
solution for u. Else, any minimal collection of paths delivering at least one unit
of flow, delivers at most 3/2 units of flow to r. Hence the contribution of a single
node u to the fractional length-part is

O(log n · L/|D|)
∑

P∈Π̃u

f ′
P = O(log n · L/|D|) .

Over all terminals, the contribution is O(|Uj | · log n ·L/|D|). Now, use the main
theorem of [6]:



Theorem 8 ([6]). There exists a polynomial time algorithm that finds an in-
tegral solution to (LP3) of value O(log n) times the optimal fractional value of
(LP3).

Hence we can find in polynomial time a tree T containing r and Uj with
c(T ) = O(log n · 2j · C/|D|) and

∑

u∈Uj
ℓT (u, r) = O(|Uj | · log2 n · L/|D|).

Note that if the tree contains i terminals then it contains i/2 pairs. This is
due to the constraint ys = yt. Since the tree spans Θ(2j/ logn) pairs, its cost-part
density is O(log2 n) ·C/|D|. Clearly, the length-part density is O(log2 n) ·L/|D|.
This finishes the proof of Theorem 7, and thus also the proof of Theorem 3 is
complete.

3 A lower bound for MaxCT

Here we prove the following statement that implies Theorem 4. We first prove a
non-bicriteria lower bound. For lack of space, the simple details that imply the
bicriteria lower bound are pointed out in the appendix.

Theorem 9. MaxCT admits no better than c-approximation algorithm, unless
NP ⊆ DTIME(nO(c·ln c·exp(5c))).

Clearly, this implies that MaxCT admits no constant approximation algo-
rithm unless P=NP. Also, the problem admits no B log log n-ratio approximation
for some universal constant B unless NP ⊆ DTIME(npolylog n).

Remark: The size of the instance produced is s = nO(c·ln c·exp(9c)) and thus
c = Θ(log log s). Therefore, it is not possible to get a stronger hardness than
log log n unless we get a better gap in terms of c.

3.1 The gap of Set-Cover

The Set-Cover problem is as follows. Given a collection A of sets on a groundset
B, find a minimum size subcollection A′ ⊆ A so that the union of the sets in A′

is B. We consider the decision version, and present the problem in terms of the
incidence bipartite graph H = (A + B, E) of A and B, where ab ∈ E if the set
a ∈ A contains the element b ∈ B. For A′ ⊆ A the set of elements covered by A′

is the set Γ (A′) = {b ∈ B : ab ∈ E for some a ∈ A′} of neighbors of A in H . Let
opt denote the optimum solution value for an instance of Set-Cover at hand.

Set-Cover (decision version)
Instance: A bipartite graph H = (A + B, E).
Question: Does there exists A′ ⊆ A with |A′| = opt and |ΓH(A′)| = B?

Theorem 10 ([7]). For any NPC language I with |I| = n there exists an
O(nO(log log n)) time reduction from I to an instance of Set-Cover so that:
- For a YES-instance there exists A′ ⊆ A with |A′| = opt so that Γ (A′) = B.
- For a NO-instance |A′| ≥ opt · ln |B| for any A′ ⊆ A with Γ (A′) = B.



Corollary 1. Unless NP ⊆ DTIME(nO(log log n)), Set-Cover admits no polyno-
mial time algorithm that for some 1 ≤ α < ln |B| finds A′ ⊆ A with |A′| ≤ α ·opt
and |Γ (A′)| ≥ (1 − 1/eα+1)|B|.
Proof. Suppose that we can find in polynomial time A′ ⊆ A with |A′| = α · opt
and Γ (A′) ≥ (1 − β)|B|, β ≤ 1. For the residual instance of Set-Cover, we still
need to cover β|B| nodes in B. We can find a cover of size opt · [1 + ln(b|B|)] of
the remaining nodes using the Greedy Algorithm. So, we can find a cover of size
opt · [α + 1 + ln(β|B|)] of all B. But this cannot be smaller than opt · ln |B|, by
Theorem 10. So, we get that α + 1 + ln(β|B|) ≥ ln |B|. This gives β ≥ 1/eα+1.

3.2 The reduction

Define a sequence of graphs G1, G2, . . . by induction (see Fig. 1). To obtain G1,
take H , add a root r, and connect r to every node in A. Let A1 = A and
B1 = B. To obtain Gi from Gi−1, i ≥ 2, take G1 and |B| copies of Gi−1, each
corresponding to a node in B1, and for every copy identify its root with the node
corresponding to it in B1. As the construction resembles a tree, we borrow some
terms from the terminology of trees. A copy of H has level i if its A sets have
distance 2i − 1 to the root r. The copies of H at level i are ordered arbitrarily.
A typical copy of H at level i is denoted by Hij = (Aij , Bij , Eij) with i the level
of the copy and j the index of the copy. This means that the Aij sets are at
distance 2i − 1 from the root and the index j is the order statistic of the copy
inside level i. Let Ai =

⋃

j Aij and Bi =
⋃

j Bij .
An Hij is an ancestor of a terminal y if y belongs to the subgraph rooted by

some v ∈ Bij ; such v is called the elements ancestor of y in level i and is denoted
ansi(y). Note that ansi(y) is unique.

