Theory of Computing Systems manuscript No.
(will be inserted by the editor)

Improved approximation algorithms for minimum cost
node-connectivity augmentation problems

Zeev Nutov

Received: date / Accepted: date

Abstract Let rxg(s,t) denote the maximum number of pairwise internally
disjoint st-paths in a graph G = (V, E). For a set T C V of terminals, G is
k-T-connected if kg (s,t) > k for all s,t € T; if T =V then G is k-connected.
Given a root node s, G is k-(T,s)-connected if kg(t,s) > k for all t € T.
We consider three well studied min-cost connectivity augmentation problems,
where we are given a graph G = (V, E) of connectivity k, and an additional
edge set E on V with costs. The goal is to compute a minimum cost edge
set J C F such that G U J has connectivity k + 1. In the k-T-Connectivity
Augmentation problem G is k-T-connected and G U J should be (k + 1)-T-
connected. In the k-Connectivity Augmentation problem G is k-connected and
G U J should be (k + 1)-connected. In the k-(T', s)-Connectivity Augmentation
problem G is k-(T, s)-connected and G U J should be (k+ 1)-(T), s)-connected.

For the k-T-Connectivity Augmentation problem when E is an edge set on T’

we obtain ratio O <ln ITlf—lk)’ improving the ratio O (IT|T—|’€ n AL ) of [29].

IT|—k

For the k-Connectivity Augmentation problem we obtain the following approx-
imation ratios. For n > 3k — 5, we obtain ratio 3 for directed graphs and 4 for
undirected graphs, improving the previous ratio 5 of [29]. For directed graphs
and k =1, or k = 2 and n odd, we further improve to 2.5 the previous ratios
3 and 4, respectively. For the undirected 2-(T, s)-Connectivity Augmentation
problem we achieve ratio 4%, improving the previous best ratio 12 of [27]. For
the special case when all the edges in E are incident to s, we give a polynomial
time algorithm, improving the ratio 4% of [28,23] for this variant.
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1 Introduction
1.1 Problems and results

Let kg(s,t) denote the maximum number of pairwise internally disjoint st-
paths in a graph G = (V,E). For a set T C V of terminals, G is k-T-
connected if kg(s,t) > k for all s,¢t € T; if T =V then G is k-connected.
Given a root node s, G is k-(T, s)-connected if kg (t,s) > k for all t € T. We
consider three extensively studied minimum cost connectivity augmentation
problems. In all problems we are given an integer k > 0, a graph G = (V, E)
of connectivity k, and an additional edge set E on V with costs. The goal is
to compute a minimum cost edge set J C E such that G U J has connectivity
k + 1. More formally, our problems are as follows.

k-T-Connectivity Augmentation

Here for a given set T' C V of terminals, G is k-T-connected and GUJ should
be (k + 1)-T-connected. We consider the version of the problem when E is
an edge set on 7', namely, every edge in E has both endnodes in 7.

k-Connectivity Augmentation
Here G is k-connected and G U J should be (k + 1)-connected. This is a
particular case of k-T-Connectivity Augmentation when 7' = V.

k-(T, s)-Connectivity Augmentation
Here we are also given a root node s and a set ' C V of terminals, G is
k-(T, s)-connected, and G U J should be (k + 1)-(T, s)-connected.

One important particular case of k-(T, s)-Connectivity Augmentation is when
all edges of positive cost are incident to s. This variant is closely related to
Source Location problems, see [14,23].

These problems were studied extensively, see [1,4-6,9,12,14,19,21-23,27—
29,32] for only a small sample of papers in the area. For k = 0 and undirected
graphs our problems include the Minimum Spanning Tree problem and the
Steiner Tree problem; for directed graphs we get the Minimum Cost Strongly
Connected Subgraph problem (that admits ratio 2 by taking a union of mini-
mum cost in- and out-arborescences), and the Directed Steiner Tree problem.

The version of k-T-Connectivity Augmentation that we consider (when E
is an edge set on T') admits ratio O(In |T']); this was implicitly proved in [9],
see also [3,29] for explicit proofs and generalizations. For |T'| > k the problem

admits ratio O (ITllelk -In T‘T‘

k) [29]. We improve the latter ratio as follows.

Theorem 1 For both directed and undirected graphs, k-T-Connectivity Aug-
mentation such that E is an edge set on T and |T| > k admits ratio O (ln HL‘T_‘IJ

To state our result for the k-Connectivity Augmentation problem we need
some definitions. Let g be the largest integer such that 2¢g —1 < n—k, namely,
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q=["=5H] Let

|52 ifn— ks odd

u:{qilJ:h(n—kﬁst: L 2n

n—k+2

J if n — k is even

It is not hard to see that:

—pu=1lifand only if k=0, 0or k=1, or k =2 and n is odd.

— p = 2 if and only if one of the following holds: £ = 2 and n is even, or
k > 3 and one of the following holds: n > 3k — 8 and n, k have distinct
parities, or n > 3k — 5 and n, k have the same parity.

— u < 3 if and only if one of the following holds: n > 2k — 5 and n, k have
distinct parities, or n > 2k — 3 and n, k have the same parity.

Let H(k) denote the kth harmonic number. For both directed and undi-
rected graphs k-Connectivity Augmentation admits ratio 2H (p) + 2 [29] (which
is a constant unless k = n—o(n)), and also ratio O(In(n —k)) [29]. Specifically,
for n > 3k — 5, the previous best ratio was 5, for both directed and undirected
graphs. For small values of k better ratios are known: k£ 4+ 2 for £ < 2 in the
case of directed graphs [22], and [k/2] + 1 for k < 6 in the case of undirected
graphs [2,8,22]. We prove the following (for comparison with previous ratios
see Table 1):

Theorem 2 k-Connectivity Augmentation admits the following approximation
ratios:

(i) For directed graphs, ratio H(p) + 3. In particular:
— Fork =1, and fork =2 andn odd, p = 1, H(u) = 1, so the ratio is 2.5.
— Forn>3k—>5, u <2, H(p) <3/2, so the ratio is 3.
— Forn>2k—3, u <3, H(u) <11/6, so the ratio is 3%.

(ii) For undirected graphs, ratio 2H (u)+1. In particular, forn > 3k—5, u < 2,
H(p) <3/2, so the ratio is 4.

