Improved approximation algorithms for minimum cost node-connectivity augmentation problems

Zeev Nutov

Received: date / Accepted: date

For the k-T-Connectivity Augmentation problem when \hat{E} is an edge set on T we obtain ratio $O\left(\ln\frac{|T|}{|T|-k}\right)$, improving the ratio $O\left(\frac{|T|}{|T|-k}\cdot\ln\frac{|T|}{|T|-k}\right)$ of [29]. For the k-Connectivity Augmentation problem we obtain the following approximation ratios. For $n \geq 3k-5$, we obtain ratio 3 for directed graphs and 4 for undirected graphs, improving the previous ratio 5 of [29]. For directed graphs and k=1, or k=2 and n odd, we further improve to 2.5 the previous ratios 3 and 4, respectively. For the undirected 2-(T,s)-Connectivity Augmentation problem we achieve ratio $4\frac{2}{3}$, improving the previous best ratio 12 of [27]. For the special case when all the edges in \hat{E} are incident to s, we give a polynomial time algorithm, improving the ratio $4\frac{17}{30}$ of [28,23] for this variant.

Keywords node-connectivity augmentation \cdot approximation algorithm \cdot crossing biset family

Z. Nutov

The Open University of Israel

Tel.: +972-9-778 1254 Fax: +972-9-778 0605 E-mail: nutov@openu.ac.il

1 Introduction

1.1 Problems and results

Let $\kappa_G(s,t)$ denote the maximum number of pairwise internally disjoint st-paths in a graph G=(V,E). For a set $T\subseteq V$ of terminals, G is k-T-connected if $\kappa_G(s,t)\geq k$ for all $s,t\in T$; if T=V then G is k-connected. Given a root node s, G is k-(T, S)-connected if K for all T for all problems we are given an integer T for all T for all T for all T for all problems we are given an integer T for all T for all T for all problems we are given an integer T for all T for all problems we are given an integer T for all T for all T for a set T for all T for a set T for all T for all T for a set T for all T for a set T for all T for al

k-T-Connectivity Augmentation

Here for a given set $T \subseteq V$ of terminals, G is k-T-connected and $G \cup J$ should be (k+1)-T-connected. We consider the version of the problem when \hat{E} is an edge set on T, namely, every edge in \hat{E} has both endnodes in T.

k-Connectivity Augmentation

Here G is k-connected and $G \cup J$ should be (k+1)-connected. This is a particular case of k-T-Connectivity Augmentation when T = V.

k-(T, s)-Connectivity Augmentation

Here we are also given a root node s and a set $T \subseteq V$ of terminals, G is k-(T, s)-connected, and $G \cup J$ should be (k + 1)-(T, s)-connected.

One important particular case of k-(T, s)-Connectivity Augmentation is when all edges of positive cost are incident to s. This variant is closely related to Source Location problems, see [14,23].

These problems were studied extensively, see [1,4-6,9,12,14,19,21-23,27-29,32] for only a small sample of papers in the area. For k=0 and undirected graphs our problems include the Minimum Spanning Tree problem and the Steiner Tree problem; for directed graphs we get the Minimum Cost Strongly Connected Subgraph problem (that admits ratio 2 by taking a union of minimum cost in- and out-arborescences), and the Directed Steiner Tree problem.

The version of k-T-Connectivity Augmentation that we consider (when E is an edge set on T) admits ratio $O(\ln |T|)$; this was implicitly proved in [9], see also [3,29] for explicit proofs and generalizations. For |T| > k the problem admits ratio $O\left(\frac{|T|}{|T|-k} \cdot \ln \frac{|T|}{|T|-k}\right)$ [29]. We improve the latter ratio as follows.

Theorem 1 For both directed and undirected graphs, k-T-Connectivity Augmentation such that \hat{E} is an edge set on T and |T|>k admits ratio $O\left(\ln\frac{|T|}{|T|-k}\right)$.

To state our result for the k-Connectivity Augmentation problem we need some definitions. Let q be the largest integer such that $2q-1 \le n-k$, namely,

$$q = \lfloor \frac{n-k+1}{2} \rfloor$$
. Let

$$\mu = \left\lfloor \frac{n}{q+1} \right\rfloor = \left\lfloor \frac{n}{\lfloor (n-k+3)/2 \rfloor} \right\rfloor = \begin{cases} \left\lfloor \frac{2n}{n-k+3} \right\rfloor & \text{if } n-k \text{ is odd} \\ \\ \left\lfloor \frac{2n}{n-k+2} \right\rfloor & \text{if } n-k \text{ is even} \end{cases}.$$

It is not hard to see that:

- $-\mu = 1$ if and only if k = 0, or k = 1, or k = 2 and n is odd.
- $-\mu=2$ if and only if one of the following holds: k=2 and n is even, or $k\geq 3$ and one of the following holds: $n\geq 3k-8$ and n,k have distinct parities, or $n\geq 3k-5$ and n,k have the same parity.
- $-\mu \le 3$ if and only if one of the following holds: $n \ge 2k-5$ and n,k have distinct parities, or $n \ge 2k-3$ and n,k have the same parity.

Let H(k) denote the kth harmonic number. For both directed and undirected graphs k-Connectivity Augmentation admits ratio $2H(\mu)+2$ [29] (which is a constant unless k=n-o(n)), and also ratio $O(\ln(n-k))$ [29]. Specifically, for $n\geq 3k-5$, the previous best ratio was 5, for both directed and undirected graphs. For small values of k better ratios are known: k+2 for $k\leq 2$ in the case of directed graphs [22], and $\lceil k/2 \rceil+1$ for $k\leq 6$ in the case of undirected graphs [2,8,22]. We prove the following (for comparison with previous ratios see Table 1):

Theorem 2 k-Connectivity Augmentation admits the following approximation ratios:

- (i) For directed graphs, ratio $H(\mu) + \frac{3}{2}$. In particular:
 - For k = 1, and for k = 2 and n odd, $\mu = 1$, $H(\mu) = 1$, so the ratio is 2.5.
 - For $n \ge 3k 5$, $\mu \le 2$, $H(\mu) \le 3/2$, so the ratio is 3.
 - For $n \ge 2k 3$, $\mu \le 3$, $H(\mu) \le 11/6$, so the ratio is $3\frac{1}{3}$.
- (ii) For undirected graphs, ratio $2H(\mu)+1$. In particular, for $n \geq 3k-5$, $\mu \leq 2$, $H(\mu) \leq 3/2$, so the ratio is 4.

For directed graphs our ratios improve over the previous ones for any $k \ge 1$. For undirected graphs our ratio matches the best known ratio 4 for k = 6, 7, and it improves over the previous ratios for any $k \ge 8$.

			directed		undirected	
range	μ	$H(\mu)$	previous	this paper	previous	this paper
k = 0	1	1	2		in P	
k = 1, 2	1	1	3,4 [22]	2.5	2 [20,2]	
$3 \le k \le 6$	2	1.5	5 [29]	3	$\lceil k/2 \rceil + 1 \ [8,22]$	
$n \ge 3k - 5$	2	1.5	5 [29]	3	5 [29]	4
$n \ge 2k - 3$	3	$1\frac{5}{6}$	$5\frac{2}{3}$ [29]	$3\frac{1}{3}$	$5\frac{2}{3}$ [29]	$4\frac{2}{3}$
n < 2k - 3			$2H(\mu) + 2 [29]$	$H(\mu) + 1.5$	$2H(\mu) + 2 [29]$	$2H(\mu) + 1$

Table 1 Previous and our ratios for k-Connectivity Augmentation; for k = 2 our ratio 2.5 for directed graphs is valid when n is odd.

We now state our results for the k-(T,s)-Connectivity Augmentation problem. The best known ratio for k-(T,s)-Connectivity Augmentation is $O(k \log k)$, and it was 12 for k=2 [27]. For the version when all edges in \hat{E} are incident to s the best ratio was 2H(2k+1) [23], which for k=2 is $2H(5)=4\frac{17}{30}>4.5$. We consider the case k=2, and significantly improve over the previous ratios.

Theorem 3 Undirected 2-(T,s)-Connectivity Augmentation admits ratio $4\frac{2}{3}$; if all edges in \hat{E} are incident to s, then the problem admits a polynomial time algorithm.

The rest of the Introduction we survey some related work. In Section 2 we cast our problems as a problem of finding a minimum cost edge cover of a biset family, and state some properties of relevant biset families. In subsequent section 3, 4, and 5 we prove the corresponding theorems. In Section 6 we provide a short proof of a theorem from [29] that is used by our algorithms.

1.2 Some previous and related work

We consider node-connectivity problems for which classic techniques like the primal dual method [17] and iterative rounding [18] do not seem to be applicable directly. Ravi and Williamson [31] gave an example of a k-Connectivity Augmentation instance when the primal dual method has ratio $\Omega(k)$. Azami, Cheriyan and Laekhanukit [1] presented a related instance for which the basic optimal solution to the LP-relaxation has all variables of value $O(1/\sqrt{k})$, ruling out the iterative rounding method. On the other hand, several works showed that node-connectivity problems can be decomposed into a small number p of "good" problems. The bound on p was subsequently improved, culminating in the currently best known bounds $O(\log \frac{n}{n-k})$ for directed/undirected k-Connectivity Augmentation [29], and O(k) for undirected k-(T, s)-Connectivity Augmentation [27]. In fact, [25] shows that for $k = \Omega(n)$ the approximability of the directed and undirected variants of these problems is the same, up to a factor of 2. We refer the reader to [4,24] for various hardness results on k-(T, s)-Connectivity Augmentation. We note that the version of k-Connectivity Augmentation when any edge can be added by a cost of 1 can be solved in polynomial time for both directed [12] and undirected [32] graphs. But for general costs, determining whether k-Connectivity Augmentation admits a constant ratio for k = n - o(n) is one of the most challenging problems.

We mention some related work on the more general k-Connected Subgraph problem, where we seek a minimum cost k-connected spanning subgraph; k-Connectivity Augmentation is a particular case, when the target connectivity is k+1 and the edges of cost zero of the input graph form a k-connected spanning subgraph. Many papers that considered the k-Connected Subgraph problem built on the algorithm of Frank and Tardos [13] for a related problem of finding a minimum cost k-outconnected subgraph [20,2,8,6,21,9,5], but most papers that considered high values of k in fact designed algorithms for k-Connectivity

Augmentation [6,21,9,29]. These papers use the fact that ratio ρ w.r.t. the LP-relaxation for k-Connectivity Augmentation implies ratio $\rho H(k) = \rho \cdot O(\log k)$ for k-Connected Subgraph [30]. Recently, Cheriyan and Végh [5] showed that for undirected graphs with $n = \Omega(k^4)$ this $O(\log k)$ factor can be saved and ratio 6 can be achieved by a new decomposition of the problem. The bound $n = \Omega(k^4)$ of [5] was improved to $n = \Omega(k^3)$ in [16].

