
Approximating Steiner Trees and Forests with

Minimum Number of Steiner Points

Nachshon Cohen and Zeev Nutov

The Open University of Israel,
nachshonc@gmail.com, nutov@openu.ac.il

Key-words: Wireless network, Unit-disc graph, Steiner tree, Steiner forest,
2-connectivity, Approximation algorithms.

Abstract. Let R be a finite set of terminals in a metric space (M,d).
We consider finding a minimum size set S ⊆ M of additional points such
that the unit-disc graph G[R ∪ S] of R ∪ S satisfies some connectivity
properties. In the Steiner Tree with Minimum Number of Steiner Points

(ST-MSP) problem G[R ∪ S] should be connected. In the more general
Steiner Forest with Minimum Number of Steiner Points (SF-MSP) problem
we are given a set D ⊆ R × R of demand pairs and G[R ∪ S] should
contains a uv-path for every uv ∈ D. Let ∆ be the maximum number of
points in a unit ball such that the distance between any two of them is
larger than 1. It is known that ∆ = 5 in R

2. The previous known approx-
imation ratio for ST-MSP was ⌊(∆+1)/2⌋+1+ǫ in an arbitrary normed
space [15], and 2.5+ ǫ in the Euclidean space R

2 [5]. Our approximation
ratio for ST-MSP is 1+ln(∆−1)+ǫ in an arbitrary normed space, which
in R

2 reduces to 1+ln 4+ǫ < 2.3863+ǫ. For SF-MSP we give a simple ∆-
approximation algorithm, improving the folklore ratio 2(∆− 1). Finally,
we generalize and simplify the ∆-approximation of Calinescu [3] for the
2-Connectivity-MSP problem, where G[R ∪ S] should be 2-connected.

1 Introduction

In the Survivable Network problem we are given a graph G = (V,E) with edge-
costs (or node-costs) and a set R of terminals, and seek a minimum-cost subgraph
H of G that satisfies some prescribed connectivity requirements between the
terminals. A fundamental problem of this type is the Steiner Tree problem, where
every pair of terminals should be connected in H. In the Steiner Forest problem,
we are given a setD of demand pairs from R, andH should contains a uv-path for
every uv ∈ D. Steiner Tree is a particular case of Steiner Forest, when the graph
(D,R) formed by the demand pairs is connected; if also R = V , then we get
the Minimum Spanning Tree problem. In the k-Connectivity problem, R should be
k-connected in H, namely, H should contain k internally-disjoint paths between
any pair of nodes in R; if also R = V , then we get the k-Connected Subgraph

problem. Note that for k = 1, 2, whenever only inclusion minimal solution graphs
H that contain R are considered, the condition “R is k-connected in H” is
equivalent to the condition “H is k-connected”; this is not so for k ≥ 3.



In wireless networks, the range and the location of the transmitters deter-
mines the resulting communication network. We consider adding a minimum
number of transmitters such that the communication network satisfies some con-
nectivity properties. If the range of the transmitters is fixed, our goal is to add
a minimum number of transmitters, and we get the following type of problems.

Definition 1. Let (M,d) be a metric space and let V ⊆M . The unit-disk graph
of V , denoted by G[V ], has node set V and edge set {uv : u, v ∈ V, d(u, v) ≤ 1}.

In Survivable Network with Minimum Number of Steiner Points (SN-MSP) prob-
lems we are given a set R of terminals in a metric space (M,d), and seek a mini-
mum size set S ⊆M of additional points such that G[R ∪ S] satisfies some pre-
scribed connectivity requirements between the terminals. In this setting, Steiner
Tree is transformed into the following problem.

Steiner Tree with Minimum Number of Steiner Points (ST-MSP)
Instance: A finite set R ⊆M of terminals in a metric space (M,d).
Objective: Find a minimum size set S ⊆ M of additional points such that
G[R ∪ S] is connected.

In the Steiner Forest with Minimum Number of Steiner Points (SF-MSP) prob-
lem, we are given a set D of demand pairs from R, and G[R∪S] should contains
a uv-path for every uv ∈ D. In the k-Connectivity-MSP G[R ∪ S] should contain
k internally-disjoint uv-paths for any u, v ∈ R. Note that 1-Connectivity-MSP is
the ST-MSP problem, while 2-Connectivity-MSP is equivalent to the problem of
finding a minimum size S ⊆M such that G[R ∪ S] is 2-connected.