For directed graphs our ratios improve over the previous ones for any k£ > 1.
For undirected graphs our ratio matches the best known ratio 4 for kK = 6,7,
and it improves over the previous ratios for any k > 8.

directed undirected
range wo| H(w) previous this paper previous this paper
k=0 1 1 2 in P
k=1,2 1 1 3,4 [22] 2.5 2 [20,2]

3<k<6 | 2 1.5 5 [29 3 [k/2] + 1 [8,22]
n>3k—5] 2| 15 5 29 3 5 [29] 4
n>2k-3[3] 12 52 [29] 3% 52 [29] 42
n < 2k —3 2H(p) +2 [29] | H(p) + 1.5 | 2H(p)+2[29] | 2H(p) +1

Table 1 Previous and our ratios for k-Connectivity Augmentation; for k = 2 our ratio 2.5
for directed graphs is valid when n is odd.
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We now state our results for the k-(T, s)-Connectivity Augmentation prob-
lem. The best known ratio for k-(T, s)-Connectivity Augmentation is O(klog k),
and it was 12 for k = 2 [27]. For the version when all edges in E are incident
to s the best ratio was 2H (2k + 1) [23], which for k = 2 is 2H (5) = 437 > 4.5.
We consider the case k = 2, and significantly improve over the previous ratios.

Theorem 3 Undirected 2-(T, s)-Connectivity Augmentation admits ratio 4 ;

if all edges in E are incident to s, then the problem admits a polynomial time
algorithm.

The rest of the Introduction we survey some related work. In Section 2
we cast our problems as a problem of finding a minimum cost edge cover of a
biset family, and state some properties of relevant biset families. In subsequent
section 3, 4, and 5 we prove the corresponding theorems. In Section 6 we
provide a short proof of a theorem from [29] that is used by our algorithms.

1.2 Some previous and related work

We consider node-connectivity problems for which classic techniques like the
primal dual method [17] and iterative rounding [18] do not seem to be appli-
cable directly. Ravi and Williamson [31] gave an example of a k-Connectivity
Augmentation instance when the primal dual method has ratio £2(k). Aazami,
Cheriyan and Laekhanukit [1] presented a related instance for which the basic
optimal solution to the LP-relaxation has all variables of value O(1/v'k), ruling
out the iterative rounding method. On the other hand, several works showed
that node-connectivity problems can be decomposed into a small number p of
“good” problems. The bound on p was subsequently improved, culminating
in the currently best known bounds O(log —2+) for directed/undirected k-
Connectivity Augmentation [29], and O(k) for undirected k-(T', s)-Connectivity
Augmentation [27]. In fact, [25] shows that for k = 2(n) the approximability
of the directed and undirected variants of these problems is the same, up to
a factor of 2. We refer the reader to [4,24] for various hardness results on
k-(T, s)-Connectivity Augmentation. We note that the version of k-Connectivity
Augmentation when any edge can be added by a cost of 1 can be solved in
polynomial time for both directed [12] and undirected [32] graphs. But for
general costs, determining whether k-Connectivity Augmentation admits a con-
stant ratio for k = n — o(n) is one of the most challenging problems.

We mention some related work on the more general k-Connected Subgraph
problem, where we seek a minimum cost k-connected spanning subgraph; k-
Connectivity Augmentation is a particular case, when the target connectivity is
k+1 and the edges of cost zero of the input graph form a k-connected spanning
subgraph. Many papers that considered the k-Connected Subgraph problem
built on the algorithm of Frank and Tardos [13] for a related problem of finding
a minimum cost k-outconnected subgraph [20,2,8,6,21,9,5], but most papers
that considered high values of k in fact designed algorithms for k-Connectivity
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Augmentation [6,21,9,29]. These papers use the fact that ratio p w.r.t. the LP-
relaxation for k-Connectivity Augmentation implies ratio pH (k) = p - O(log k)
for k-Connected Subgraph [30]. Recently, Cheriyan and Végh [5] showed that
for undirected graphs with n = 2(k*) this O(log k) factor can be saved and
ratio 6 can be achieved by a new decomposition of the problem. The bound
n = 2(k*) of [5] was improved to n = £2(k%) in [16].

In the more general Survivable Network problem, we are given connectivity
requirements {ry, : u,v € V}. The goal is to compute a minimum cost sub-
graph that has r,, internally-disjoint uv-paths for all u,v € V. For undirected
graphs the problem admits ratio O(k3logn) due to Chuzhoy and Khanna [7].
For directed graphs, no non-trivial ratio is known even for 2-(7', s)-Connectivity
Augmentation.

2 Preliminaries on biset families

While edge-cuts of a graph correspond to node subsets, a natural way to
represent a node-cut of a graph is by a pair of sets called a “biset”.

Definition 1 An ordered pair A = (A, AT) of subsets of a groundset V is
called a biset if A C AT; A is the inner part and A is the outer part of
A, and 9(A) = DA = AT\ A is the boundary of A. The co-set of a biset
A= (A, AT)is A* =V \ AT; the co-biset of A is A* = (A*,V '\ A).

Definition 2 A biset family is a family of bisets. The co-family of a biset
family F is F* = {A* : A € F}. F is symmetric if F = F*.

Definition 3 An edge covers a biset A if it goes from A to A*. Let dg(A)
denote the set of edges in E that cover A. The residual family of a biset
family F w.r.t. an edge-set/graph J is denoted F” and it consists of the
members in F not covered by any e € J, namely, 7 = {A € F:6;(A) = 0}.
We say that an edge set/graph J covers F or that J is an F-edge-cover
if every A € F is covered by some e € .J, namely, if F/ = ().

We say that A is an st-biset if s € A and t € A*. Let G = (V,E) is a
(directed or undirected) graph and let s,t € V with st ¢ E. In biset terms,
Menger’s Theorem says that kg(s,t) < |0A| for any st-biset A with g (A) = 0,
and

kg (s,t) = min{|0A| : A is an st-biset, dg(A) = 0} .