In the more general Survivable Network problem, we are given connectivity requirements $\{r_{uv}: u,v\in V\}$. The goal is to compute a minimum cost subgraph that has r_{uv} internally-disjoint uv-paths for all $u,v\in V$. For undirected graphs the problem admits ratio $O(k^3\log n)$ due to Chuzhoy and Khanna [7]. For directed graphs, no non-trivial ratio is known even for 2-(T,s)-Connectivity Augmentation.

2 Preliminaries on biset families

While edge-cuts of a graph correspond to node subsets, a natural way to represent a node-cut of a graph is by a pair of sets called a "biset".

Definition 1 An ordered pair $\mathbb{A} = (A, A^+)$ of subsets of a groundset V is called a **biset** if $A \subseteq A^+$; A is the **inner part** and A^+ is the **outer part** of \mathbb{A} , and $\partial(\mathbb{A}) = \partial\mathbb{A} = A^+ \setminus A$ is the **boundary** of \mathbb{A} . The **co-set** of a biset $\mathbb{A} = (A, A^+)$ is $A^* = V \setminus A^+$; the **co-biset** of \mathbb{A} is $\mathbb{A}^* = (A^*, V \setminus A)$.

Definition 2 A **biset family** is a family of bisets. The **co-family** of a biset family \mathcal{F} is $\mathcal{F}^* = \{\mathbb{A}^* : \mathbb{A} \in \mathcal{F}\}$. \mathcal{F} is **symmetric** if $\mathcal{F} = \mathcal{F}^*$.

Definition 3 An edge covers a biset \mathbb{A} if it goes from A to A^* . Let $\delta_E(\mathbb{A})$ denote the set of edges in E that cover \mathbb{A} . The **residual family** of a biset family \mathcal{F} w.r.t. an edge-set/graph J is denoted \mathcal{F}^J and it consists of the members in \mathcal{F} not covered by any $e \in J$, namely, $\mathcal{F}^J = \{\mathbb{A} \in \mathcal{F} : \delta_J(\mathbb{A}) = \emptyset\}$. We say that an **edge set/graph** J **covers** \mathcal{F} or that J **is an** \mathcal{F} -edge-cover if every $\mathbb{A} \in \mathcal{F}$ is covered by some $e \in J$, namely, if $\mathcal{F}^J = \emptyset$.

We say that \mathbb{A} is an st-biset if $s \in A$ and $t \in A^*$. Let G = (V, E) is a (directed or undirected) graph and let $s, t \in V$ with $st \notin E$. In biset terms, Menger's Theorem says that $\kappa_G(s,t) \leq |\partial \mathbb{A}|$ for any st-biset \mathbb{A} with $\delta_E(\mathbb{A}) = \emptyset$, and

$$\kappa_G(s,t) = \min\{|\partial \mathbb{A}| : \mathbb{A} \text{ is an } st\text{-biset}, \delta_E(\mathbb{A}) = \emptyset\}$$
.

Given an instance of k-T-Connectivity Augmentation we will assume that G has no edge between two terminals by subdividing by a new node every such edge. Similarly, given an instance of k-(T,s)-Connectivity Augmentation we will assume that G has no edge from T to s. Then the biset families we need to cover in k-T-Connectivity Augmentation, k-Connectivity Augmentation, and k-(T,s)-Connectivity Augmentation, respectively, are:

$$\mathcal{F}_{k-T} = \{ \mathbb{A} : |\partial \mathbb{A}| = k, \delta_E(\mathbb{A}) = \emptyset, A \cap T \neq \emptyset, A^* \cap T \neq \emptyset \}$$
 (1)

$$\mathcal{F}_k = \{ \mathbb{A} : |\partial \mathbb{A}| = k, \delta_E(\mathbb{A}) = \emptyset, A \neq \emptyset, A^* \neq \emptyset \}$$
 (2)

$$\mathcal{F}_{k-(T,s)} = \{ \mathbb{A} : |\partial \mathbb{A}| = k, \delta_E(\mathbb{A}) = \emptyset, A \cap T \neq \emptyset, s \in A^* \}$$
 (3)

Eeev Nutov

Recall that in the case of k-T-Connectivity Augmentation, we consider the version when only edges between nodes of T can be added. Then it is sufficient to cover the projection of \mathcal{F}_{k-T} on T, namely the following biset family on T:

$$\mathcal{T} = \{ (A \cap T, A^+ \cap T) : \mathbb{A} \in \mathcal{F}_{k-T} \}$$
(4)

Note that if T = V then $\mathcal{F}_k = \mathcal{F}_{k-T} = \mathcal{T}$.

We thus consider the following generic algorithmic problem.

Biset-Family Edge-Cover

Input: A graph (V, \hat{E}) with edge-costs $\{c_e : e \in \hat{E}\}$ and a biset family \mathcal{F} . Output: A minimum cost \mathcal{F} -edge-cover $J \subseteq F$.

Here the biset family \mathcal{F} may not be given explicitly, and a polynomial time implementation in n=|V| of our algorithms requires that the following query can be answered in time polynomial in n: Given an edge set/graph J on V and $s,t\in V$, find the inclusionwise minimal and the inclusionwise maximal members of the family $\{A\in \mathcal{F}^J: s\in A, t\in V\setminus A^+\}$, if non-empty. For biset families arising from our problems, this query can be answered in polynomial time using max-flow min-cut computations (we omit the standard implementation details).

Definition 4 The **intersection** and the **union** of two bisets \mathbb{A} , \mathbb{B} are defined by $\mathbb{A} \cap \mathbb{B} = (A \cap B, A^+ \cap B^+)$ and $\mathbb{A} \cup \mathbb{B} = (A \cup B, A^+ \cup B^+)$. The biset $\mathbb{A} \setminus \mathbb{B}$ is defined by $\mathbb{A} \setminus \mathbb{B} = (A \setminus B^+, A^+ \setminus B)$. We say that \mathbb{B} **contains** \mathbb{A} and write $\mathbb{A} \subseteq \mathbb{B}$ if $A \subseteq B$ and $A^+ \subseteq B^+$. We say that \mathbb{A} , \mathbb{B} **intersect** if $A \cap B \neq \emptyset$ and \mathbb{A} , \mathbb{B} **cross** if $A \cap B \neq \emptyset$ and $A^+ \cup B^+ \neq V$.

The following properties of bisets are known and easy to verify.

Fact 1 For any bisets \mathbb{A}, \mathbb{B} the following holds. If a directed/undirected edge e covers one of $\mathbb{A} \cap \mathbb{B}, \mathbb{A} \cup \mathbb{B}$ then e covers one of \mathbb{A}, \mathbb{B} ; if e is an undirected edge, then if e covers one of $\mathbb{A} \setminus \mathbb{B}, \mathbb{B} \setminus \mathbb{A}$, then e covers one of \mathbb{A}, \mathbb{B} . Furthermore

$$|\partial \mathbb{A}| + |\partial \mathbb{B}| = |\partial (\mathbb{A} \cap \mathbb{B})| + |\partial (\mathbb{A} \cup \mathbb{B})| = |\partial (\mathbb{A} \setminus \mathbb{B})| + |\partial (\mathbb{B} \setminus \mathbb{A})|.$$

Definition 5 A biset family \mathcal{F} is **intersecting/crossing** if $\mathbb{A} \cap \mathbb{B}$, $\mathbb{A} \cup \mathbb{B} \in \mathcal{F}$ whenever \mathbb{A}, \mathbb{B} intersect/cross. Let us say that a crossing biset family \mathcal{F} is p-**crossing** if for any $\mathbb{A}, \mathbb{B} \in \mathcal{F}$ that intersect the following holds: $\mathbb{A} \cap \mathbb{B} \in \mathcal{F}$ if $|A \cup B| \leq n - p$, and $\mathbb{A} \cup \mathbb{B} \in \mathcal{F}$ if $|A \cup B| \leq n - p - 1$.

The following known lemma (c.f. [19,27]) can be deduced from Fact 1.

Lemma 2 If G is k-T-connected then \mathcal{T} and \mathcal{T}^* are both k-crossing, where \mathcal{T} is defined in (4). Furthermore, if T = V then $|\partial \mathbb{A}| = k$ for all $\mathbb{A} \in \mathcal{T}$.

Note that Fact 1 implies that if \mathcal{F} is intersecting, crossing, or k-crossing, then so is the residual family \mathcal{F}^J of \mathcal{F} , for any J.

Let $\tau(\mathcal{F})$ denote the optimal value of a standard **Biset-LP** for the problem of edge-covering a biset family \mathcal{F} , namely:

$$\mathbf{Biset\text{-}LP} \quad \tau(\mathcal{F}) = \min \left\{ \sum_{e \in \hat{E}} c_e x_e : \sum_{e \in \delta(\mathbb{A})} x_e \ge 1 \ \forall \mathbb{A} \in \mathcal{F}, x_e \ge 0 \ \forall e \in \hat{E} \right\} \ .$$

Directed Biset-Family Edge-Cover with intersecting \mathcal{F} admits a polynomial time algorithm that computes an \mathcal{F} -edge-cover of cost $\tau(\mathcal{F})$ [11]; for undirected graphs the cost is $2\tau(\mathcal{F})$ for intersecting \mathcal{F} , by a standard "bidirection" reduction to the directed case.

In terms of bisets, we prove the following two theorems that imply Theorems 1 and 2. In these theorems \mathcal{F} is a biset family on a groundset V of size n = |V|. Let us say that Biset-Family Edge-Cover admits LP-ratio ρ if there exists a polynomial time algorithm that computes an \mathcal{F} -cover of cost $\rho \cdot \tau(\mathcal{F})$.

Theorem 4 (Implies Theorem 1) Biset-Family Edge-Cover such that \mathcal{F} and \mathcal{F}^* are k-crossing and $n \geq k+1$ admits LP-ratio $O(\ln \mu)$.

Theorem 5 (Implies Theorem 2) Biset-Family Edge-Cover such that \mathcal{F} and \mathcal{F}^* are k-crossing, $|\partial \mathbb{A}| \geq k$ for all $\mathbb{A} \in \mathcal{F}$, and $n \geq k+3$, admits the following LP-ratios:

- (i) For directed graphs, ratio $H(\mu) + \frac{3}{2}$. In particular:
 - For k = 1, and for k = 2 and n odd, $\mu = 1$, $H(\mu) = 1$, so the ratio is 2.5.
 - For $n \ge 3k 5$, $\mu \le 2$, $H(\mu) \le 3/2$, so the ratio is 3.
 - for $n \ge 2k 3$, $\mu \le 3$, $H(\mu) \le 11/6$, so the ratio is $3\frac{1}{3}$.
- (ii) For undirected graphs, ratio $2H(\mu)+1$. In particular, for $n \geq 3k-5$, $\mu \leq 2$, $H(\mu) \leq 3/2$, so the ratio is 4.