As in previous work, we will assume that our metric space is induced by some
normed space, allow to place several points at the same location, and assume
that the maximum distance between terminals is polynomial in their number.

The Steiner Tree problem was studied extensively (c.f. [17, 18, 2] and the ref-
erences therein) and the currently best approximation ratio for it is ln 4 + ǫ [2].
Steiner Forest and 2-Connectivity admit ratio 2, c.f. [8] and [12].

We survey some literature on SN-MSP problems. ST-MSP is NP-hard even
in R

2, and arises in various wireless network design problems, c.f. [1, 3–5, 10, 11,
14, 15] for only a sample of papers in the area, where it is studied both in R

2 and
in general metric spaces. In the latter case, the approximation ratio is usually
expressed in terms of the following parameter. Let ∆ be the maximum number
of “independent” points in the unit ball, such that the distance between any two
of them is larger than 1. It is known [16] that ∆ equals the maximum degree of
a minimum-degree Minimum Spanning Tree in the normed space. For Euclidean
distances we have ∆ = 5 in R

2 and ∆ = 11 in R
3, and in R

ℓ ∆ is at most the
Hadwiger number [16]; hence ∆ ≤ 20.401ℓ(1+o(1)), by [9].

In finite metric spaces, ST-MSP is equivalent to the variant of the Node-

Weighted Steiner Tree problem when terminals have costs 0 and other nodes
have cost 1. Klein and Ravi [13] proved that this variant is Set-Cover hard to
approximate, and gave anO(ln |R|)-approximation algorithm for general weights.



Hence up to constants, even for finite metric spaces, the ratio O(ln |R|) of [13]
is the best possible unless P=NP. Note however, that this does not exclude
constant ratios for metric/normed spaces with small ∆, e.g., ∆ = 5 in R

2.
Most algorithms for SN-MSP problems applied the following reduction method,

by solving the corresponding Survivable Network instance obtained as follows.

Definition 2. Given a finite set R of points in a metric space (M,d) and an
integer k ≥ 1, the (multi)graph GR has node set R and k parallel edges between
every pair of nodes. The costs of the k edges between u, v are defined as follows.
Let d̂uv = max{⌈d(u, v)⌉ − 1, 0}. If d̂uv > 0, then all the k edges have cost d̂uv.

If d̂uv = 0, then one edge has cost 0 and the others have cost 1.

It is easy to see that any solution of cost C to the corresponding Survivable

Network instance defines a solution S of size C to the original SN-MSP instance,
where every node in S has degree exactly 2; such a solution is called a bead
solution. Conversely, any bead solution S can be converted into a solution to
the Survivable Network instance (in a normed space) of cost at most |S| (c.f.
[10, 3]). Due to this bijective correspondence, we simply define a bead solution
as a solution to the corresponding Survivable Network instance, and denote the
optimal value of a bead solution to an instance I by τ = τ(I). If the Survivable

Network instance admits a ρ-approximation algorithm, and if for the given SN-

MSP instance there exists a bead solution S of size ≤ αopt, then we get a
ρα-approximation algorithm for the SN-MSP instance. Equivalently, for a class

I of SN-MSP instances, define a parameter α by α = α(I) = supI∈I
τ(I)
opt(I) . Then

approximation ratio ρ for Survivable Network instances that correspond to class
I implies approximation ratio αρ for SN-MSP instances in class I.

Măndoiu and Zelikovsky [14] showed that α = ∆− 1 for ST-MSP. Since the
SN instance that corresponds to ST-MSP is the MST problem that can be solved
in polynomial time, this gives a (∆− 1)-approximation algorithm for ST-MSP.

A common method to attack various Steiner Tree problems is by a reduction
to the Minimum Connected Spanning Subhypergraph problem. This method was
initiated by Zelikovsky [17], and improved in a long series of papers culminating
in the paper of Byrka et al. [2]. For ST-MSP in R

2, Chen and Du [5] applied it
to get the currently best known ratio 2.5 + ǫ. In arbitrary normed spaces, the
ratio ∆ − 1 of [14] was improved to ⌊(∆ + 1)/2⌋ + 1 + ǫ in [15] also using the
same method. In this work we use the so called “Relative Greedy Heuristic” due
to Zelikovsky [18] , and obtain the following result.

Theorem 1. ST-MSP with constant ∆ admits an approximation scheme with
ratio 1+ ln(∆− 1)+ ǫ. In particular, in R

2 the ratio is 1+ ln 4+ ǫ < 2.3863+ ǫ.