Given an instance of k-T-Connectivity Augmentation we will assume that
G has no edge between two terminals by subdividing by a new node every
such edge. Similarly, given an instance of k-(T), s)-Connectivity Augmentation
we will assume that G has no edge from T to s. Then the biset families we
need to cover in k-T-Connectivity Augmentation, k-Connectivity Augmentation,
and k-(T, s)-Connectivity Augmentation, respectively, are:

Fi-r = {A: |0A| = k,05(A) =0,ANT #0,A*NT # 0} (1)
Fio ={A:|[0A] =k, 0p(A)=0,A# 0, A" # 0} (2)
Fi-(rs) = 1A 1 |0A] = k,65(A) =0, ANT #0,s € A"} (3)
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Recall that in the case of k-T-Connectivity Augmentation, we consider the
version when only edges between nodes of 1" can be added. Then it is sufficient
to cover the projection of Fj-r on T, namely the following biset family on 7'

T={(ANT,ATNT): A€ Frr} (4)

Note that if T'=V then Fr = Fp-7 = T.
We thus consider the following generic algorithmic problem.

Biset-Family Edge-Cover R
Input: A graph (V, E) with edge-costs {c. : e € E'} and a biset family F.
Output: A minimum cost F-edge-cover J C F.

Here the biset family F may not be given explicitly, and a polynomial
time implementation in n = |V| of our algorithms requires that the following
query can be answered in time polynomial in n: Given an edge set/graph
J on V and s,t € V, find the inclusionwise minimal and the inclusionwise
maximal members of the family {A € F/ : s € A,t € V\ AT}, if non-empty.
For biset families arising from our problems, this query can be answered in
polynomial time using max-flow min-cut computations (we omit the standard
implementation details).

Definition 4 The intersection and the union of two bisets A, B are defined
by ANB = (ANB,ATNB")and AUB = (AUB, A" UB™"). The biset A \ B
is defined by A\ B = (A\ B*, A"\ B). We say that B contains A and write
ACBif AC B and AT C BT. We say that A, B intersect if AN B # () and
ABcrossif ANB#( and ATUBtT £ V.

The following properties of bisets are known and easy to verify.

Fact 1 For any bisets A, B the following holds. If a directed/undirected edge e
covers one of ANB, AUB then e covers one of A,B; if e is an undirected edge,
then if e covers one of A\ B,B\ A, then e covers one of A,B. Furthermore

|0A[ + |0B| = [0(ANB)| + [0(AUB)| = [0(A\B)| + [0(B\ A)| .
Definition 5 A biset family F is intersecting/crossing if ANB,AUB € F
whenever A, B intersect/cross. Let us say that a crossing biset family F is
p-crossing if for any A, B € F that intersect the following holds: ANB € F
if|[AUB|<n—p,and AUBe Fif |[AUB|<n—-p—1.

The following known lemma (c.f. [19,27]) can be deduced from Fact 1.

Lemma 2 If G is k-T-connected then T and T* are both k-crossing, where
T is defined in (4). Furthermore, if T =V then |0A| =k for all A€ T.
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Note that Fact 1 implies that if F is intersecting, crossing, or k-crossing,
then so is the residual family F7 of F, for any J.

Let 7(F) denote the optimal value of a standard Biset-LP for the problem
of edge-covering a biset family F, namely:

Biset-LP 7(F) = min Zcexe : Z z.>1VAEF,z.>0Ve e E
eck e€d(A)

Directed Biset-Family Edge-Cover with intersecting F admits a polynomial
time algorithm that computes an F-edge-cover of cost 7(F) [11]; for undi-
rected graphs the cost is 27(F) for intersecting F, by a standard “bidirection”
reduction to the directed case.

In terms of bisets, we prove the following two theorems that imply Theo-
rems 1 and 2. In these theorems F is a biset family on a groundset V of size
n = |V|. Let us say that Biset-Family Edge-Cover admits LP-ratio p if there
exists a polynomial time algorithm that computes an F-cover of cost p- 7(F).

Theorem 4 (Implies Theorem 1) Biset-Family Edge-Cover such that F and
F* are k-crossing and n > k + 1 admits LP-ratio O(ln ).

Theorem 5 (Implies Theorem 2) Biset-Family Edge-Cover such that F and
F* are k-crossing, |0A| > k for all A € F, and n > k+3, admits the following
LP-ratios:

(i) For directed graphs, ratio H(p) + 3. In particular:
— Fork =1, and fork =2 andn odd, p = 1, H(u) = 1, so the ratio is 2.5.
— Forn>3k—5, u <2, H(u) < 3/2, so the ratio is 3.
— forn >2k—3, n <3, H(u) < 11/6, so the ratio is 3%

(ii) For undirected graphs, ratio 2H (pu)+1. In particular, forn > 3k—5, u < 2,
H(u) < 3/2, so the ratio is 4.

Theorem 3 relies on different “uncrossing” properties of the family Fo (7 4),
that will be given in Section 5
The following definition plays a key role in our algorithms.

Definition 6 The inclusionwise minimal members of a biset family F are
called F-cores, or simply cores, if F is clear from the context. Let C(F)
denote the family of F-cores, and let v(F) = |C(F)| denote the number of
F-cores. For C € C(F), the halo-family F(C) of C is the family of those
members of F that contain C and contain no F-core distinct from C.

Let us say that two biset families A, B are independent if no A € A and
B € B cross. Note that if F1,...,F, is a collection of pairwise independent
subfamilies of a biset family F, then for ¢ # j no directed edge can cover
A; € F;and Aj € F;, and thus > 8, 7(F;) < 7(F).

The following statement summarizes several relevant properties of halo
families of crossing biset families, c.f. [22,9,3,29]. We provide a proof for com-
pleteness of exposition.
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Lemma 3 For any crossing biset family F the following holds.

(i) For any F-core C, F(C) is a crossing family and F(C)" = {A*: A € F(C)}
(the co-family of F(C)) is an intersecting family.
(ii) Halo families of distinct cores are independent.
(iii) For any F-core C, if J is an inclusion minimal edge set that covers F(C)

then C(F7) = C(F) \ {C}.

Proof We prove (i). Let A,B € F(C) cross. Then ANB,AUB € F. Since
ANBCACAUBand A e F(C), ANB € F(C) and C C AUB. We claim
that A UB contains no core C’ distinct from C. Otherwise, since none of A, B
can contain C’, we must have that C’, A cross or C',B cross, so C'NA € F or
C’' NB € F; this contradicts that C’ is a core. Thus F(C) is a crossing family.
We prove that F(C)* is an intersecting family. Let A,B € F(C)" intersect.
Then C C A*NB* so A, B cross. Thus since F(C) is a crossing family, we get
that ANB,AUB € F(C)".