(a) (b)r r
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Fig. 1. (a) The graph G1. (b) The graph G2; if instead of copies of G1 we ”attach” to
nodes in B1 roots of the copies of Gi−1, then we obtain Gi.

The terminals of Gh are
⋃

j Bh,j , and each of them has profit 1; other nodes

have profit 0. The cost of every node in Aij is 1/|B|i−1 (so the nodes in A1 = A11



have cost 1), and the cost of any other node is 0. The cost bound is C = h · opt.
The number h of levels in the construction is defined as:

h = 4
c · exp(4c + 1)

2c − 1
ln c . (4)

Fact 11 The size (and the construction time) of the construction is nO(h), where
n = max{|A|, |B|}.

3.3 Analysis

While increasing the level by 1, the number Set-Cover instances grows up by
|B| but the node costs go down by |B|. Hence the total cost of every level i is
|A|, and the total cost of G is h · |A|. We may assume that any solution T to
the obtained instance of MaxCT contains r. Otherwise, we may add the shortest
path from r to T ; the cost added is negligible in our context.

Lemma 3 (The YES-instance). The obtained MaxCT instance G, C admits
a feasible solution T that contains all terminals.

Proof. Consider the graph T induced in G by r and all the copies of A′
ij ∪ Bij

so that |A′
ij | = opt and A′

ij covers Bij . This graph contains all terminals. Since
every A′

ij covers Bij , T is connected. The cost of all copies of A′
ij at any level i

is opt. Summing over all levels gives total cost c(T ) = h · opt = C, as claimed.

We now deal with the MaxCT instance derived from a NO-instance. Fix a
feasible solution T for MaxCT. Intuitively, T has an average cost of opt to spend
on every level i. Averaging over all (Aij , Bij , Eij) copies, |T ∩ Aij | should be
about opt for every i, j. In such a case the total cost would be opt · h.

Definition 2. Level i in G is cheap (w.r.t. T ) if |T∩Ai| < 2opt and is expensive
otherwise. A copy Hij in a cheap level i is called expensive if |T ∩Aij | ≥ 4 ·c ·opt.

Lemma 4 (The NO-instance). If MaxCT derived from a NO-instance then
T contains less than 1/c fraction of the terminals.

Proof. Let us say that a node v is active if it belongs to T ; else v is lost. Initiate
all terminals to be active. We gradually prove that some of them are actually
lost, and at the end we will show that at most 1/c fraction of them can be
active. At each level we are going to have some already lost elements Bij for
several different j. This means that an element ancestor of those Bij was proven
to be lost. This indicates that all their terminals descendants are lost (because
every terminal ℓ has a unique ancestor ansi(ℓ)). The rest will be active elements.

We only consider terminals lost at cheap levels, ignoring those that may get
lost in expensive levels. Let i be a cheap level. and let Ri be the number of
terminals still declared “active” after we go via level i. Let j > i be the next
cheap level. We divide the leaves with respect to level j into automatically active,
and unsure. The automatically active leaves are descendents of heavy Hij copies.



Note that at most 1/2c of the (Aj,k, Bjk, Ejk) copies at level j may be heavy
(because the total cost invested on active copies is still at most 2opt). Thus by
symmetry at most 1/2c fraction of Ri leaves may become automatically active.
The number of unsure leaves is at least |Ri|(1 − 1/2c).

Those remaining (1 − 1/2c)Ri Hij copies are cheap and satisfy |T ∩ Ajk| ≤
4c · opt. By Claim 1, at least exp(−4c − 1) fraction of the the elements in the
cheap copies at level j become lost. This means that at least

(

1 − 1

2c

)

· exp(−4c − 1)

fraction of the previously active terminals are lost at level j. This follows by
symmetry (every element has the same number of leaf descendants) and because
distinct elements have disjoint collection of descendants. Hence, at every cheap
level the active terminals decrease by a factor of at least

1 − 2c− 1

2c
· exp(−4c− 1).

Because the total budget bound is C we get that at most half of the levels are
expensive, so at least h/2 levels are cheap. Thus the fraction of active terminals
remaining at the end is at most

(

1 − 2c − 1

2c
· exp(4c + 1)

)h/2

< 1/c.

The last inequality follows by the choice of h in (4). Thus T contains at most
1/c of the terminals, which concludes the proof of the lemma.

Theorem 4 directly follows from Lemma 3 and Lemma 4.
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