We note that previous works, as well as Theorem 1, assume that ST-MSP

instances with a constant number of terminals can be solved in polynomial time.
This condition holds in R

2 if the maximum distance between terminals is poly-
nomial in the number of terminals, see [4, Lemma 11] and the discussion there.
If such instances can be approximated within a factor of β, then an additional
factor of β is invoked in the ratio of Theorem 1.



In the proof of Theorem 1, most of our effort is spent on bounding the
parameter αk (so called ”Steiner ratio”) for ST-MSP (see Theorem 3), which is
the loss in the approximation ratio as a result of reducing the problem to the
Minimum Connected Spanning Subhypergraph problem in a hypergraph of rank
k (see Theorem 3). Bounds on αk have also been computed for several other
“Steiner problems”, including ST-MSP. However, none of the previous papers
succeeded to reveal the somewhat irregular behavior of αk in the case of ST-
MSP. The key difficulty lies in the fact that αk has a ”good” behavior only when
k = Ω(∆). This is the reason why in Theorem 1 we require that ∆ is a constant,
to ensure that our algorithm can be implemented in polynomial time.

We now consider SF-MSP and k-Connectivity-MSP problems. The result in
[14] implies that α = ∆−1 for SF-MSP. Combined with the known 2-approximati-
on for Steiner Forest, this gives ratio 2(∆ − 1) for SF-MSP. Kashyap, Khuller,
and Shayman [11] considered 2-Connectivity-MSP. Their algorithm constructs a
2-Connectivity instance as in Definition 2 and then converts its solution into a
bead solution to the 2-Connectivity-MSP instance. Although they analyzed a per-
formance of specific 2-approximation algorithm – the algorithm of Khuller and
Raghavachari [12] for 2-Connectivity, they essentially proved that α = ∆ in this
case, which implies ratio 2∆. The analysis of this specific algorithm was recently
improved by Calinescu [3], showing that its tight performance is ∆.

We now discuss k-Connectivity-MSP with k ≥ 3. Bredin et al. [1] considered
in R

2 a related problem of adding a minimum size S such that G[R ∪ S] is
k-connected (note that in k-Connectivity-MSP we require k-connectivity only
between terminals). For this problem in R

2, they gave an O(k5)-approximation
algorithm, but essentially they implicitly proved that for this class of problems
α = O(∆k3). Recently, it was shown in [10] that α = Θ(∆k2) for a much more
general class of Survivable Network problems in any normed space.

Let τ∗ = τ∗(I) denote the optimal value of a fractional bead solution of
an SN-MSP instance I, namely, τ∗ is the optimum value of a standard cut-LP
relaxation for the corresponding Survivable Network instance (see Section 4). We
observe that if the algorithm we use for the Survivable Network instance computes
a solution of cost at most ρτ∗, then the relevant parameter is the following.

Definition 3. For a class I of SN-MSP instances, let α∗ = α∗(I) = supI∈I
τ∗(I)
opt(I) .

Theorem 2. For any feasible solution S to SF-MSP there exists a half-integral
bead solution of value at most ∆|S|/2; thus α∗ = ∆/2 for SF-MSP. Consequently,
if Steiner Forest admits a polynomial time algorithm that computes a solution of
cost at most ρτ∗, then SF-MSP admits approximation ratio ρ ·∆/2; thus SF-MSP

admits a ∆-approximation algorithm. The same holds for 2-Connectivity-MSP.

The idea behind Theorem 2 is as follows. From previous work [16, 3] we get
that for any solution S, G[R ∪ S] contains a solution G in which the nodes in S
have degree at most ∆. Our main innovation is comparing the optimal solution
with a fractional (in fact, half-integral) bead solution, rather than an actual bead
solution. For 2-Connectivity-MSP this idea appeared implicitly in the paper of
Calinescu [3], but our explicit approach is much simpler and more general.



2 Proof of Theorem 1

We consider a generic problem defined in [15], that includes both ST-MSP and
the classic Steiner Tree problem.

Generic Steiner Tree

Instance: A (possibly infinite) graph G = (V,E), a finite set R ⊆ V of
terminals, and a monotone subadditive cost function c on subgraphs of G.
Objective: Find a minimum-cost connected finite subtree T of G containing R.