We prove (ii). Let A; € F(Cy) and Ay € F(Cq) cross, for C;,Cy € C(F).
Then A1 NA; € F, so A; N A5 contains some F-core C. We have C = C; since
C C Ay and C = C, since C C Ay, hence C; = Cs.

Part (iii) follows from part (ii), since every e € J covers some biset in F(C)

(by the minimality of J) and thus by (ii) cannot cover a core distinct from
C. O

The following statement was implicitly proved in [9] (see also [3]) and
explicitly in [29]. We provide a proof for completeness of exposition.

Theorem 6 Directed Biset-Family Edge-Cover with crossing F admits a poly-
nomial time algorithm that given C C C(F) and an integer 0 < t < |C| com-
putes an edge set J C E such that the following holds:

— C(F?)=C(F)\ ' for some C' CC with |C'| = |C| —t.
—c(J) < (H(C))—H(t)) -7(F'), where F' is the family of those members of
F that contain no core in C(F)\C.

Proof Consider the following algorithm. Start with a partial solution J = (.
While [CNC(F7)| > t+1 continue with iterations. At iteration i, compute for
each C € CNC(F’) an optimal inclusion minimal edge cover J¢ of the family
F7(C) (the halo family of C in F”); then add to J a minimum cost edge
set J; among the edge sets {Jc :CelCncC (]—"J)}. By part (i) of Lemma 3,
each Jc can be computed in polynomial time and c¢(Jc) = 7(F”/(C)). By
part (i) of Lemma 3, 3 ccenerry ¢(Jc) < 7(F'). Thus there is C € C such
that c¢(Jc) < 7(F')/|ICNC(F7)|. By part (iii) of of Lemma 3, at iteration i we
have |CNC(F7)| < |C| —i+ 1. Thus ¢(J;) < 7(F")/(IC| — i+ 1) at iteration i.
The number of iterations is |C| — ¢. Consequently,

Ic|—t IC|—t

o) € 3 1) < 7(F) Y ey = H(E) = ) - 7(F)
i=1

i=1

and the statement follows. a
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Note that for ¢ = 0, the edge set J in Theorem 6 covers the family of those
members of F that contain no core in C(F)\C and ¢(J) < H(|C|)7(F"); if also
C = C(F) then J covers F and has cost ¢(J) < H(v(F)) - 7(F).

3 Ratio O(In p) for k-crossing families (Theorem 4)

2
us say that A is a small biset/core if |A| < ¢, and A is a large biset/core
otherwise. We mention some definitions from [29] needed for the proof of The-
orem 4.

Recall that g is a parameter eventually set to ¢ = | “=2+L | and u = {#J . Let

Definition 7 A biset family F is intersection-closed if ANB € F for any
intersecting A;B € F. An intersection-closed F is ¢g-semi-intersecting if
|A| < q for every A € F and if AUB € F for any intersecting A, B € F with
|AU B| < g. The g-truncated family of F is F<, := {A € F : |[A| < ¢}.
namely, F<, is the family of the small bisets in F.

We obtain a g-semi-intersecting family from a k-crossing family as follows.

Lemma 4 Let F be a k-crossing biset family. If 2¢—1 < n—k and g < n—k—1
(in particular if ¢ < L"‘T’“HJ and n > k+ 3) then F<, is q-semi-intersecting.

Proof Let A,B € F<, intersect. Then |[AUB| < |A|+|B|-1<2¢—1<n—k.
Thus ANB € F<,. If [AUB| < ¢ <n—k—1then AUB € F<,. Hence if both
2¢g—1<n—-Fkand ¢g<n—k—1, then F<, is g-semi-intersecting. g

The following theorem is the main result of [29]. It says that if F is ¢-semi-
intersecting, then we can find a “cheap” edge set J such that v(F”) is “small”.
We will provide a relatively simple proof of this theorem in Section 6.

Theorem 7 ([29]) Directed Biset-Family Edge-Cover with q-semi-intersecting
F admits a polynomial time algorithm that computes an edge-set J C E such

that v(F7) < |n/(qg+1)]| and c(J) < 7(F).
From Theorem 7 and Lemma 4 we have the following.

Corollary 1 Directed Biset-Family Edge-Cover with k-crossing F and n >
k + 3 admits a polynomial time algorithm that for any q < \_"‘T’“HJ computes
J C E such that v(FZ,) < [n/(q+ 1)) and ¢(J) < 7(F<g).

We note that each of the statements in Theorem 7, Corollary 1, and The-
orem 6, applies also for undirected graphs and symmetric F, but with an
additional factor of 2 in the cost. In this case we have ¢(J) < 27(F) in The-
orem 7 and Corollary 1, and ¢(J) < 2H(|C]) - 7(F’) in Theorem 6. This is
achieved by the following standard reduction. In each of the cases, we bidirect
the edges of G (namely, replace every undirected edge e with endnodes u, v by
two opposite directed edges uv,vu of cost ¢, each), compute a set of directed
edges for the obtained directed problem, and return the corresponding set of
undirected edges.

A weaker version of the following statement is implicitly proved in [26].
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Lemma 5 Let F be a biset family such that both F and F* are k-crossing.
Then v(F) < v(F<q) + v(FE,) + p*H(p).

Proof Note that for any distinct A, B € C(F) we have ANB ¢ F. We show that
if an arbitrary A C F has this property then [A| < v(F<q)+v(FZ,)+pu?H(p).
Let B={A € A:|A],|A*] > ¢+ 1}. Clearly, [A| < [A<,| + AL, [+ [B]. Note
that [A<q| < v(F<q), since F<, is intersection closed, by Lemma 4. Similarly,
|AL,| < v(FZ,). Tosee that |B| < u*H(u), consider the hypergraph # formed
by the inner parts of the bisets in B. Let A be the maximum degree in H. Recall
that a hitting set of a hypergraph/set family is a set U of nodes that intersects
every hyperedge/set of H. A fractional hitting set is a function h : V' — [0, 1]
such that h(A) = > .4 h(v) > 1 for every hyperedge A. It is known that
if h is a fractional hitting set of H then H has a hitting set of size at most
H(A) - h(V). Note the following:

(i) A < p. This is so since no two bisets in B cross, and thus for any v € V
the sets in the family {A* : A € B,v € A} are pairwise disjoint; hence their

number is at most v(B*) < {#J = u.
(ii) M has a hitting set U of size |U| < pH(A) < pH(p). This is so since H has

a fractional hitting set h of value p defined by h(v) = qﬁ forallveV.
Since H has at most |U|- A hyperedges, the bound |B| < u?H (u) follows. O

The algorithm as in Theorem 4 is as follows.