Theorem 3 relies on different "uncrossing" properties of the family $\mathcal{F}_{2-(T,s)}$, that will be given in Section 5

The following definition plays a key role in our algorithms.

Definition 6 The inclusionwise minimal members of a biset family \mathcal{F} are called \mathcal{F} -cores, or simply cores, if \mathcal{F} is clear from the context. Let $\mathcal{C}(\mathcal{F})$ denote the family of \mathcal{F} -cores, and let $\nu(\mathcal{F}) = |\mathcal{C}(\mathcal{F})|$ denote the number of \mathcal{F} -cores. For $\mathbb{C} \in \mathcal{C}(\mathcal{F})$, the **halo-family** $\mathcal{F}(\mathbb{C})$ of \mathbb{C} is the family of those members of \mathcal{F} that contain \mathbb{C} and contain no \mathcal{F} -core distinct from \mathbb{C} .

Let us say that two biset families \mathcal{A}, \mathcal{B} are **independent** if no $\mathbb{A} \in \mathcal{A}$ and $\mathbb{B} \in \mathcal{B}$ cross. Note that if $\mathcal{F}_1, \ldots, \mathcal{F}_p$ is a collection of pairwise independent subfamilies of a biset family \mathcal{F} , then for $i \neq j$ no directed edge can cover $\mathbb{A}_i \in \mathcal{F}_i$ and $\mathbb{A}_j \in \mathcal{F}_j$, and thus $\sum_{i=1}^p \tau(\mathcal{F}_i) \leq \tau(\mathcal{F})$.

The following statement summarizes several relevant properties of halo families of crossing biset families, c.f. [22,9,3,29]. We provide a proof for completeness of exposition.

Lemma 3 For any crossing biset family \mathcal{F} the following holds.

- (i) For any \mathcal{F} -core \mathbb{C} , $\mathcal{F}(\mathbb{C})$ is a crossing family and $\mathcal{F}(\mathbb{C})^* = \{\mathbb{A}^* : \mathbb{A} \in \mathcal{F}(\mathbb{C})\}$ (the co-family of $\mathcal{F}(\mathbb{C})$) is an intersecting family.
- (ii) Halo families of distinct cores are independent.
- (iii) For any \mathcal{F} -core \mathbb{C} , if J is an inclusion minimal edge set that covers $\mathcal{F}(\mathbb{C})$ then $\mathcal{C}(\mathcal{F}^J) = \mathcal{C}(\mathcal{F}) \setminus \{\mathbb{C}\}.$

Proof We prove (i). Let $\mathbb{A}, \mathbb{B} \in \mathcal{F}(\mathbb{C})$ cross. Then $\mathbb{A} \cap \mathbb{B}, \mathbb{A} \cup \mathbb{B} \in \mathcal{F}$. Since $\mathbb{A} \cap \mathbb{B} \subseteq \mathbb{A} \subseteq \mathbb{A} \cup \mathbb{B}$ and $\mathbb{A} \in \mathcal{F}(\mathbb{C}), \mathbb{A} \cap \mathbb{B} \in \mathcal{F}(\mathbb{C})$ and $\mathbb{C} \subseteq \mathbb{A} \cup \mathbb{B}$. We claim that $\mathbb{A} \cup \mathbb{B}$ contains no core \mathbb{C}' distinct from \mathbb{C} . Otherwise, since none of \mathbb{A}, \mathbb{B} can contain \mathbb{C}' , we must have that \mathbb{C}', \mathbb{A} cross or \mathbb{C}', \mathbb{B} cross, so $\mathbb{C}' \cap \mathbb{A} \in \mathcal{F}$ or $\mathbb{C}' \cap \mathbb{B} \in \mathcal{F}$; this contradicts that \mathbb{C}' is a core. Thus $\mathcal{F}(\mathbb{C})$ is a crossing family. We prove that $\mathcal{F}(\mathbb{C})^*$ is an intersecting family. Let $\mathbb{A}, \mathbb{B} \in \mathcal{F}(\mathbb{C})^*$ intersect. Then $\mathbb{C} \subseteq \mathbb{A}^* \cap \mathbb{B}^*$ so \mathbb{A}, \mathbb{B} cross. Thus since $\mathcal{F}(\mathbb{C})$ is a crossing family, we get that $\mathbb{A} \cap \mathbb{B}, \mathbb{A} \cup \mathbb{B} \in \mathcal{F}(\mathbb{C})^*$.

We prove (ii). Let $\mathbb{A}_1 \in \mathcal{F}(\mathbb{C}_1)$ and $\mathbb{A}_2 \in \mathcal{F}(\mathbb{C}_2)$ cross, for $\mathbb{C}_1, \mathbb{C}_2 \in \mathcal{C}(\mathcal{F})$. Then $\mathbb{A}_1 \cap \mathbb{A}_2 \in \mathcal{F}$, so $\mathbb{A}_1 \cap \mathbb{A}_2$ contains some \mathcal{F} -core \mathbb{C} . We have $\mathbb{C} = \mathbb{C}_1$ since $\mathbb{C} \subseteq \mathbb{A}_1$ and $\mathbb{C} = \mathbb{C}_2$ since $\mathbb{C} \subseteq \mathbb{A}_2$, hence $\mathbb{C}_1 = \mathbb{C}_2$.

Part (iii) follows from part (ii), since every $e \in J$ covers some biset in $\mathcal{F}(\mathbb{C})$ (by the minimality of J) and thus by (ii) cannot cover a core distinct from \mathbb{C}

The following statement was implicitly proved in [9] (see also [3]) and explicitly in [29]. We provide a proof for completeness of exposition.

Theorem 6 Directed Biset-Family Edge-Cover with crossing \mathcal{F} admits a polynomial time algorithm that given $\mathcal{C} \subseteq \mathcal{C}(\mathcal{F})$ and an integer $0 \le t \le |\mathcal{C}|$ computes an edge set $J \subseteq E$ such that the following holds:

- $-\mathcal{C}(\mathcal{F}^J) = \mathcal{C}(\mathcal{F}) \setminus \mathcal{C}' \text{ for some } \mathcal{C}' \subseteq \mathcal{C} \text{ with } |\mathcal{C}'| = |\mathcal{C}| t.$
- $-c(J) \leq (H(|\mathcal{C}|) H(t)) \cdot \tau(\mathcal{F}')$, where \mathcal{F}' is the family of those members of \mathcal{F} that contain no core in $\mathcal{C}(\mathcal{F}) \setminus \mathcal{C}$.

Proof Consider the following algorithm. Start with a partial solution $J=\emptyset$. While $|\mathcal{C}\cap\mathcal{C}(\mathcal{F}^J)|\geq t+1$ continue with iterations. At iteration i, compute for each $\mathbb{C}\in\mathcal{C}\cap\mathcal{C}(\mathcal{F}^J)$ an optimal inclusion minimal edge cover $J_{\mathbb{C}}$ of the family $\mathcal{F}^J(\mathbb{C})$ (the halo family of \mathbb{C} in \mathcal{F}^J); then add to J a minimum cost edge set J_i among the edge sets $\{J_{\mathbb{C}}:\mathbb{C}\in\mathcal{C}\cap\mathcal{C}(\mathcal{F}^J)\}$. By part (i) of Lemma 3, each $J_{\mathbb{C}}$ can be computed in polynomial time and $c(J_{\mathbb{C}})=\tau(\mathcal{F}^J(\mathbb{C}))$. By part (ii) of Lemma 3, $\sum_{\mathbb{C}\in\mathcal{C}\cap\mathcal{C}(\mathcal{F}^J)}c(J_{\mathbb{C}})\leq\tau(\mathcal{F}')$. Thus there is $\mathbb{C}\in\mathcal{C}$ such that $c(J_{\mathbb{C}})\leq\tau(\mathcal{F}')/|\mathcal{C}\cap\mathcal{C}(\mathcal{F}^J)|$. By part (iii) of Lemma 3, at iteration i we have $|\mathcal{C}\cap\mathcal{C}(\mathcal{F}^J)|\leq |\mathcal{C}|-i+1$. Thus $c(J_i)\leq\tau(\mathcal{F}')/(|\mathcal{C}|-i+1)$ at iteration i. The number of iterations is $|\mathcal{C}|-t$. Consequently,

$$c(J) \le \sum_{i=1}^{|\mathcal{C}|-t} c(J_i) \le \tau(\mathcal{F}') \sum_{i=1}^{|\mathcal{C}|-t} \frac{1}{|\mathcal{C}|-i+1} = (H(|\mathcal{C}|) - H(t)) \cdot \tau(\mathcal{F}') ,$$

and the statement follows.

Note that for t=0, the edge set J in Theorem 6 covers the family of those members of \mathcal{F} that contain no core in $\mathcal{C}(\mathcal{F}) \setminus \mathcal{C}$ and $c(J) \leq H(|\mathcal{C}|)\tau(\mathcal{F}')$; if also $\mathcal{C} = \mathcal{C}(\mathcal{F})$ then J covers \mathcal{F} and has cost $c(J) \leq H(\nu(\mathcal{F})) \cdot \tau(\mathcal{F})$.

3 Ratio $O(\ln \mu)$ for k-crossing families (Theorem 4)

Recall that q is a parameter eventually set to $q = \lfloor \frac{n-k+1}{2} \rfloor$, and $\mu = \lfloor \frac{n}{q+1} \rfloor$. Let us say that \mathbb{A} is a **small biset/core** if $|A| \leq q$, and \mathbb{A} is a **large biset/core** otherwise. We mention some definitions from [29] needed for the proof of Theorem 4.

Definition 7 A biset family \mathcal{F} is **intersection-closed** if $\mathbb{A} \cap \mathbb{B} \in \mathcal{F}$ for any intersecting $\mathbb{A}, \mathbb{B} \in \mathcal{F}$. An intersection-closed \mathcal{F} is **q-semi-intersecting** if $|A| \leq q$ for every $\mathbb{A} \in \mathcal{F}$ and if $\mathbb{A} \cup \mathbb{B} \in \mathcal{F}$ for any intersecting $\mathbb{A}, \mathbb{B} \in \mathcal{F}$ with $|A \cup B| \leq q$. The **q-truncated family** of \mathcal{F} is $\mathcal{F}_{\leq q} := \{\mathbb{A} \in \mathcal{F} : |A| \leq q\}$. namely, $\mathcal{F}_{\leq q}$ is the family of the small bisets in \mathcal{F} .

We obtain a q-semi-intersecting family from a k-crossing family as follows.

Lemma 4 Let \mathcal{F} be a k-crossing biset family. If $2q-1 \leq n-k$ and $q \leq n-k-1$ (in particular if $q \leq \lfloor \frac{n-k+1}{2} \rfloor$ and $n \geq k+3$) then $\mathcal{F}_{\leq q}$ is q-semi-intersecting.