Definition 4. For an instance of Generic Steiner Tree and 2 ≤ k ≤ |R|, the
hypergraph Hk = (R, Ek) has hyperedge set Ek = {A ⊆ R : 2 ≤ |A| ≤ k}. The
cost c∗(A) of A ∈ Ek is the cost of an optimal solution TA to the Generic Steiner

Tree instance with terminal set A.

The construction in Definition 4 converts a Generic Steiner Tree instance into
a Minimum Connected Spanning Subhypergraph instance in a hypergraph Hk of
rank k. Any solution of cost C to this instance correspond to a solution of value
at most C to Generic Steiner Tree instance, by the subadditivity and monotonicity
of the cost function in the Generic Steiner Tree problem. This reduction invokes
a fee in the approximation ratio, given in the following definition.

Definition 5. Given an instance I of Generic Steiner Tree let τk(I) denote the
minimum cost of a connected spanning sub-hypergraph of Hk. The k-ratio for a

class I of Generic Steiner Tree instances is defined by αk = supI∈I
τk(I)
opt(I) .

Note that for I being the class of ST-MSP instances, α2 is the parameter α
defined in the introduction, and that by [14] we have α2 = α = ∆− 1. We have
αk = 1 for instances with |R| = k, and in general αk is monotone decreasing and
approaching 1 when k becomes larger.

Particular cases of the following statement can be found in several papers.
We failed to find the general version in the literature, and thus provide a proof
for completeness of exposition.

Lemma 1. There exists a polynomial time algorithm that given a hypergraph
H = (R, E) with hyper-edge cost {c(A) : A ∈ E} and a spanning tree T ∗ of
(edges of size 2 of) H computes a spanning connected sub-hypergraph T of H

of cost at most τ
(

1 + ln c(T∗)
τ

)

, where τ is the minimum-cost of a connected

spanning sub-hypergraph of H.

Proof. Given a tree T = (R,F ) let us say that A ⊆ R overlaps F ′ ⊆ F if the
graph obtained from T \ F ′ by shrinking A into a single node is a tree. Given
edge cost {c(e) : e ∈ F} let F (A) be a maximum cost edge set overlapped by A.

Note that F \ F (A) is an edge set of a minimum cost spanning tree in the
graph obtained from T by shrinking A into a single node; hence for given A,
F (A) can be computed in polynomial time. Consider the following algorithm.



Algorithm 1: Local Replacement Algorithm

1 Input: A hypergraph H = (R, E) with hyper-edge cost {c(A) : A ∈ E},
and a spanning tree T ∗ = (R,F ∗) of (edges of size 2 of) H.

2 Initialization: J ← ∅, F ← F ∗, T ← (R,F ).
3 while c(F ) > 0 do

4 Find A ∈ E with c(F (A))
c(A) maximum.

5 if c(F (A)) > c(A) then
6 Update T,H: remove F (A) and shrink A into a single node.

F ← F \ F (A) and J ← J ∪ {A}.

7 Else STOP and return T = (R,F ∪ J ).

8 return T = (R,F ∪ J )

The following statement appeared in [17] (see also [2]); we provide a proof
for completeness of exposition.

Claim. Let T = (R,F ) be a tree with edge costs {c(e) : e ∈ F} and let (R, E) be
a connected hypergraph. Then

∑

A∈E c(F (A)) ≥ c(F ). Thus there exists A ∈ E
such that

c(F (A))

c(A)
≥

c(F )

c(E)
.

Proof. For a node v ∈ A, let Cv be the connected component in T \ F (A)
that contains v. For an edge e ∈ F (A) that connects two components Cu, Cv,
let y(e) = uv be the replacement edge of e, of cost c(y(e)) = c(e). The graph
T ∪{y(e)} contains a single cycle and y(e) is the heaviest edge in this cycle, since
otherwise F (A) is not minimal. For a hyperedge A ∈ E let y(A) = ∪e∈F (A)y(e)
be the replacement set of A, and let y(E) = ∪A∈Ey(A). It is easy to see that y(A)
spans A, and y(E) spans R. Consider a MST on T ∪ y(E). By the cycle property
of a MST, no edge from y(E) would participate in that MST, so c(T ) ≤ c(y(E)).
Finally, c(y(E)) =