Algorithm 1: DIRECTED-COVER(F, G, ¢) (F, F* are both k-crossing)

1 compute J; C E with 1/(}'2;) < pand ¢(J1) < 7(F<q) using the
algorithm from Corollary 1
compute a similar edge set Ji* C E for the family FZ,

2 compute J, C F covering F/'Y/i using the algorithm from Lemma 3
3 return J = J; U Jjy U Js

By Lemma 5, !C (_7_-11qu) = O(p?Inpu) and thus c(J2) = 7(F)O(In p).
Consequently, the cost of the solution computed is bounded by

T(F)e(J1) +e(J7) +e(2) <T(F) 14+ 1+ 0(nw) =0Inp) .

4 Proof of Theorem 5
4.1 Directed graphs

Recall that biset families A, B are independent if no A € 4 and B € B cross.
In Lemma 3 and Theorem 6 we used the observation that if A, B are two
independent subfamilies of a biset family F then 7(A) 4+ 7(B) < 7(F). Here
we use a different novel setting, where A, B may not be independent, but A\ B
and B\ A are independent.
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Lemma 6 Let A, B be subfamilies of a biset family F such that AUB = F
and the families A\ B and B\ A are independent. Suppose that for any J C E
Biset-Family Edge-Cover with A’ admits LP-ratio o and with B’ admits LP-

ratio 3. Then Biset-Family Edge-Cover with F admits LP-ratio o+ B — a(’—fﬁ

Proof We claim that the following algorithm achieves LP-ratio a4+ 3 — :‘—@:

Algorithm 2: INDEPENDENT-COVER(A, B, G, ¢)

1 J < a-approximate A-cover Jp <— [-approximate B7A-cover
2 Jp « [-approximate B-cover J'; < a-approximate A’B-cover
3 return the cheaper edge set J among J4 U Jg, Jg U J/4.

Note that since A\ B and B\ A are independent, so are B4 and A’5.
Thus no B € B/4 and A € A75 cross, so no directed edge can cover both A
and B. Therefore

T (BJA) + T (.AJB) <7(F).

Denoting 7 = 7(F) and 7/ = 7 (B74), we have 7 (A78) < 7—7'. We also have:

c(Jq) <ar(A) <ar o(Jp) < Br (BJ"‘) = B

c(Jp) < Br(B) < Bt c(J)y) <ar (A%8) <a(r—1')
Thus the cost of the edge set produced by the algorithm is bounded by

c(J) =min{c(Ja) +c(Jg),c(Jp) +c(J4)} < min{ar + 7, 81+ a(r — ')} .

The worst case is when ar 4+ 57" = 7 + a(r — 7’), namely 7/ = aLj_ﬁT. Then
B o’ +af + af
J = —|— ! = + = - + - .
c(J)=ar+ 87 T(a P T P Tla+p P
This concludes the proof of the lemma. a

Recall that A is a small biset/core if |A] < ¢, and A is a large biset/core
otherwise. Let F be as in Theorem 5, namely, F and F* are k-crossing, |0A| >
k for all A € F, and n > k+3. We show that then the following two subfamilies
A, B of F satisfy the assumptions of Lemma 6 with & = 8 = 1; note that then

a+p— 2 =32

— A is the family of bisets in F that contain some small F-core.
— B is the family of bisets in F that contain some large F-core.

Lemma 7 The families A, B above satisfy the assumption properties of Lemma 6
with a = v(F<y) (soa=11ifv(F<q) =1) and B =1.
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Proof Clearly, AUB = F. We prove that A\ B and B\ A are independent. Let
A € Aand B € B cross. Then ANB € F, since F is a crossing family. Thus
A UB contains an F-core C. If C is small then A;B € A and thus B ¢ B\ A.
If C is large then A, B € B and thus A ¢ A\ B. In both cases we cannot have
Ae A\ Band B e B\ A, hence A\ B and B\ A are independent.

To prove the claimed approximability of covering A and B, we show that A*
is a union of v(F<,) intersecting biset families, and that B* is an intersecting
biset family. For a core C denote F¢ = {A € F : C C A}. Note that A = F¢
and A* = | J F¢, where the union is taken over all small cores C of F. It is easy
to see that since F is crossing, then each family F¢ is an intersecting family.
Hence A* is a union of v(F<,) intersecting families

We prove that B* is an intersecting family. Consider the inclusionwise
maximal members of B*; each maximal member of B* is the co-biset C* of
some large F-core C. We claim that if C;,C; are distinct large F-cores then
C;NCs =0. Note that |Cy|,|Cj| > ¢+ 1, hence |C}],|CF| <n—k—q—1.1f
C;NCs # 0 then for ¢ > %, and in particular for ¢ = L%J, we have

CruCH <[CH+[C—1<2n—2k—2g—3<n—k—1

Since F* is k-crossing, we get that C;UC} € F*, contradicting the maximality
of C7,C}. This implies that if A,B € B* intersect, then A, B are contained in
the same inclusionwise maximal member of B*, namely, A,B C C* for some
large F-core C*. Note that C C A* N B*. Thus if A, B cross, and since F* is a
crossing family, ANB, AUB € F*. Moreover, ANB, AUB C C*, which implies
ANB,AUB € B*. Consequently, B* is an intersecting family. |

From Lemmas 6 and 7 we have:

Corollary 2 Suppose that F is crossing, F* is k-crossing, that |0A| > k
for all A € F, and that n > k+ 3 and ¢ = |"=5+L|. Then directed Biset-
Family Edge-Cover admits a polynomial time algorithm if v(F<,) = 0 and
approzimation ratio 3/2 if v(F<4) = 1.