Proof Let $\mathbb{A}, \mathbb{B} \in \mathcal{F}_{\leq q}$ intersect. Then $|A \cup B| \leq |A| + |B| - 1 \leq 2q - 1 \leq n - k$. Thus $\mathbb{A} \cap \mathbb{B} \in \mathcal{F}_{\leq q}$. If $|A \cup B| \leq q \leq n - k - 1$ then $\mathbb{A} \cup \mathbb{B} \in \mathcal{F}_{\leq q}$. Hence if both $2q - 1 \leq n - k$ and $q \leq n - k - 1$, then $\mathcal{F}_{\leq q}$ is q-semi-intersecting. \square

The following theorem is the main result of [29]. It says that if \mathcal{F} is q-semi-intersecting, then we can find a "cheap" edge set J such that $\nu(\mathcal{F}^J)$ is "small". We will provide a relatively simple proof of this theorem in Section 6.

Theorem 7 ([29]) Directed Biset-Family Edge-Cover with q-semi-intersecting \mathcal{F} admits a polynomial time algorithm that computes an edge-set $J \subseteq E$ such that $\nu(\mathcal{F}^J) \leq \lfloor n/(q+1) \rfloor$ and $c(J) \leq \tau(\mathcal{F})$.

From Theorem 7 and Lemma 4 we have the following.

Corollary 1 Directed Biset-Family Edge-Cover with k-crossing \mathcal{F} and $n \geq k+3$ admits a polynomial time algorithm that for any $q \leq \lfloor \frac{n-k+1}{2} \rfloor$ computes $J \subseteq E$ such that $\nu(\mathcal{F}_{\leq q}^J) \leq \lfloor n/(q+1) \rfloor$ and $c(J) \leq \tau(\mathcal{F}_{\leq q})$.

We note that each of the statements in Theorem 7, Corollary 1, and Theorem 6, applies also for undirected graphs and symmetric \mathcal{F} , but with an additional factor of 2 in the cost. In this case we have $c(J) \leq 2\tau(\mathcal{F})$ in Theorem 7 and Corollary 1, and $c(J) \leq 2H(|\mathcal{C}|) \cdot \tau(\mathcal{F}')$ in Theorem 6. This is achieved by the following standard reduction. In each of the cases, we bidirect the edges of G (namely, replace every undirected edge e with endnodes u, v by two opposite directed edges uv, vu of cost c_e each), compute a set of directed edges for the obtained directed problem, and return the corresponding set of undirected edges.

A weaker version of the following statement is implicitly proved in [26].

Lemma 5 Let \mathcal{F} be a biset family such that both \mathcal{F} and \mathcal{F}^* are k-crossing. Then $\nu(\mathcal{F}) \leq \nu(\mathcal{F}_{\leq q}) + \nu(\mathcal{F}_{\leq q}^*) + \mu^2 H(\mu)$.

Proof Note that for any distinct $\mathbb{A}, \mathbb{B} \in \mathcal{C}(\mathcal{F})$ we have $\mathbb{A} \cap \mathbb{B} \notin \mathcal{F}$. We show that if an arbitrary $\mathcal{A} \subseteq \mathcal{F}$ has this property then $|\mathcal{A}| \leq \nu(\mathcal{F}_{\leq q}) + \nu(\mathcal{F}_{\leq q}^*) + \mu^2 H(\mu)$. Let $\mathcal{B} = \{ \mathbb{A} \in \mathcal{A} : |A|, |A^*| \geq q+1 \}$. Clearly, $|A| \leq |A| \leq q + |A| \leq q +$ by the inner parts of the bisets in \mathcal{B} . Let Δ be the maximum degree in \mathcal{H} . Recall that a hitting set of a hypergraph/set family is a set U of nodes that intersects every hyperedge/set of \mathcal{H} . A fractional hitting set is a function $h:V\longrightarrow [0,1]$ such that $h(A) = \sum_{v \in A} h(v) \ge 1$ for every hyperedge A. It is known that if h is a fractional hitting set of \mathcal{H} then \mathcal{H} has a hitting set of size at most $H(\Delta) \cdot h(V)$. Note the following:

- (i) $\Delta \leq \mu$. This is so since no two bisets in \mathcal{B} cross, and thus for any $v \in V$ the sets in the family $\{A^* : \mathbb{A} \in \mathcal{B}, v \in A\}$ are pairwise disjoint; hence their number is at most $\nu(\mathcal{B}^*) \leq \left\lfloor \frac{n}{q+1} \right\rfloor = \mu$.
- (ii) \mathcal{H} has a hitting set U of size $|U| \leq \mu H(\Delta) \leq \mu H(\mu)$. This is so since \mathcal{H} has a fractional hitting set h of value μ defined by $h(v) = \frac{1}{q+1}$ for all $v \in V$.

Since \mathcal{H} has at most $|U| \cdot \Delta$ hyperedges, the bound $|\mathcal{B}| \leq \mu^2 H(\mu)$ follows.

The algorithm as in Theorem 4 is as follows.

Algorithm 1: DIRECTED-COVER $(\mathcal{F}, \hat{G}, c)$ $(\mathcal{F}, \mathcal{F}^*)$ are both k-crossing)

- 1 compute $J_1 \subseteq E$ with $\nu(\mathcal{F}_{\leq q}^{J_1}) \leq \mu$ and $c(J_1) \leq \tau(\mathcal{F}_{\leq q})$ using the algorithm from Corollary 1 **compute** a similar edge set $J_1^* \subseteq E$ for the family $\mathcal{F}_{\leq q}^*$
- **2 compute** $J_2 \subseteq E$ covering $\mathcal{F}^{J_1 \cup J_1^*}$ using the algorithm from **Lemma 3**
- **3 return** $J = J_1 \cup J_1^* \cup J_2$

By Lemma 5, $|\mathcal{C}(\mathcal{F}^{J_1 \cup J_1^*})| = O(\mu^2 \ln \mu)$ and thus $c(J_2) = \tau(\mathcal{F})O(\ln \mu)$. Consequently, the cost of the solution computed is bounded by

$$\tau(\mathcal{F})(c(J_1) + c(J_1^*) + c(J_2)) \le \tau(\mathcal{F})(1 + 1 + O(\ln \mu)) = O(\ln \mu)$$
.

4 Proof of Theorem 5

4.1 Directed graphs

Recall that biset families \mathcal{A}, \mathcal{B} are independent if no $\mathbb{A} \in \mathcal{A}$ and $\mathbb{B} \in \mathcal{B}$ cross. In Lemma 3 and Theorem 6 we used the observation that if \mathcal{A}, \mathcal{B} are two independent subfamilies of a biset family \mathcal{F} then $\tau(\mathcal{A}) + \tau(\mathcal{B}) \leq \tau(\mathcal{F})$. Here we use a different novel setting, where \mathcal{A}, \mathcal{B} may not be independent, but $\mathcal{A} \setminus \mathcal{B}$ and $\mathcal{B} \setminus \mathcal{A}$ are independent.

Lemma 6 Let A, B be subfamilies of a biset family F such that $A \cup B = F$ and the families $A \setminus B$ and $B \setminus A$ are independent. Suppose that for any $J \subseteq \hat{E}$ Biset-Family Edge-Cover with \mathcal{A}^J admits LP-ratio α and with \mathcal{B}^J admits LPratio β . Then Biset-Family Edge-Cover with \mathcal{F} admits LP-ratio $\alpha + \beta - \frac{\alpha\beta}{\alpha+\beta}$.

Proof We claim that the following algorithm achieves LP-ratio $\alpha + \beta - \frac{\alpha\beta}{\alpha+\beta}$:

Algorithm 2: Independent-Cover($\mathcal{A}, \mathcal{B}, G, c$)

- 1 $J_{\mathcal{A}} \leftarrow \alpha$ -approximate \mathcal{A} -cover $J'_{\mathcal{B}} \leftarrow \beta$ -approximate $\mathcal{B}^{J_{\mathcal{A}}}$ -cover
- 2 $J_{\mathcal{B}} \leftarrow \beta$ -approximate \mathcal{B} -cover $J'_{\mathcal{A}} \leftarrow \alpha$ -approximate $\mathcal{A}^{J_{\mathcal{B}}}$ -cover 3 return the cheaper edge set J among $J_{\mathcal{A}} \cup J'_{\mathcal{B}}, J_{\mathcal{B}} \cup J'_{\mathcal{A}}$.

Note that since $A \setminus B$ and $B \setminus A$ are independent, so are B^{J_A} and A^{J_B} . Thus no $\mathbb{B} \in \mathcal{B}^{J_A}$ and $\mathbb{A} \in \mathcal{A}^{J_B}$ cross, so no directed edge can cover both \mathbb{A} and B. Therefore

$$\tau\left(\mathcal{B}^{J_{\mathcal{A}}}\right) + \tau\left(\mathcal{A}^{J_{\mathcal{B}}}\right) \leq \tau(\mathcal{F})$$
.

Denoting $\tau = \tau(\mathcal{F})$ and $\tau' = \tau(\mathcal{B}^{J_A})$, we have $\tau(\mathcal{A}^{J_B}) \leq \tau - \tau'$. We also have:

$$c(J_{\mathcal{A}}) \leq \alpha \tau(\mathcal{A}) \leq \alpha \tau \qquad c(J_{\mathcal{B}}') \leq \beta \tau \left(\mathcal{B}^{J_{\mathcal{A}}}\right) = \beta \tau'$$

$$c(J_{\mathcal{B}}) \leq \beta \tau(\mathcal{B}) \leq \beta \tau \qquad c(J_{\mathcal{A}}') \leq \alpha \tau \left(\mathcal{A}^{J_{\mathcal{B}}}\right) \leq \alpha(\tau - \tau')$$

Thus the cost of the edge set produced by the algorithm is bounded by

$$c(J) = \min\{c(J_{\mathcal{A}}) + c(J_{\mathcal{B}}'), c(J_{\mathcal{B}}) + c(J_{\mathcal{A}}')\} \le \min\{\alpha\tau + \beta\tau', \beta\tau + \alpha(\tau - \tau')\}.$$

The worst case is when $\alpha \tau + \beta \tau' = \beta \tau + \alpha (\tau - \tau')$, namely $\tau' = \frac{\beta}{\alpha + \beta} \tau$. Then

$$c(J) = \alpha \tau + \beta \tau' = \tau \left(\alpha + \frac{\beta^2}{\alpha + \beta} \right) = \tau \frac{\alpha^2 + \alpha \beta + \beta^2}{\alpha + \beta} = \tau \left(\alpha + \beta - \frac{\alpha \beta}{\alpha + \beta} \right) \ .$$

This concludes the proof of the lemma.

Recall that A is a small biset/core if $|A| \leq q$, and A is a large biset/core otherwise. Let \mathcal{F} be as in Theorem 5, namely, \mathcal{F} and \mathcal{F}^* are k-crossing, $|\partial \mathbb{A}| \geq$ k for all $\mathbb{A} \in \mathcal{F}$, and $n \geq k+3$. We show that then the following two subfamilies \mathcal{A}, \mathcal{B} of \mathcal{F} satisfy the assumptions of Lemma 6 with $\alpha = \beta = 1$; note that then $\alpha + \beta - \frac{\alpha\beta}{\alpha+\beta} = 3/2$.