∑

A∈E y(A) =
∑

A∈E c(F (A)), and the claim follows. ⊓⊔

At every iteration |F | decreases by at least 1, hence the algorithm runs in
polynomial time, and clearly it computes a feasible solution. We prove the ap-
proximation ratio. Let Fi and Ji be the set stored in F and J , respectively, at
the beginning of iteration i+1, and let Ai be the hyperedge picked at iteration i.
Denote fi = c(Fi) and si = c(Ai), and recall that τ denotes the minimum cost of
a connected spanning sub-hypergraph of H. At iteration i we remove Fi−1(Ai)
from Fi−1 after verifying that c(Fi−1(Ai)) > c(Ai) = si. Hence

fi ≤ fi−1 −max{c(Fi−1(Ai)), c(Ai)} = fi−1 − si ·max

{

c(Fi−1(Ai))

c(Ai)
, 1

}

By the claim above, c(Fi−1(Ai))
c(Ai)

≥ fi−1

τ . Thus we have

fi ≤ fi−1 − si ·max{fi−1/τ, 1} . (1)



The algorithm stops if either c(Fq) = 0 or c(F (A)) ≤ c(A) at iteration q + 1. In
the latter case, 1 ≥ c(Fq)/τ follows by the claim above. In both cases, we have
that there exists an index q such that fq−1 > τ ≥ fq holds. Now we use the
following statement from [6].

Claim. Let τ > 0 and f0, . . . , fq and s1, . . . , sq be sequences of positive reals
satisfying f0 > τ ≥ fq, such that (1) holds. Then fq+

∑q
i=1 si ≤ τ(1+ln(f0/τ)).

Let q be an index such that fq−1 > τ ≥ fq holds. We may assume that
f0 = c(F ∗) > τ > 0. Note that c(Jq) =

∑q
i=1 si and that c(Fi) + c(Ji) ≤

c(Fi−1) + c(Ji−1) for any i. Hence from the claim above we conclude that

c(T ) ≤ c(Fq) + c(Jq) = fq +

q
∑

i=1

si ≤ τ(1 + ln(f0/τ)) = τ

(

1 + ln
c(T ∗)

τ

)

.

⊓⊔

Corollary 1. For any constant k, Generic Steiner Tree admits an approximation
ratio αk (1 + lnα2), provided that for any A ∈ Ek, the instance with the terminal
set A can be solved in polynomial time.

Proof. By the assumptions, the hypergraph Hk, and the costs c∗(A) with the
corresponding trees TA for A ∈ Ek, can be computed in polynomial time. We
can also compute in polynomial time an optimal spanning tree T ∗ in H2; note
that c(T ∗) ≤ α2 · opt. Then we apply the algorithm in Lemma 1 to compute

a sub-hypergraph T of Hk of c∗-cost at most τ
(

1 + ln c(T∗)
τ

)

. Let opt denote

the optimal solution value for the Generic Steiner Tree instance. Note that opt ≤
τ ≤ αkopt. Let T = ∪A∈T TA. Since T is a connected hypergraph, T is a feasible
solution to the Generic Steiner Tree instance. We have c(T ) ≤

∑

A∈T c(TA) =
c∗(T ), by the monotonicity and the subadditivity of the c-costs. Thus we have:

c(T ) ≤ c∗(T ) ≤ τ

(

1 + ln
c(T ∗)

τ

)

= τ

(

1 + ln
c(T ∗)/opt

τ/opt

)

≤ αkopt (1 + lnα2) .

⊓⊔

Du and Zhang [7] showed that for the classic Steiner Tree problem, αk ≤
1 + 1/⌊lg k⌋, where lg k = log2 k. In Section 3 we prove the following.

Theorem 3. For ST-MSP, αk ≤ 1 + 2
⌊lg⌊k/(∆−1)⌋⌋ for any integer k ≥ 2∆− 2.

Note that for an instance I of ST-MSP with ∆ independent points on the

unit ball we have τk(I) = ∆
k and opt(I) = 1, which implies αk ≥

τk(I)
opt(I) = ∆

k .

Hence k > ∆/2 is necessary if we want αk < 2.
From Corollary 1 and Theorem 3 we conclude that for any constant k ≥

2∆ − 2, it is possible to compute in polynomial time a solution to an ST-MSP

instance of size at most αk (1 + ln(∆− 1)) opt, where αk is as in Theorem 3.
For the metric space R

2, and given a constant ǫ > 0 let k = 2Θ(1/ǫ). Then by
Theorem 3, αk ≤ 1+ ǫ/ (1 + ln 4), and the approximation ratio of our algorithm
is 1 + ln 4 + ǫ. This completes the proof of Theorem 1.