Now we use Corollaries 1 and 2, and Theorem 6, to prove the directed part
of Theorem 5. Note that the following algorithm uses all the assumptions on
F in Theorem 5: F is k-crossing in Corollary 1, crossing in Theorem 6, and in
Corollary 2 F is crossing, F* is k-crossing, and |0A| > k for all A € F.

Algorithm 3: DIRECTED-COVER(F, G, ¢)

1 Using the algorithm from Corollary 1 compute J; C E such that
v(FL) < pand e(h) < 7(Feq)

2 Using the algorithm from Theorem 6 with C = C(]—'i;) and t =1,
compute Jo C E '\ J; such that -
” (fg;wz) <1and c(Jy) < (H(p) — 1) (F7)

3 Using the algorithm from Corollary 2 compute an F7/1%/2_cover
J3 C E\ (J1 U Js) such that c(J3) < 3r(F1V72)

4 return J =J, U JoU J3
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Tp summarize, the algorithm sequentially computes three edge sets:

1. Jp reduces the number of small cores to u by cost 7 (Corollary 1).

2. Jo further reduces the number of small cores to 1 by cost (H(p) — H(1))7
(Theorem 6).

3. Js covers the remaining members of F by cost 37 (Corollary 2).

Clearly, the algorithm computes a feasible solution. The approximation
ratio is bounded by 1+ (H(u) — 1) +3/2 = H(u) + 3/2.
The proof of the directed part of Theorem 5 is complete.

4.2 Undirected graphs

To prove the undirected part of Theorem 5 we prove the following lemma.

Lemma 8 Suppose that F is symmetric, k-crossing, that |0A| > k for all
A€ F, and that n > k + 3. Let ¢ = | £ |. Then undirected Biset-Family
Edge-Cover admits a polynomial time algorithm if v(F<4) = 1, and LP-ratio
2 if v(Fey) = 2.

Proof We claim that if v(F<,) < 2 then there exist a pair s,t € V such that
{st} .
v(Fe,) Sv(Feg) — 1. (5)

Namely, adding the edge st reduces the number of small cores by at least
1. Note that such a pair s,t can be found in polynomial time by computing

v(F<q) and v (]—ésqt}) for every s,t € V. Once such pair s, t is found, we com-

pute a minimum cost cover Jg of the family {Fs = A€ F:se€ At € A*}.
This family is intersecting and has a unique core; such a family is sometimes
called a ring family. Thus we get that in the case v(F<4) < 2, the prob-
lem of edge covering F is reduced to edge covering v(F<,) ring families. It is
known that Biset-Family Edge-Cover with a ring family admits a polynomial
time algorithm that computes a solution of cost 7(F). Consequently, we get a
polynomial time algorithm if v(F<4) = 1 and ratio 2 if v(F<4) = 2.

We now prove existence of a pair s,¢ as above. Let C € C(F<,) and let
Mc be the family of inclusionwise maximal bisets in F<, that contain C.
If Mc has a unique biset A, then (5) holds for any s € C and ¢t € Af.
Suppose that |[Mc| > 2. Note that by Lemma 4 and by the symmetry of F,
if A,B € F<, intersect, then AUB € F<, or (AUB)" € F<,. Thus for any
distinct A, B € Mc, (AUB)" € F<, holds, by the maximality of the bisets in
Mc. Consequently, since v(F<,) < 2, there is a unique F<,-core C" distinct
from C, such that C' C (AUB)" for any distinct A,B € Mc . This implies
that (5) holds for any s € C' and t € C". O

Let us now show that Lemma 8 implies the undirected part of Theorem 5.
The algorithm is similar to the one for the directed case; it returns a solution
J = J1 U JQ U Jg where:
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1. Jy reduces the number of small cores to u by cost 27 (Corollary 1).

2. If u > 3 then Jy further reduces the number of small cores to 2 by cost
2(H(pu) — H(2))7 (Theorem 6).

3. Js covers the remaining members of F by cost 7 if ¢ = 1 and by cost 27
otherwise (Lemma 8).

Clearly, the algorithm computes a feasible solution. In the case p > 2 the
approximation ratio is 24+ 2(H (u) — H(2)) +2 = 2H (u) + 1. This is so also in
the case 1 = 1, since then the ratiois 2+ 1 =3 =2H(1) + 1.

This concludes the proof of the undirected part of Theorem 5.

5 Algorithm for 2-(T, s)-Connectivity Augmentation (Theorem 3)

Here we prove Theorem 3. We need some definitions.

Definition 8 Let us say that bisets A,B T-intersect if ANBNT # () and
T-co-cross if both AN B*NT and BN A* NT are nonempty. A biset family
F is T-uncrossable if for any A, B € F the following holds: ANB,AUB € F
if A)B T-intersect, and A\ B,B\ A € F if A|B T-co-cross.

The following known lemma (c.f. [27]) can be easily deduced from Fact 1.

Lemma 9 ([27]) Let G be an undirected k-(T, s)-connected graph. Then the
biset family Fr-(r,s) = {A : |[0A| = k,0p(A) = 0,ANT # 0,s € A*} defined
in (3) is T-uncrossable.

Halo families of a T-uncrossable family have the following property.

Lemma 10 ([27]) Let F be an arbitrary T-uncrossable biset family and let
A; € F(C;) and A; € F(C;), where C;,C; € C(F).

(i) Ifi=j (so Ay, A; contain the same F-core) then A;NA;, A;UA; € F(C,).
(ii) Ifi# j and A;, Aj T-co-cross then A; \ Aj € F(C;) and Aj \ A; € F(Cj).

A simple biset family F has no biset that contains 2 distinct cores,
namely, F is the union of its halo families. The best known ratio for edge-
covering an uncrossable biset family F is 2. Fukunaga [15] showed that for
simple uncrossable biset families one can achieve ratio 4/3.

Definition 9 For A C F and U C V the U-mesh graph G = G(A,U) of A
has node set A and edge set {A;A; : 0A; NA;NU # 0 or 0A; NA;NU # 0}

Lemma 10(i) implies that if F is T-uncrossable, then for every C; € C(F),
the halo family of C; has a unique maximal member (the union of the bisets
in F(C;)). The following statement easily follows from Lemma 10.