- $-\mathcal{A}$ is the family of bisets in \mathcal{F} that contain some small \mathcal{F} -core.
- $-\mathcal{B}$ is the family of bisets in \mathcal{F} that contain some large \mathcal{F} -core.

Lemma 7 The families A, B above satisfy the assumption properties of Lemma 6 with $\alpha = \nu(\mathcal{F}_{\leq q})$ (so $\alpha = 1$ if $\nu(\mathcal{F}_{\leq q}) = 1$) and $\beta = 1$.

Proof Clearly, $A \cup B = F$. We prove that $A \setminus B$ and $B \setminus A$ are independent. Let $\mathbb{A} \in \mathcal{A}$ and $\mathbb{B} \in \mathcal{B}$ cross. Then $\mathbb{A} \cap \mathbb{B} \in \mathcal{F}$, since \mathcal{F} is a crossing family. Thus $\mathbb{A} \cup \mathbb{B}$ contains an \mathcal{F} -core \mathbb{C} . If \mathbb{C} is small then $\mathbb{A}, \mathbb{B} \in \mathcal{A}$ and thus $\mathbb{B} \notin \mathcal{B} \setminus \mathcal{A}$. If \mathbb{C} is large then $\mathbb{A}, \mathbb{B} \in \mathcal{B}$ and thus $\mathbb{A} \notin \mathcal{A} \setminus \mathcal{B}$. In both cases we cannot have $\mathbb{A} \in \mathcal{A} \setminus \mathcal{B}$ and $\mathbb{B} \in \mathcal{B} \setminus \mathcal{A}$, hence $\mathcal{A} \setminus \mathcal{B}$ and $\mathcal{B} \setminus \mathcal{A}$ are independent.

To prove the claimed approximability of covering \mathcal{A} and \mathcal{B} , we show that \mathcal{A}^* is a union of $\nu(\mathcal{F}_{\leq q})$ intersecting biset families, and that \mathcal{B}^* is an intersecting biset family. For a core \mathbb{C} denote $\mathcal{F}_{\mathbb{C}} = \{ \mathbb{A} \in \mathcal{F} : \mathbb{C} \subseteq \mathbb{A} \}$. Note that $\mathcal{A} = \bigcup \mathcal{F}_{\mathbb{C}}$ and $\mathcal{A}^* = \bigcup \mathcal{F}_{\mathbb{C}}^*$, where the union is taken over all small cores \mathbb{C} of \mathcal{F} . It is easy to see that since \mathcal{F} is crossing, then each family $\mathcal{F}_{\mathbb{C}}^*$ is an intersecting family. Hence \mathcal{A}^* is a union of $\nu(\mathcal{F}_{\leq q})$ intersecting families

We prove that \mathcal{B}^* is an intersecting family. Consider the inclusionwise maximal members of \mathcal{B}^* ; each maximal member of \mathcal{B}^* is the co-biset \mathbb{C}^* of some large \mathcal{F} -core \mathbb{C} . We claim that if $\mathbb{C}_i, \mathbb{C}_j$ are distinct large \mathcal{F} -cores then $C_i^* \cap C_j^* = \emptyset$. Note that $|C_i|, |C_j| \ge q+1$, hence $|C_i^*|, |C_j^*| \le n-k-q-1$. If $C_i^* \cap C_j^* \ne \emptyset$ then for $q \ge \frac{n-k-2}{2}$, and in particular for $q = \lfloor \frac{n-k+1}{2} \rfloor$, we have

$$|C_i^* \cup C_i^*| \le |C_i^*| + |C_i^*| - 1 \le 2n - 2k - 2q - 3 \le n - k - 1$$

Since \mathcal{F}^* is k-crossing, we get that $\mathbb{C}_i^* \cup \mathbb{C}_j^* \in \mathcal{F}^*$, contradicting the maximality of $\mathbb{C}_i^*, \mathbb{C}_i^*$. This implies that if $\mathbb{A}, \mathbb{B} \in \mathcal{B}^*$ intersect, then \mathbb{A}, \mathbb{B} are contained in the same inclusionwise maximal member of \mathcal{B}^* , namely, $\mathbb{A}, \mathbb{B} \subseteq \mathbb{C}^*$ for some large \mathcal{F} -core \mathbb{C}^* . Note that $\mathbb{C} \subseteq \mathbb{A}^* \cap \mathbb{B}^*$. Thus if \mathbb{A}, \mathbb{B} cross, and since \mathcal{F}^* is a crossing family, $\mathbb{A} \cap \mathbb{B}$, $\mathbb{A} \cup \mathbb{B} \in \mathcal{F}^*$. Moreover, $\mathbb{A} \cap \mathbb{B}$, $\mathbb{A} \cup \mathbb{B} \subseteq \mathbb{C}^*$, which implies $\mathbb{A} \cap \mathbb{B}, \mathbb{A} \cup \mathbb{B} \in \mathcal{B}^*$. Consequently, \mathcal{B}^* is an intersecting family.

From Lemmas 6 and 7 we have:

Corollary 2 Suppose that \mathcal{F} is crossing, \mathcal{F}^* is k-crossing, that $|\partial \mathbb{A}| \geq k$ for all $\mathbb{A} \in \mathcal{F}$, and that $n \geq k+3$ and $q = \lfloor \frac{n-k+1}{2} \rfloor$. Then directed Biset-Family Edge-Cover admits a polynomial time algorithm if $\nu(\mathcal{F}_{\leq q}) = 0$ and approximation ratio 3/2 if $\nu(\mathcal{F}_{\leq q}) = 1$.

Now we use Corollaries 1 and 2, and Theorem 6, to prove the directed part of Theorem 5. Note that the following algorithm uses all the assumptions on \mathcal{F} in Theorem 5: \mathcal{F} is k-crossing in Corollary 1, crossing in Theorem 6, and in Corollary 2 \mathcal{F} is crossing, \mathcal{F}^* is k-crossing, and $|\partial \mathbb{A}| \geq k$ for all $\mathbb{A} \in \mathcal{F}$.

Algorithm 3: DIRECTED-COVER (\mathcal{F}, G, c)

- 1 Using the algorithm from Corollary 1 compute $J_1 \subseteq E$ such that $\nu(\mathcal{F}_{\leq q}^{J_1}) \leq \mu \text{ and } c(J_1) \leq \tau(\mathcal{F}_{\leq q})$
- **2** Using the algorithm from **Theorem 6** with $C = C(\mathcal{F}_{\leq q}^{J_1})$ and t = 1, compute $J_2 \subseteq E \setminus J_1$ such that $\nu\left(\mathcal{F}_{\leq q}^{J_1 \cup J_2}\right) \leq 1$ and $c(J_2) \leq (H(\mu) - 1)\tau\left(\mathcal{F}^{J_1}\right)$

$$\nu\left(\mathcal{F}_{\leq q}^{J_1 \cup J_2}\right) \leq 1 \text{ and } c(J_2) \leq (H(\mu) - 1)\tau\left(\mathcal{F}^{J_1}\right)$$

- 3 Using the algorithm from Corollary 2 compute an $\mathcal{F}^{J_1 \cup J_2}$ -cover $J_3 \subseteq E \setminus (J_1 \cup J_2)$ such that $c(J_3) \leq \frac{3}{2}\tau(\mathcal{F}^{J_1 \cup J_2})$
- **4 return** $J = J_1 \cup J_2 \cup J_3$

Tp summarize, the algorithm sequentially computes three edge sets:

- 1. J_1 reduces the number of small cores to μ by cost τ (Corollary 1).
- 2. J_2 further reduces the number of small cores to 1 by cost $(H(\mu) H(1))\tau$ (Theorem 6).
- 3. J_3 covers the remaining members of \mathcal{F} by cost $\frac{3}{2}\tau$ (Corollary 2).

Clearly, the algorithm computes a feasible solution. The approximation ratio is bounded by $1 + (H(\mu) - 1) + 3/2 = H(\mu) + 3/2$.

The proof of the directed part of Theorem 5 is complete.

4.2 Undirected graphs

To prove the undirected part of Theorem 5 we prove the following lemma.

Lemma 8 Suppose that \mathcal{F} is symmetric, k-crossing, that $|\partial \mathbb{A}| \geq k$ for all $\mathbb{A} \in \mathcal{F}$, and that $n \geq k+3$. Let $q = \lfloor \frac{n-k+1}{2} \rfloor$. Then undirected Biset-Family Edge-Cover admits a polynomial time algorithm if $\nu(\mathcal{F}_{\leq q}) = 1$, and LP-ratio 2 if $\nu(\mathcal{F}_{\leq q}) = 2$.

Proof We claim that if $\nu(\mathcal{F}_{\leq q}) \leq 2$ then there exist a pair $s, t \in V$ such that

$$\nu\left(\mathcal{F}_{\leq q}^{\{st\}}\right) \leq \nu(\mathcal{F}_{\leq q}) - 1 \ . \tag{5}$$

Namely, adding the edge st reduces the number of small cores by at least 1. Note that such a pair s,t can be found in polynomial time by computing $\nu(\mathcal{F}_{\leq q})$ and $\nu\left(\mathcal{F}_{\leq q}^{\{st\}}\right)$ for every $s,t\in V$. Once such pair s,t is found, we compute a minimum cost cover J_{st} of the family $\{\mathcal{F}_{st}=\mathbb{A}\in\mathcal{F}:s\in A,t\in A^*\}$. This family is intersecting and has a unique core; such a family is sometimes called a **ring family**. Thus we get that in the case $\nu(\mathcal{F}_{\leq q})\leq 2$, the problem of edge covering \mathcal{F} is reduced to edge covering $\nu(\mathcal{F}_{\leq q})$ ring families. It is known that Biset-Family Edge-Cover with a ring family admits a polynomial time algorithm that computes a solution of cost $\tau(\mathcal{F})$. Consequently, we get a polynomial time algorithm if $\nu(\mathcal{F}_{\leq q})=1$ and ratio 2 if $\nu(\mathcal{F}_{\leq q})=2$.