3 Proof of Theorem 3

For a tree T = (V, F ) and A ⊆ V let TA = (VA, FA) be the inclusion minimal
subtree of T that contains A. To prove Theorem 3 we prove the following.

Lemma 2. Let T = (V, F ) be a tree of maximum degree ∆ ≥ 2, let R ⊆ V , and
let S = V \R. Then for any integer k ≥ 2∆−2 there exists a connected hypergraph

H = (R, E) of rank ≤ k such that
∑

A∈E |VA ∩ S| ≤
(

1 + 2
⌊lg⌊k/(∆−1)⌋⌋

)

|S|.

To prove Lemma 2 we prove the following.

Lemma 3. Let T = (V, F ) be a tree with edge costs {c(e) ≥ 1 : e ∈ F} and
let R ⊆ V . Then for any integer p ≥ 2 there exists a connected hypergraph

H = (R, E) of rank ≤ p such that
∑

A∈E c(FA) + |E| − 1 ≤
(

1 + 2
⌊lg p⌋

)

c(T ).

Lemma 3 will be proved later. Now we show that it implies Lemma 2. An
R-component of T is a maximal inclusion subtree of T such that all its leaves are
in R but none of its internal nodes is in R. It is easy to see that it is sufficient
to prove Lemma 2 for each R-component separately, hence we may assume that
R is the set of leaves of T .

If T is a star, then since k ≥ 2∆ − 2 ≥ ∆, we let E to consist of a single
hyperedge A = R. Then |VA ∩ S| = 1 = |S|, and Lemma 2 holds in this case.

Henceforth assume that T is not a star. For v ∈ S let R(v) be the set of
neighbors of v in R, and note that |R(v)| ≤ ∆ − 1. Let T ′ = (V ′, F ′) = T \ R
and let R′ = {v ∈ S : R(v) 6= ∅}. Applying Lemma 3 on T ′ with unit edge-costs
and R′, we obtain that for p = ⌊k/(∆− 1)⌋ there exists a connected hypergraph

H′ = (R′, E ′) of rank ≤ p such that
∑

A′∈E′ |F ′
A′ | + |E ′| − 1 ≤

(

1 + 2
⌊lg p⌋

)

|F ′|.

Note that |F ′| = |V ′| − 1 and that |V ′
A′ | = |F ′

A′ | − 1 for every A′ ∈ E ′. Hence

∑

A′∈E′

|V ′
A′ | − 1 ≤

(

1 +
2

⌊lg p⌋

)

(|V ′| − 1) ≤

(

1 +
2

⌊lg p⌋

)

|V ′| − 1 .

For A′ ∈ E ′ let A = ∪v∈A′R(v); then |A| ≤ p(∆ − 1). Let E = {A : A′ ∈ E ′}.
Then H = (R, E) is a connected hypergraph of rank ≤ p(∆− 1) ≤ k, and

∑

A∈E

|VA ∩ S| =
∑

A′∈E′

|V ′
A′ | ≤

(

1 +
2

⌊lg p⌋

)

|V ′| =

(

1 +
2

⌊lg⌊k/(∆− 1)⌋⌋

)

|S| .

In the rest of this section we prove Lemma 3, by extending the proof of Du
and Zhang [7] of an existence of a connected hypergraph H = (R, E) of rank ≤ p

such that
∑

A∈E c(FA) ≤
(

1 + 1
⌊lg p⌋

)

c(T ). We have an extra term of |E| − 1,

and we show that this term can be bounded by c(T )
⌊lg p⌋ .

We start by transforming the tree into a (rooted) binary tree T with edge-
costs, which node set is partitioned into a set R of terminals and a set S of
non-terminals, such that the following properties hold:



(A) R is the set of leaves of T .
(B) The cost of any edge of T is either 0 or is at least 1, and among the edges

that connect a node in S = V \R to its children, at most one has cost 0.
(C) T is a full binary tree, namely, every v ∈ S has exactly 2 children.

To obtain such a tree, root T at an arbitrary non-leaf node ŝ ∈ S = V \R, and
apply the following standard reductions.

1. While T has a leaf in S, remove this leaf; hence every leaf of T is in R. Then,
for every v ∈ R that is not a leaf, add to T a new node v′ and an edge vv′

of cost 0, add v′ to R, and move v from R to S. After this step, properties
(A) and (B) hold.

2. While there is v ∈ S that has one child, replace the path P of length 2 that
contains v by a single edge of cost c(P ), and exclude v from S. After this
step, every v ∈ S has at least 2 children.