Corollary 3 ([27]) Let F be an arbitrary T-uncrossable biset family and let
A be the family of the maximal members of the halo families of the F-cores.
Let A’ be an independent set in the T-mesh graph of A. Then the union of the
halo families of the bisets in A’ is a simple uncrossable biset family.
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Fig. 1 Illustration to the proof of Lemma 11.
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In the rest of this section let G = (V, E) be a 2-(T, s)-connected graph and
unless stated otherwise let F' = Fy_(7 ) be the biset family we want to cover.
In the following lemma we summarize additional “uncrossing” properties of
the bisets in F that we need.

Lemma 11 Let A,B € F such that ANBNT = (). Then either JANB,0BN A
are both empty, or the following holds (see Fig. 1(a)):

(i) Each one of the sets OAN B,0A N B*,0BN A, 0B N A* is a singleton.
(i) fF BNA*NT #0 then B\A € F; if ANB*NT #0 then A\ B € F.
(i) If |ANT| >2 and | BNT| > 2 then A,B T-co-cross.

Proof Fig. 1 depicts all possible cases of two bisets A, B with |0A| = [0B| = 2.
For part (i), we claim that if AN BNT = () and if one of JA N B,dB N A
is non-empty, then the only possible case is the one depicted in (a). In cases
(b,c) the sets 9AN B, BN A are both empty. In the other cases (d,e,f) there is
a biset C such that C NT # 0 and |0C| = 1, contradicting that G is 2-(T, s)-
connected: C = AUB in case (d), C =B\ A in case (¢), and C = A\ B in
case (f).

For part (ii), assume that BNA*NT # §; the proof of the case ANB*NT # ()
is similar. In the possible cases (a,b,c) we have |O(B\ A)| =2,s0 B\ A € Fin
these cases, while the other case (d,e,f) are not possible.

Part (iii) is immediate from part (i). O

Corollary 4 Let A,B € C(F). Then either A C B* and B C A*, or each one
of the sets ANT, BNT is a singleton, and OBNA = ANT and ANB = BNT.

Lemma 12 Let AC F. If A,NA;NT =0 for any distinct A;,A; € A then
the V-mesh graph G of A is a forest.
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Fig. 2 Illustration to the proof of Lemma 12.

Proof Suppose to the contrary that G is not a forest. Let (Ag, A1, ..., 4;_1,Aq)
be a cycle in G. Assume that the indices are modulo [. By Lemma 11(i), for
every i we have (see Fig. 2, and note that for any i, v; = v; may hold):

— A; NOA;_1 is a singleton which we denote by v;.
— A; N OA; 41 is a singleton which we denote by vy.

Let U = Uézl{vi,vg}. For every v € U, v = v; or v = v} for some i, and
we have: v € A4;, s € Af, 0A; C U, and G \ 9A; has no sv-path. We claim
that there exists u € U such that G has no su-path. To see this, consider the
shortest path P from s to U and the endnode u of P in U. Then P is an
su-path that has no internal node in U. Since 0A, C U, P is an su-path in
G\ OA,,. This contradicts the assumption that G'\ A, has no st-path. On the
other hand, G has an sv-path for every node v that belongs to the boundary
of some tight biset, and thus G has an sv-path for every v € U. This is a
contradiction. O

Corollary 5 Let A be obtained by picking for each core C; € C(F) a biset A;
in the halo-family F(C;) of C; (possibly A; = C;). Then the V-mesh graph of
A is a forest. Furthermore, if A; = C; for each i then the T-mesh graph G of
A is a collection of node disjoint paths.

Proof Since F is T-uncrossable, bisets from distinct halo families cannot T-
intersect. Thus A,NA;NT = () for distinct A;, A; € A, and the V-mesh graph
of A is a forest by Lemma 12.

We prove that if A, = C; for each ¢ then G has no node of degree >
3. Suppose to the contrary that G has a node Cy with 3 distinct neighbors
C1,Cy,C3. Then C; NC; NT =  for distinct 0 < 4,5 < 3. By Corollary 4
C;NT C ICy for i = 1,2, 3, and we get the contradiction |0Cq| > 3. O

Corollary 6 Let C be the set family of the inner parts of the bisets in C(F).
Then the mazimum degree of a node in the hypergraph (V,C) is at most 2.

Proof Let v € V and let C, = {C € C(F) : v € C} be the family of cores
whose inner part contains v. Consider the the V-mesh graph G, of C,. By
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Corollary 4 G, is a clique, while by Corollary 5 G, is a path. Thus G, has at
most 2 nodes. g

Now we prove the following.

Lemma 13 If Biset-Family Edge-Cover admits approzimation ratio o for sim-
ple uncrossable families and approximation ratio S for uncrossable families,
then 2-(T, s)-Connectivity Augmentation admits approximation ratio 2a + f5.

Proof Let F = Fo(7.5). Let A be the family of the maximal members of the
halo families of the F-cores. Let G be the T-mesh graph of A. By Lemma 12
G is a forest. Thus G is 2-colorable, so its nodes can be partitioned into 2
independent sets A’ and A”. The rest of the analysis coincides with [27]. Let
C’ and C” the set of F-cores that correspond to A" and A”, respectively. By
Corollary 3, each one of the families 7/ = (Jocer F(C) and F”' = Jeeen F(C)
is uncrossable and simple. Thus the problem of covering ' U F” admits ratio
28. After the family F' U F” is covered, the inner part of every core of the
residual family contains at least 2 terminals. Hence by Lemma 11(iii), the
residual family is uncrossable, and thus the problem of covering it admits
ratio 8. Consequently, the overall ratio is 2« + [, as claimed. a

As was mentioned, the currently best known values of a and 8 are a = 4/3
[15] and 8 = 2 [10], so we get ratio 2-4/3 + 2 = 42.

Now let us consider the case when all edges in E are incident to s. Let C
be the set family of the inner parts of the F-cores. Recall that a hitting set of
a hypergraph/set family is a set of nodes that intersects every hyperedge/set.
Note that J C E is a feasible solution for our problem if and only if the
set {v € V : sv € J} is a hitting set of C. Thus by assigning for every
node v weight w(v) = ¢(sv) (or a sufficiently large weight, if sv ¢ F) we get
that our problem is equivalent to finding a minimum-weight hitting set of the
hypergraph (V,C). By Corollary 6, the maximum degree in this hypergraph
is < 2. Finding a minimum-weight hitting set in hypergraph with maximum
degree < 2 can be done in polynomial time, as this is essentially an Edge-Cover
problem. Consequently, we get a polynomial time algorithm for the case when
all edges in E are incident to s, and the proof of Theorem 3 is complete.