We now prove existence of a pair s,t as above. Let $\mathbb{C} \in \mathcal{C}(\mathcal{F}_{\leq q})$ and let $\mathcal{M}_{\mathbb{C}}$ be the family of inclusionwise maximal bisets in $\mathcal{F}_{\leq q}$ that contain \mathbb{C} . If $\mathcal{M}_{\mathbb{C}}$ has a unique biset $\mathbb{A}_{\mathbb{C}}$, then (5) holds for any $s \in C$ and $t \in A_{\mathbb{C}}^*$. Suppose that $|\mathcal{M}_{\mathbb{C}}| \geq 2$. Note that by Lemma 4 and by the symmetry of \mathcal{F} , if $\mathbb{A}, \mathbb{B} \in \mathcal{F}_{\leq q}$ intersect, then $\mathbb{A} \cup \mathbb{B} \in \mathcal{F}_{\leq q}$ or $(\mathbb{A} \cup \mathbb{B})^* \in \mathcal{F}_{\leq q}$. Thus for any distinct $\mathbb{A}, \mathbb{B} \in \mathcal{M}_{\mathbb{C}}$, $(\mathbb{A} \cup \mathbb{B})^* \in \mathcal{F}_{\leq q}$ holds, by the maximality of the bisets in $\mathcal{M}_{\mathbb{C}}$. Consequently, since $\nu(\mathcal{F}_{\leq q}) \leq 2$, there is a unique $\mathcal{F}_{\leq q}$ -core \mathbb{C}' distinct from \mathbb{C} , such that $\mathbb{C}' \subseteq (\mathbb{A} \cup \mathbb{B})^*$ for any distinct $\mathbb{A}, \mathbb{B} \in \mathcal{M}_{\mathbb{C}}$. This implies that (5) holds for any $s \in C$ and $t \in C'$.

Let us now show that Lemma 8 implies the undirected part of Theorem 5. The algorithm is similar to the one for the directed case; it returns a solution $J = J_1 \cup J_2 \cup J_3$ where:

- 1. J_1 reduces the number of small cores to μ by cost 2τ (Corollary 1).
- 2. If $\mu \geq 3$ then J_2 further reduces the number of small cores to 2 by cost $2(H(\mu) H(2))\tau$ (Theorem 6).
- 3. J_3 covers the remaining members of \mathcal{F} by cost τ if $\mu = 1$ and by cost 2τ otherwise (Lemma 8).

Clearly, the algorithm computes a feasible solution. In the case $\mu \geq 2$ the approximation ratio is $2 + 2(H(\mu) - H(2)) + 2 = 2H(\mu) + 1$. This is so also in the case $\mu = 1$, since then the ratio is 2 + 1 = 3 = 2H(1) + 1.

This concludes the proof of the undirected part of Theorem 5.

5 Algorithm for 2-(T, s)-Connectivity Augmentation (Theorem 3)

Here we prove Theorem 3. We need some definitions.

Definition 8 Let us say that bisets \mathbb{A}, \mathbb{B} *T*-intersect if $A \cap B \cap T \neq \emptyset$ and *T*-co-cross if both $A \cap B^* \cap T$ and $B \cap A^* \cap T$ are nonempty. A biset family \mathcal{F} is *T*-uncrossable if for any $\mathbb{A}, \mathbb{B} \in \mathcal{F}$ the following holds: $\mathbb{A} \cap \mathbb{B}, \mathbb{A} \cup \mathbb{B} \in \mathcal{F}$ if \mathbb{A}, \mathbb{B} *T*-intersect, and $\mathbb{A} \setminus \mathbb{B}, \mathbb{B} \setminus \mathbb{A} \in \mathcal{F}$ if \mathbb{A}, \mathbb{B} *T*-co-cross.

The following known lemma (c.f. [27]) can be easily deduced from Fact 1.

Lemma 9 ([27]) Let G be an undirected k-(T, s)-connected graph. Then the biset family $\mathcal{F}_{k-(T,s)} = \{\mathbb{A} : |\partial \mathbb{A}| = k, \delta_E(\mathbb{A}) = \emptyset, A \cap T \neq \emptyset, s \in A^*\}$ defined in (3) is T-uncrossable.

Halo families of a T-uncrossable family have the following property.

Lemma 10 ([27]) Let \mathcal{F} be an arbitrary T-uncrossable biset family and let $\mathbb{A}_i \in \mathcal{F}(\mathbb{C}_i)$ and $\mathbb{A}_j \in \mathcal{F}(\mathbb{C}_j)$, where $\mathbb{C}_i, \mathbb{C}_j \in \mathcal{C}(\mathcal{F})$.

- (i) If i = j (so \mathbb{A}_i , \mathbb{A}_j contain the same \mathcal{F} -core) then $\mathbb{A}_i \cap \mathbb{A}_j$, $\mathbb{A}_i \cup \mathbb{A}_j \in \mathcal{F}(\mathbb{C}_i)$.
- (ii) If $i \neq j$ and \mathbb{A}_i , A_j T-co-cross then $\mathbb{A}_i \setminus \mathbb{A}_j \in \mathcal{F}(\mathbb{C}_i)$ and $\mathbb{A}_i \setminus \mathbb{A}_i \in \mathcal{F}(\mathbb{C}_j)$.

A simple biset family \mathcal{F} has no biset that contains 2 distinct cores, namely, \mathcal{F} is the union of its halo families. The best known ratio for edge-covering an uncrossable biset family \mathcal{F} is 2. Fukunaga [15] showed that for simple uncrossable biset families one can achieve ratio 4/3.

Definition 9 For $A \subseteq \mathcal{F}$ and $U \subseteq V$ the U-mesh graph $\mathcal{G} = \mathcal{G}(A, U)$ of A has node set A and edge set $\{A_iA_j : \partial A_i \cap A_j \cap U \neq \emptyset \text{ or } \partial A_j \cap A_i \cap U \neq \emptyset\}$.

Lemma 10(i) implies that if \mathcal{F} is T-uncrossable, then for every $\mathbb{C}_i \in \mathcal{C}(\mathcal{F})$, the halo family of \mathbb{C}_i has a unique maximal member (the union of the bisets in $\mathcal{F}(\mathbb{C}_i)$). The following statement easily follows from Lemma 10.

Corollary 3 ([27]) Let \mathcal{F} be an arbitrary T-uncrossable biset family and let \mathcal{A} be the family of the maximal members of the halo families of the \mathcal{F} -cores. Let \mathcal{A}' be an independent set in the T-mesh graph of \mathcal{A} . Then the union of the halo families of the bisets in \mathcal{A}' is a simple uncrossable biset family.

Fig. 1 Illustration to the proof of Lemma 11.

In the rest of this section let G = (V, E) be a 2-(T, s)-connected graph and unless stated otherwise let $\mathcal{F} = \mathcal{F}_{2-(T,s)}$ be the biset family we want to cover. In the following lemma we summarize additional "uncrossing" properties of the bisets in \mathcal{F} that we need.

Lemma 11 Let $\mathbb{A}, \mathbb{B} \in \mathcal{F}$ such that $A \cap B \cap T = \emptyset$. Then either $\partial \mathbb{A} \cap B, \partial \mathbb{B} \cap A$ are both empty, or the following holds (see Fig. 1(a)):

- (i) Each one of the sets $\partial \mathbb{A} \cap B$, $\partial \mathbb{A} \cap B^*$, $\partial \mathbb{B} \cap A$, $\partial \mathbb{B} \cap A^*$ is a singleton.
- (ii) If $B \cap A^* \cap T \neq \emptyset$ then $\mathbb{B} \setminus \mathbb{A} \in \mathcal{F}$; if $A \cap B^* \cap T \neq \emptyset$ then $\mathbb{A} \setminus \mathbb{B} \in \mathcal{F}$.
- (iii) If $|A \cap T| \ge 2$ and $|B \cap T| \ge 2$ then \mathbb{A}, \mathbb{B} T-co-cross.

Proof Fig. 1 depicts all possible cases of two bisets \mathbb{A}, \mathbb{B} with $|\partial \mathbb{A}| = |\partial \mathbb{B}| = 2$. For part (i), we claim that if $A \cap B \cap T = \emptyset$ and if one of $\partial \mathbb{A} \cap B, \partial \mathbb{B} \cap A$ is non-empty, then the only possible case is the one depicted in (a). In cases (b,c) the sets $\partial \mathbb{A} \cap B, \partial \mathbb{B} \cap A$ are both empty. In the other cases (d,e,f) there is a biset \mathbb{C} such that $C \cap T \neq \emptyset$ and $|\partial \mathbb{C}| = 1$, contradicting that G is 2-(T, T)-connected: $\mathbb{C} = \mathbb{A} \cup \mathbb{B}$ in case (d), $\mathbb{C} = \mathbb{B} \setminus \mathbb{A}$ in case (e), and $\mathbb{C} = \mathbb{A} \setminus \mathbb{B}$ in case (f).

For part (ii), assume that $B \cap A^* \cap T \neq \emptyset$; the proof of the case $A \cap B^* \cap T \neq \emptyset$ is similar. In the possible cases (a,b,c) we have $|\partial(\mathbb{B} \setminus \mathbb{A})| = 2$, so $\mathbb{B} \setminus \mathbb{A} \in \mathcal{F}$ in these cases, while the other case (d,e,f) are not possible.

Corollary 4 Let $\mathbb{A}, \mathbb{B} \in \mathcal{C}(\mathcal{F})$. Then either $\mathbb{A} \subseteq \mathbb{B}^*$ and $\mathbb{B} \subseteq \mathbb{A}^*$, or each one of the sets $A \cap T$, $B \cap T$ is a singleton, and $\partial \mathbb{B} \cap A = A \cap T$ and $\partial \mathbb{A} \cap B = B \cap T$.

Lemma 12 Let $A \subseteq \mathcal{F}$. If $A_i \cap A_j \cap T = \emptyset$ for any distinct $A_i, A_j \in A$ then the V-mesh graph G of A is a forest.

Fig. 2 Illustration to the proof of Lemma 12.

Proof Suppose to the contrary that \mathcal{G} is not a forest. Let $(\mathbb{A}_0, \mathbb{A}_1, \dots, \mathbb{A}_{l-1}, \mathbb{A}_0)$ be a cycle in \mathcal{G} . Assume that the indices are modulo l. By Lemma 11(i), for every i we have (see Fig. 2, and note that for any i, $v_i = v'_i$ may hold):

- $-A_i \cap \partial \mathbb{A}_{i-1}$ is a singleton which we denote by v_i .
- $-A_i \cap \partial \mathbb{A}_{i+1}$ is a singleton which we denote by v'_i .

Let $U = \bigcup_{i=1}^{l} \{v_i, v_i'\}$. For every $v \in U$, $v = v_i$ or $v = v_i'$ for some i, and we have: $v \in A_i$, $s \in A_i^*$, $\partial \mathbb{A}_i \subseteq U$, and $G \setminus \partial \mathbb{A}_i$ has no sv-path. We claim that there exists $u \in U$ such that G has no su-path. To see this, consider the shortest path P from s to U and the endnode u of P in U. Then P is an su-path that has no internal node in U. Since $\partial \mathbb{A}_u \subseteq U$, P is an su-path in $G \setminus \partial \mathbb{A}_u$. This contradicts the assumption that $G \setminus \partial \mathbb{A}_u$ has no st-path. On the other hand, G has an sv-path for every node v that belongs to the boundary of some tight biset, and thus G has an sv-path for every $v \in U$. This is a contradiction.