3. While there is v ∈ S that has more than 2 children, do the following. Let
u be a child of v such that the cost of the edge vu is at least 1. Add a new
node v′ and the edge vv′ of cost 0, and for every child of u′ of v distinct
from u replace the edge vu′ by the edge vu′. After this step, all the three
properties (A), (B), and (C) hold.

Consequently, to prove Lemma 3, it is sufficient to prove the following.

Lemma 4. Let T = (V, F ) be a tree with edge costs c(e) and leaf set R, satisfying
(A),(B),(C), Then for any integer p ≥ 2 there exists a connected hypergraph

H = (R, E) of rank ≤ p such that
∑

A∈E c(FA) + |E| − 1 ≤
(

1 + 2
⌊lg p⌋

)

c(T ).

Let T = (V, F ) be a rooted tree with leaf set R and let S = V \ R. For two
nodes u, v of T let PT (u, v) denote the unique path in T between u and v.

Definition 6. We say that T is proper if every node in S has at least 2 children.
We say that a mapping f : S → R is T -proper if:
(i) For every u ∈ S, f(u) is a descendant of u.
(ii) The paths {PT (u, f(u)) : u ∈ S} are edge disjoint.
Given a subtree T ′ of T with leaf set L′ and a proper mapping f , the set of
terminal connecting paths of T ′ is {PT (u, f(u)) : u ∈ L′ \R}. Let T̂ ′ denote the
tree obtained from T ′ by adding to T ′ all the terminal connecting paths.

Du and Zhang [7] proved that any proper tree T admits a proper mapping.
We prove the following.

Lemma 5. Let T = (V, F ) be a proper tree and let F1 ⊆ F be such that any
u ∈ S has a child connected to u by an edge in F1. Then there exists a T -proper
mapping f such that for every u ∈ S, the path PT (u, f(u)) contains at least one
edge in F1.

Proof. The proof is by induction on the height of the tree. Let T be a tree as in
the lemma of height h. If h = 1, then T has one internal node (the root), say u,



and we set f(u) to be the node that is connected to u by an edge in F1. Suppose
that the statement is true for trees with height h − 1 ≥ 1, and we prove it for
trees of height h. Let T ′ be obtained from T by removing nodes of distance h
from the root. By the induction hypothesis, for T ′ there exists a mapping f ′ as
in the lemma. Let u be an internal node of T . Consider two cases.

Suppose that u is an internal node of T ′. If f ′(u) is a leaf of T , then define
f(u) = f ′(u). If f ′(u) is an internal of T , then f ′(u) is a leaf of T ′, and all its
children in T are leaves. Then we set f(u) to be a child of f ′(u) that is connected
to f ′(u) by an edge in F1

Suppose that u is a leaf of T ′. Then the children of u in T are leaves, and we
set f(u) to be a child of u that is connected to u by an edge in F1.

It is easy to verify that the obtained mapping f meets the requirements. ⊓⊔

The following statement is implicitly proved by Du and Zhang [7].

Lemma 6 ([7]). Let T be a proper binary tree with non-negative edge costs and
let f be a proper mapping. Then for any integer p ≥ 2 there exists an edge-
disjoint partition T of T into subtrees such that the following holds:

(i) The hypergraph with node set R and hyperedge set E = {T̂ ′ ∩R : T ′ ∈ T } is
connected and has rank at most p.

(ii) The total number of terminal connecting paths of all subtrees in T is at least
|T | − 1, and their total cost is at most c(T )/⌊lg p⌋.

We now finish the proof of Lemma 4, and thus also of Lemma 3. Let F1 =
{e ∈ F : c(e) ≥ 1} and let f be a proper mapping as in Lemma 5. Let T be
a partition as in Lemma 6, and let E be as in Lemma 6(i), so the hypergraph
H = (R, E) is connected and has rank at most p. By Lemma 6(ii), the total
number of terminal connecting paths of all subtrees is at least |T | − 1 = |E| − 1,
while their total cost is at most c(T )/⌊lg p⌋. Every terminal connecting path
contains an edge from F1, by Lemma 5, and thus has cost at least 1. Hence the
total cost of all terminal connecting paths is at least |E| − 1. Consequently

|E| − 1 ≤
c(T )

⌊lg p⌋
.