6 A short proof of Theorem 7

Let F be a g-semi-intersecting biset family. Consider the dual program of the
Biset-LP for covering F

max ZyA: Z yAgceVeEE, ya > 0VA e F
AeF dp(A)de

Given a dual solution y let us say that the dual constraint of an edge e
is tight, or that e is a tight edge if Z(SE(A)% ya = Ce. Now consider the
following primal-dual algorithm for covering F.
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Algorithm 4: ¢-SEMI-INTERSECTING FAMILY EDGE-COVER(F, G, ¢)
J—0,y+0, L+ 0

while v(F”) > 1 do

L add some C € C(F’) to L

W N =

raise yc until the dual constraint of some e € § E\J((C) becomes tight
and add e to J
Let e1,...,e; be the order in which the edges were added to J
for i = j downto 1 do
it J\ {e;} covers the family 7/ = {A € F: A C B for some B € L}
L then do J < J\ {e;}

8 return J

N o W

Let I denote the set of edges in J right before the reverse-delete phase
(steps 5,6,7). Note that I covers F, but in the reverse-delete phase we care
to cover just the subfamily F’ of F. In fact, the algorithm coincides with a
standard primal-dual algorithm for covering the biset family 7. We will show
that F' is an intersecting biset family and conclude that ¢(J) = 7(F') < 7(F).
In what follows, let M denote the family of inclusionwise maximal members
of £, and for an F”/-core C; let M; denote the family of bisets in M that
intersect with C;, and B; the union of C; and the bisets in M.

Note that each family M; is non-empty, since C; is covered by some edge
e € I'\ J, and since any edge e € I covers some A € L. Let us say that a biset
family £ is laminar if for any A, B € £ that intersect A C B or B C A holds.
In the following lemma we establish some properties of the families £ and F’.

Lemma 14 At the end of the algorithm the following holds:

(i) L is a laminar biset family and F' is an intersecting biset family.
(ii) For any A € M there is a unique edge ey in I that covers A, and ey € J.
Furthermore, if A and an F”7-core C intersect, then §;(ANC) = {ey}.

Proof We prove (i). Let Aq, Ay € L intersect where A; was added to £ before
Ay. When A; was added to £, we had A; € C(F’) and Ay € F’. Thus
A1 N Ay = Ay (namely, A; C Ay) by the minimality of A; and since F (and
thus also F”) is intersection closed. This implies that £ is laminar. We show
that F’ is an intersecting biset family. Let A;, Ay € F’ intersect. Then, since
L is laminar, A; UAy C B for some B € £. Thus A; UA, € F, since |[A1UAs| <
|B| < ¢ and since F is g-semi-intersecting. This implies A; U Ay € F’, and
clearly A1 N Ay € F' since A; N Ay, C B and since F is intersection closed.
We prove (ii). Let ey be the edge that was added to J at step 4 of the
algorithm after A was added to £ at step 3 (the first edge that covered A).
After A was added to £, no biset that intersects with A was added to L, since
A € M and since £ is laminar. Thus edges added to J after ey do not cover
A, since their tails are in V'\ A. Consequently, ey is the unique edge in I that
covers A, and thus ey € J. Now suppose that A and an F”-core C intersect.
Then ANC € F/, since F is intersection closed and since A N C C A. Thus
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d;(ANC) #£D. Let e € 6;(ANC). Then e covers A, since e covers A or C by
Fact 1, but e cannot cover C since e € J and J does not cover C. Thus e = ey
for any e € 0;(A N C), namely, §;(ANC) = {ea}.

Lemma 15 If F is g-semi-intersecting then at the end of the algorithm the
following holds:

(i) 167(A)] =1 for any A € L.
(ii) The sets B; are pairwise disjoint and each of them has size > q + 1.

Proof For part (i), let A € £ and suppose to the contrary that there are
e1,es € §7(A) with e; # ey. For i = 1,2 let A; be some biset in F’ that became
uncovered when e; was considered for deletion at step 7. Note that §;(A;) =
{e;} and that A C A;, since the edges in J were considered for deletion in
the reverse order. Thus A C A; N Ay, and by Lemma 14(i) A; U Ay € F'.
Consequently, there is e € §;(A; U Ay), hence e € 0;(A1) or e € §;(As), by
Fact 1. Thus e = e1 or e = es. Since the tail of each of e1,e5 isin A C A1 N As,
so is the tail of e. The head of e is in A7 N A3. This gives the contradiction
ec (5](&1) N 5J(A2)

We prove part (ii). Let C;,C; be distinct F7-cores. Note that no two
bisets in M intersect (since £ is laminar) and that C; N C; = 0 (since F is
intersection closed). Thus to prove that B; N B; = () it is sufficient to prove
that M; N M; = (). Suppose to the contrary that there is A € M; N M;. By
Lemma 14(ii), the tail of ey is both in AN C; and A N C;. This contradicts
C; N C; = 0. We prove that |B;| > g + 1. Note that |B;| < ¢ implies B; € F,
since F is g-semi-intersecting. Thus to prove that |B;| > ¢ + 1 it is sufficient
to prove that 6;(B;) = 0, since this implies B; ¢ F (as I covers F). Suppose to
the contrary that there is e € 6;(B;). Then there is a biset A € M whose inner
part contains the tail of e, and we must have A € M, by the definition of B;
and since no two bisets in M intersect. As e covers the biset B; that contains A,
e covers A, and thus e = e4 and 6;(ANC;) = {ex}, by Lemma 14(ii). The edge
ea has its tail in C; and covers the biset B; that contains C;. Consequently,
ep covers C;, contradicting that C; € F7.

Lemma 15(ii) implies v(F”7) < |n/(q+1)]. To see that c¢(J) = 7(F’) let
x € {0, l}F be the characteristic vector of J and y the dual solution produced
by the algorithm. It is easy to see that x and y are feasible solutions for
the primal and dual LPs, respectively, and that the Primal Complementary
Slackness Conditions hold for x and y. The Dual Complementary Slackness
Conditions are: y, > 0 implies |§7(A)| = 1, and they hold by Lemma 15(i),
since {A : ya > 0} C L.
This concludes the proof of Theorem 7.
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