Corollary 5 Let A be obtained by picking for each core $\mathbb{C}_i \in \mathcal{C}(\mathcal{F})$ a biset \mathbb{A}_i in the halo-family $\mathcal{F}(\mathbb{C}_i)$ of \mathbb{C}_i (possibly $\mathbb{A}_i = \mathbb{C}_i$). Then the V-mesh graph of A is a forest. Furthermore, if $\mathbb{A}_i = \mathbb{C}_i$ for each i then the T-mesh graph \mathcal{G} of A is a collection of node disjoint paths.

Proof Since \mathcal{F} is T-uncrossable, bisets from distinct halo families cannot T-intersect. Thus $A_i \cap A_j \cap T = \emptyset$ for distinct \mathbb{A}_i , $\mathbb{A}_j \in \mathcal{A}$, and the V-mesh graph of \mathcal{A} is a forest by Lemma 12.

We prove that if $\mathbb{A}_i = \mathbb{C}_i$ for each i then \mathcal{G} has no node of degree ≥ 3 . Suppose to the contrary that \mathcal{G} has a node \mathbb{C}_0 with 3 distinct neighbors $\mathbb{C}_1, \mathbb{C}_2, \mathbb{C}_3$. Then $C_i \cap C_j \cap T = \emptyset$ for distinct $0 \leq i, j \leq 3$. By Corollary 4 $C_i \cap T \subseteq \partial \mathbb{C}_0$ for i = 1, 2, 3, and we get the contradiction $|\partial \mathbb{C}_0| \geq 3$.

Corollary 6 Let C be the set family of the inner parts of the bisets in $C(\mathcal{F})$. Then the maximum degree of a node in the hypergraph (V, C) is at most 2.

Proof Let $v \in V$ and let $C_v = \{\mathbb{C} \in \mathcal{C}(\mathcal{F}) : v \in C\}$ be the family of cores whose inner part contains v. Consider the V-mesh graph \mathcal{G}_v of \mathcal{C}_v . By

Corollary 4 \mathcal{G}_v is a clique, while by Corollary 5 \mathcal{G}_v is a path. Thus \mathcal{G}_v has at most 2 nodes.

Now we prove the following.

Lemma 13 If Biset-Family Edge-Cover admits approximation ratio α for simple uncrossable families and approximation ratio β for uncrossable families, then 2-(T, s)-Connectivity Augmentation admits approximation ratio $2\alpha + \beta$.

Proof Let $\mathcal{F} = \mathcal{F}_{2^-(T,s)}$. Let \mathcal{A} be the family of the maximal members of the halo families of the \mathcal{F} -cores. Let \mathcal{G} be the T-mesh graph of \mathcal{A} . By Lemma 12 \mathcal{G} is a forest. Thus \mathcal{G} is 2-colorable, so its nodes can be partitioned into 2 independent sets \mathcal{A}' and \mathcal{A}'' . The rest of the analysis coincides with [27]. Let \mathcal{C}' and \mathcal{C}'' the set of \mathcal{F} -cores that correspond to \mathcal{A}' and \mathcal{A}'' , respectively. By Corollary 3, each one of the families $\mathcal{F}' = \bigcup_{\mathbb{C} \in \mathcal{C}'} \mathcal{F}(\mathbb{C})$ and $\mathcal{F}'' = \bigcup_{\mathbb{C} \in \mathcal{C}''} \mathcal{F}(\mathbb{C})$ is uncrossable and simple. Thus the problem of covering $\mathcal{F}' \cup \mathcal{F}''$ admits ratio 2β . After the family $\mathcal{F}' \cup \mathcal{F}''$ is covered, the inner part of every core of the residual family contains at least 2 terminals. Hence by Lemma 11(iii), the residual family is uncrossable, and thus the problem of covering it admits ratio β . Consequently, the overall ratio is $2\alpha + \beta$, as claimed.

As was mentioned, the currently best known values of α and β are $\alpha=4/3$ [15] and $\beta=2$ [10], so we get ratio $2\cdot 4/3+2=4\frac{2}{3}$.

Now let us consider the case when all edges in \hat{E} are incident to s. Let \mathcal{C} be the set family of the inner parts of the \mathcal{F} -cores. Recall that a hitting set of a hypergraph/set family is a set of nodes that intersects every hyperedge/set. Note that $J\subseteq\hat{E}$ is a feasible solution for our problem if and only if the set $\{v\in V: sv\in J\}$ is a hitting set of \mathcal{C} . Thus by assigning for every node v weight w(v)=c(sv) (or a sufficiently large weight, if $sv\notin F$) we get that our problem is equivalent to finding a minimum-weight hitting set of the hypergraph (V,\mathcal{C}) . By Corollary 6, the maximum degree in this hypergraph is ≤ 2 . Finding a minimum-weight hitting set in hypergraph with maximum degree ≤ 2 can be done in polynomial time, as this is essentially an Edge-Cover problem. Consequently, we get a polynomial time algorithm for the case when all edges in \hat{E} are incident to s, and the proof of Theorem 3 is complete.

6 A short proof of Theorem 7

Let $\mathcal F$ be a q-semi-intersecting biset family. Consider the dual program of the Biset-LP for covering $\mathcal F$

$$\max \left\{ \sum_{\mathbb{A} \in \mathcal{F}} y_{\mathbb{A}} : \sum_{\delta_{\hat{E}}(\mathbb{A}) \ni e} y_{\mathbb{A}} \le c_e \ \forall e \in \hat{E}, \ y_{\mathbb{A}} \ge 0 \ \forall \mathbb{A} \in \mathcal{F} \right\} \ .$$

Given a dual solution y let us say that the dual constraint of an edge e is **tight**, or that e is a **tight edge** if $\sum_{\delta_{\hat{E}}(\mathbb{A})\ni e} y_{\mathbb{A}} = c_e$. Now consider the following primal-dual algorithm for covering \mathcal{F} .

Algorithm 4: q-Semi-Intersecting Family Edge-Cover(\mathcal{F}, G, c)

```
1 J \leftarrow \emptyset, \ y \leftarrow 0, \ \mathcal{L} \leftarrow \emptyset.

2 while \nu(\mathcal{F}^J) \geq 1 do

3 | add some \mathbb{C} \in \mathcal{C}(\mathcal{F}^J) to \mathcal{L}

4 | raise y_{\mathbb{C}} until the dual constraint of some e \in \delta_{\hat{E} \setminus J}(\mathbb{C}) becomes tight and add e to J

5 Let e_1, \ldots, e_j be the order in which the edges were added to J

6 for i = j downto 1 do

7 | if J \setminus \{e_i\} covers the family \mathcal{F}' = \{\mathbb{A} \in \mathcal{F} : \mathbb{A} \subseteq \mathbb{B} \text{ for some } \mathbb{B} \in \mathcal{L}\}

\[ \text{ then do } J \leftarrow J \setminus \{e_i\}

8 return J
```

Let I denote the set of edges in J right before the reverse-delete phase (steps 5,6,7). Note that I covers \mathcal{F} , but in the reverse-delete phase we care to cover just the subfamily \mathcal{F}' of \mathcal{F} . In fact, the algorithm coincides with a standard primal-dual algorithm for covering the biset family \mathcal{F}' . We will show that \mathcal{F}' is an intersecting biset family and conclude that $c(J) = \tau(\mathcal{F}') \leq \tau(\mathcal{F})$. In what follows, let \mathcal{M} denote the family of inclusionwise maximal members of \mathcal{L} , and for an \mathcal{F}^J -core \mathbb{C}_i let \mathcal{M}_i denote the family of bisets in \mathcal{M} that intersect with \mathbb{C}_i , and \mathbb{B}_i the union of \mathbb{C}_i and the bisets in \mathcal{M}_i .

Note that each family \mathcal{M}_i is non-empty, since \mathbb{C}_i is covered by some edge $e \in I \setminus J$, and since any edge $e \in I$ covers some $\mathbb{A} \in \mathcal{L}$. Let us say that a biset family \mathcal{L} is **laminar** if for any $\mathbb{A}, \mathbb{B} \in \mathcal{L}$ that intersect $\mathbb{A} \subseteq \mathbb{B}$ or $\mathbb{B} \subseteq \mathbb{A}$ holds. In the following lemma we establish some properties of the families \mathcal{L} and \mathcal{F}' .

Lemma 14 At the end of the algorithm the following holds:

- (i) \mathcal{L} is a laminar biset family and \mathcal{F}' is an intersecting biset family.
- (ii) For any $\mathbb{A} \in \mathcal{M}$ there is a unique edge $e_{\mathbb{A}}$ in I that covers \mathbb{A} , and $e_{\mathbb{A}} \in J$. Furthermore, if \mathbb{A} and an \mathcal{F}^J -core \mathbb{C} intersect, then $\delta_J(\mathbb{A} \cap \mathbb{C}) = \{e_{\mathbb{A}}\}$.

Proof We prove (i). Let $\mathbb{A}_1, \mathbb{A}_2 \in \mathcal{L}$ intersect where \mathbb{A}_1 was added to \mathcal{L} before \mathbb{A}_2 . When \mathbb{A}_1 was added to \mathcal{L} , we had $\mathbb{A}_1 \in \mathcal{C}(\mathcal{F}^J)$ and $\mathbb{A}_2 \in \mathcal{F}^J$. Thus $\mathbb{A}_1 \cap \mathbb{A}_2 = \mathbb{A}_1$ (namely, $\mathbb{A}_1 \subseteq \mathbb{A}_2$) by the minimality of \mathbb{A}_1 and since \mathcal{F} (and thus also \mathcal{F}^J) is intersection closed. This implies that \mathcal{L} is laminar. We show that \mathcal{F}' is an intersecting biset family. Let $\mathbb{A}_1, \mathbb{A}_2 \in \mathcal{F}'$ intersect. Then, since \mathcal{L} is laminar, $\mathbb{A}_1 \cup \mathbb{A}_2 \subseteq \mathbb{B}$ for some $\mathbb{B} \in \mathcal{L}$. Thus $\mathbb{A}_1 \cup \mathbb{A}_2 \in \mathcal{F}$, since $|A_1 \cup A_2| \leq |B| \leq q$ and since \mathcal{F} is q-semi-intersecting. This implies $\mathbb{A}_1 \cup \mathbb{A}_2 \in \mathcal{F}'$, and clearly $\mathbb{A}_1 \cap \mathbb{A}_2 \in \mathcal{F}'$ since $\mathbb{A}_1 \cap \mathbb{A}_2 \subseteq \mathbb{B}$ and since \mathcal{F} is intersection closed.