For A = T̂ ′∩R ∈ E let P (T ′) denote the union of the edge sets of the terminal
connecting paths of T ′. Then c(FA) ≤ c(T̂ ′) = c(T ) + c(P (T ′)), hence

∑

A∈E

c(FA) ≤
∑

T ′∈T

[c(T ′)+c(P (T ′))] =
∑

T ′∈T

c(T ′)+
∑

T ′∈T

c(P (T ′)) ≤ c(T )+
c(T )

⌊lg p⌋
.

Summarizing, we have

∑

A∈E

c(FA) + |E| − 1 ≤ c(T ) +
c(T )

⌊lg p⌋
+

c(T )

⌊lg p⌋
=

(

1 +
2

⌊lg p⌋

)

c(T ) .

The proof of Lemma 4, and thus also of Lemma 3 and Theorem 3 is now
complete.



4 Proof-sketch of Theorem 2

Definition 7. For a subset C of nodes of a (multi-)graph G = (V,E) let us use
the following notation: ΓG(C) is the set of neighbors of C in G; δG(C) = δE(C)
is the set of edges in E with exactly one endnode in C; E(C) is the set of edges
in E with both endnodes in C. Given R ⊆ V , an R-component of G is a subgraph
of G with node set C∪ΓG(C) and edge set E(C)∪δG(C), where C is a connected
component of G \R.

The following important property of feasible solutions was proved for SF-MSP

by Robins and Salowe [16] and for 2-Connectivity-MSP by Calinescu [3].

Lemma 7 ([16],[3]). Let S be an inclusion minimal feasible solution for an
instance of SF-MSP or 2-Connectivity-MSP. Then G[R ∪ S] contains a subgraph
G that satisfies the requirements such that every R-component of G is a tree and
such that degG(v) ≤ ∆ for every v ∈ S.

Lemma 8. Suppose that G[R ∪ S] contains a tree T with leaf set R. Let S′ be
obtained from S by replacing each v ∈ S by degT (v) copies of v. Then G[R∪S′]
contains a simple cycle on R ∪ S′, called a DFS cycle of T .

Proof. Traverse the tree T in a DFS order; each time a node v ∈ S is visited,
choose a different copy of v. ⊓⊔

Given a Steiner Forest instance, we say that a set A ⊂ V is deficient if
|A ∩ {u, v}| = 1 for some uv ∈ D. It is easy to see that H is a feasible solution
to a Steiner Forest instance iff δH(A) ≥ 1 for every deficient set A. To formulate
a similar condition for 2-Connectivity we need a definition of a biset, which is
an ordered pair of sets A = (A,A+) such that A ⊆ A+; Γ (A) = A+ \ A is the
boundary of A. Let δE(A) denote the set of edges in E with one end in A and
the other in V \ A+. It is known that H is a feasible solution to 2-Connectivity
iff x(δE(A)) ≥ 2 − |Γ (A)| for every biset A. The cut-LP relaxations for Steiner

Forest and 2-Connectivity minimize
∑

e∈E cexe over the polytopes ΠSF and Π2C,
respectively, defined by:

ΠSF = {x ∈ R
E : x(δE(A)) ≥ 1 ∀ deficient set A, xe ≥ 0}

Π2C = {x ∈ R
E : x(δE(A)) ≥ 2− |Γ (A)| ∀ biset A, 0 ≤ xe ≤ 1}

We will say that a graph with edge capacities xe is a fractional bead solution
for SF-MSP or for 2-Connectivity-MSP, if the characteristic vector of the edge-set
of the graph belongs to ΠSF or to Π2C, respectively.

Lemma 9. Let G be as in Lemma 7. Then replacing each connected component
C of G \ R by a DFS cycle on ΓG(C) of capacity 1/2 results in a fractional
half-integral bead solution for SF-MSP or 2-Connectivity-MSP, respectively.

Proof. For SF-MSP the statement is obvious, while for 2-Connectivity-MSP, due
to space limitation, the proof will be provided in the full version. ⊓⊔

Theorem 2 easily follows from Lemmas 7, 8, and 9.



5 Conclusions

Our main results are a (1 + ln(∆ − 1) + ǫ)-approximation scheme for ST-MSP,
and a ∆-approximation algorithm for SF-MSP. For ST-MSP in R

2 this improves
the ratio 2.5 + ǫ of [5]. For SF-MSP this improves the folklore ratio 2(∆ − 1)
that follows from the work of [14]. We believe that the methods presented in
this paper will lead to improved approximation algorithms for related problems.
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