We prove (ii). Let $e_{\mathbb{A}}$ be the edge that was added to J at step 4 of the algorithm after \mathbb{A} was added to \mathcal{L} at step 3 (the first edge that covered \mathbb{A}). After \mathbb{A} was added to \mathcal{L} , no biset that intersects with \mathbb{A} was added to \mathcal{L} , since $\mathbb{A} \in \mathcal{M}$ and since \mathcal{L} is laminar. Thus edges added to J after $e_{\mathbb{A}}$ do not cover \mathbb{A} , since their tails are in $V \setminus A$. Consequently, $e_{\mathbb{A}}$ is the unique edge in I that covers \mathbb{A} , and thus $e_{\mathbb{A}} \in J$. Now suppose that \mathbb{A} and an \mathcal{F}^J -core \mathbb{C} intersect. Then $\mathbb{A} \cap \mathbb{C} \subseteq \mathcal{F}'$, since \mathcal{F} is intersection closed and since $\mathbb{A} \cap \mathbb{C} \subseteq \mathbb{A}$. Thus

 $\delta_J(\mathbb{A} \cap \mathbb{C}) \neq \emptyset$. Let $e \in \delta_J(\mathbb{A} \cap \mathbb{C})$. Then e covers \mathbb{A} , since e covers \mathbb{A} or \mathbb{C} by Fact 1, but e cannot cover C since $e \in J$ and J does not cover \mathbb{C} . Thus $e = e_{\mathbb{A}}$ for any $e \in \delta_J(\mathbb{A} \cap \mathbb{C})$, namely, $\delta_J(\mathbb{A} \cap \mathbb{C}) = \{e_{\mathbb{A}}\}$.

Lemma 15 If \mathcal{F} is q-semi-intersecting then at the end of the algorithm the following holds:

- (i) $|\delta_J(\mathbb{A})| = 1$ for any $\mathbb{A} \in \mathcal{L}$.
- (ii) The sets B_i are pairwise disjoint and each of them has size $\geq q+1$.

Proof For part (i), let $\mathbb{A} \in \mathcal{L}$ and suppose to the contrary that there are $e_1, e_2 \in \delta_J(\mathbb{A})$ with $e_1 \neq e_2$. For i = 1, 2 let \mathbb{A}_i be some biset in \mathcal{F}' that became uncovered when e_i was considered for deletion at step 7. Note that $\delta_J(\mathbb{A}_i) = \{e_i\}$ and that $\mathbb{A} \subseteq \mathbb{A}_i$, since the edges in J were considered for deletion in the reverse order. Thus $\mathbb{A} \subseteq \mathbb{A}_1 \cap \mathbb{A}_2$, and by Lemma 14(i) $\mathbb{A}_1 \cup \mathbb{A}_2 \in \mathcal{F}'$. Consequently, there is $e \in \delta_J(\mathbb{A}_1 \cup \mathbb{A}_2)$, hence $e \in \delta_J(\mathbb{A}_1)$ or $e \in \delta_J(\mathbb{A}_2)$, by Fact 1. Thus $e = e_1$ or $e = e_2$. Since the tail of each of e_1, e_2 is in $A \subseteq A_1 \cap A_2$, so is the tail of e. The head of e is in $A_1^* \cap A_2^*$. This gives the contradiction $e \in \delta_J(\mathbb{A}_1) \cap \delta_J(\mathbb{A}_2)$.

We prove part (ii). Let $\mathbb{C}_i, \mathbb{C}_j$ be distinct \mathcal{F}^J -cores. Note that no two bisets in \mathcal{M} intersect (since \mathcal{L} is laminar) and that $C_i \cap C_j = \emptyset$ (since \mathcal{F} is intersection closed). Thus to prove that $B_i \cap B_j = \emptyset$ it is sufficient to prove that $\mathcal{M}_i \cap \mathcal{M}_j = \emptyset$. Suppose to the contrary that there is $\mathbb{A} \in \mathcal{M}_i \cap \mathcal{M}_j$. By Lemma 14(ii), the tail of $e_{\mathbb{A}}$ is both in $A \cap C_i$ and $A \cap C_j$. This contradicts $C_i \cap C_j = \emptyset$. We prove that $|B_i| \geq q+1$. Note that $|B_i| \leq q$ implies $\mathbb{B}_i \in \mathcal{F}$, since \mathcal{F} is q-semi-intersecting. Thus to prove that $|B_i| \geq q+1$ it is sufficient to prove that $\delta_I(\mathbb{B}_i) = \emptyset$, since this implies $\mathbb{B}_i \notin \mathcal{F}$ (as I covers \mathcal{F}). Suppose to the contrary that there is $e \in \delta_I(\mathbb{B}_i)$. Then there is a biset $\mathbb{A} \in \mathcal{M}$ whose inner part contains the tail of e, and we must have $\mathbb{A} \in \mathcal{M}_i$, by the definition of \mathbb{B}_i and since no two bisets in \mathcal{M} intersect. As e covers the biset \mathbb{B}_i that contains \mathbb{A} , e covers \mathbb{A} , and thus $e = e_{\mathbb{A}}$ and $\delta_J(\mathbb{A} \cap \mathbb{C}_i) = \{e_{\mathbb{A}}\}$, by Lemma 14(ii). The edge $e_{\mathbb{A}}$ has its tail in C_i and covers the biset \mathbb{B}_i that contains \mathbb{C}_i . Consequently, $e_{\mathbb{A}}$ covers \mathbb{C}_i , contradicting that $\mathbb{C}_i \in \mathcal{F}^J$.

Lemma 15(ii) implies $\nu(\mathcal{F}^J) \leq \lfloor n/(q+1) \rfloor$. To see that $c(J) = \tau(\mathcal{F}')$ let $x \in \{0,1\}^F$ be the characteristic vector of J and y the dual solution produced by the algorithm. It is easy to see that x and y are feasible solutions for the primal and dual LPs, respectively, and that the Primal Complementary Slackness Conditions hold for x and y. The Dual Complementary Slackness Conditions are: $y_{\mathbb{A}} > 0$ implies $|\delta_J(\mathbb{A})| = 1$, and they hold by Lemma 15(i), since $\{\mathbb{A}: y_{\mathbb{A}} > 0\} \subseteq \mathcal{L}$.

This concludes the proof of Theorem 7.

References

1. A. Aazami, J. Cheriyan, and B. Laekhanukit. A bad example for the iterative rounding method for mincost k-connected spanning subgraphs. Discrete Optimization, $10(1):25-41,\ 2013.$

 V. Auletta, Y. Dinitz, Z. Nutov, and D. Parente. A 2-approximation algorithm for finding an optimum 3-vertex-connected spanning subgraph. J. of Algorithms, 32(1):21– 30, 1999.

- 3. J. Cheriyan and B. Laekhanukit. Approximation algorithms for minimum-cost k-(S,T) connected digraphs. Manuscript, 2010.
- J. Cheriyan, B. Laekhanukit, G. Naves, and A. Vetta. Approximating rooted steiner networks. ACM Transactions on Algorithms, 11(2):8:1–8:22, 2014.
- J. Cheriyan and L. Végh. Approximating minimum-cost k-node connected subgraphs via independence-free graphs. SIAM J. Computing, 43(4):1342–1362, 2014.
- J. Cheriyan, S. Vempala, and A. Vetta. An approximation algorithm for the min-cost k-vertex connected subgraph. SIAM J. Comput., 32(4):1050–1055, 2003.
- 7. J. Chuzhoy and S. Khanna. An $O(k^3 \log n)$ -approximation algorithm for vertex-connectivity survivable network design. Theory of Computing, 8(1):401–413, 2012.
- Y. Dinitz and Z. Nutov. A 3-approximation algorithm for finding optimum 4,5-vertexconnected spanning subgraphs. J. of Algorithms, 32(1):31-40, 1999.
- 9. J. Fackharoenphol and B. Laekhanukit. An $O(\log^2 k)$ -approximation algorithm for the k-vertex connected subgraph problem. SIAM J. Comput., 41:1095–1109, 2012.
- L. Fleischer, K. Jain, and D. Williamson. Iterative rounding 2-approximation algorithms for minimum-cost vertex connectivity problems. J. Computer and System Sciences, 72(5):838–867, 2006.
- 11. A. Frank. Rooted k-connections in digraphs. Discrete Applied Math., 157(6):1242–1254, 2009.
- 12. A. Frank and T. Jordán. Minimal edge-coverings of pairs of sets. *J. of Comb. Theory B*, 65:73–110, 1995.
- A. Frank and E. Tardos. An application of submodular flows. Linear Algebra and its Applications, 114/115:329–348, 1989.
- T. Fukunaga. Approximating minimum cost source location problems with local vertexconnectivity demands. J. Discrete Algorithms, 19:30–38, 2013.
- 15. T. Fukunaga. Approximating the generalized terminal backup problem via half-integral multiflow relaxation. In STACS, pages 316–328, 2015.
- T. Fukunaga, Z. Nutov, and R. Ravi. Iterative rounding approximation algorithms for degree-bounded node-connectivity network design. SIAM J. Computing, 44(5):1202– 1229, 2015.
- M. Goemans, A. Goldberg, S. Plotkin, D. Shmoys, E. Tardos, and D. Williamson. Improved approximation algorithms for network design problems. In SODA, pages 223–232, 1994.
- 18. K. Jain. A factor 2 approximation algorithm for the generalized Steiner network problem. *Combinatorica*, 21(1):39–60, 2001.
- T. Jordán. On the optimal vertex-connectivity augmentation. J. on Comb. Theory B, 63:8–20, 1995.
- S. Khuller and B. Raghavachari. Improved approximation algorithms for uniform connectivity problems. J. of Algorithms, 21:434–450, 1996.
- G. Kortsarz and Z. Nutov. Approximating node connectivity problems via set covers. Algorithmica, 37:75–92, 2003.
- 22. G. Kortsarz and Z. Nutov. Approximating k-node connected subgraphs via critical graphs. $SIAM\ J.$ on Computing, 35(1):247-257, 2005.
- G. Kortsarza and Z. Nutov. Approximating source location and star survivable network problems. Manuscript, 2015.
- B. Laekhanukit. Parameters of two-prover-one-round game and the hardness of connectivity problems. In SODA, pages 1626–1643, 2014.
- 25. Y. Lando and Z. Nutov. Inapproximability of survivable networks. *Theortical Computer Science*, 410(21-23):2122–2125, 2009.
- 26. Z. Nutov. Approximating subset k-connectivity problems. In WAOA, pages 9–20, 2011.
- Z. Nutov. Approximating minimum cost connectivity problems via uncrossable bifamilies. ACM Transactions on Algorithms, 9(1):1, 2012.
- 28. Z. Nutov. Approximating node-connectivity augmentation problems. *Algorithmica*, 63(1-2):398-410, 2012.
- Z. Nutov. Approximating minimum-cost edge-covers of crossing biset families. Combinatorica, 34(1):95–114, 2014.

- 30. R. Ravi and D. P. Williamson. An approximation algorithm for minimum-cost vertex-connectivity problems. Algorithmica, 18:21-43, 1997.
- 31. R. Ravi and D. P. Williamson. Erratum: an approximation algorithm for minimum-cost vertex-connectivity problems. *Algorithmica*, 34(1):98–107, 2002.
- 32. L. Végh. Augmenting undirected node-connectivity by one. SIAM J. Discrete Math., 25(2):695–718, 2011.