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Abstract

Given a graph H = (U,E) and connectivity requirements r = {r(u, v) : u, v ∈ R ⊆ U}, we
say that H satisfies r if it contains r(u, v) pairwise internally-disjoint uv-paths for all u, v ∈ R.

We consider the Survivable Network with Minimum Number of Steiner Points (SN-MSP) problem:

given a finite set V of points in a normed space (M, ‖·‖) and connectivity requirements, find

a minimum size set S ⊂ M \ V of additional points, such that the unit disc graph induced

by U = V ∪ S satisfies the requirements. In the (node-connectivity) Survivable Network Design

Problem (SNDP) we are given a graph G = (V,E) with edge costs and connectivity requirements,

and seek a min-cost subgraph H of G that satisfies the requirements. Let k = max
u,v∈V

r(u, v)

denote the maximum connectivity requirement. We will show a natural transformation of an

SN-MSP instance (V, r) into an SNDP instance (G = (V,E), c, r), such that an α-approximation

algorithm for the SNDP instance implies an α ·O(k2)-approximation algorithm for the SN-MSP

instance. In particular, for the case of uniform requirement r(u, v) = k for all u, v ∈ V , we

obtain for SN-MSP ratio O(k2 ln k), which solves an open problem from [3].

1 Introduction

1.1 Problem definition and motivation

Network design problems require finding a minimum cost (sub-)network that satisfies prescribed

properties, often connectivity requirements. Classic examples with 0, 1 connectivity requirements

are: Shortest Path, Minimum Spanning Tree, Minimum Steiner Tree/Forest, and others. Examples

of problems with high connectivity requirements are: Min-Cost k-Flow, k-Edge/Node-Connected

Spanning Subgraph, Steiner Network, and others. Such problems were studied extensively, see [1,
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15, 13, 4, 17, 5, 6, 9, 19, 21, 18] for only a small sample of papers in the area.

We consider node-connectivity only. Let H = (U,E) be an undirected graph, possibly with

parallel edges. For u, v ∈ U let κH(u, v) denote the maximum number of pairwise internally disjoint

uv-paths in H. Given non-negative integer connectivity requirements r = {r(u, v) : u, v ∈ R ⊆ U}
on a set R of terminals, we say that H satisfies r if κH(u, v) ≥ r(u, v) for all u, v ∈ R. In

the Survivable Network Design Problem (SNDP) we are given a graph G = (V,E) with edge-costs

{ce : e ∈ E} and node-connectivity requirements r = {r(u, v) : u, v ∈ R ⊆ V }. The goal is to

find a minimum cost subgraph H of G that satisfies r. SNDP problems were extensively studied,

especially the k-Connected Subgraph problem when r(u, v) = k for all u, v ∈ V , see [4, 17, 19]. For

some recent work on other SNDP problems see [6, 18].

Problems of designing fault tolerant (highly connected) wireless sensor networks were studied ex-

tensively, c.f. [3, 2, 7, 20, 22, 16]. In a common scenario, we are given a set U of sensors/transmitters

in some metric space, usually R
2 or R3. Every sensor u ∈ U can transmit to a known distance d(u),

and any other sensor v can receive messages from u if, and only if, v belongs to the disc with radius

d(u) and center u. Thus two sensors u, v can communicate with each other if, and only if, the

distance d(u, v) between them is at most min{d(u), d(v)}. The resulting communication network

(graph) G[U ] has node-set U and edge-set {uv : u, v ∈ U, d(u, v) ≤ min{d(u), d(v)}}.

In a network, the reliability of communication between two terminals u, v is usually measured by

the node-connectivity between them; in sensor networks it models sensor failures. One way to satisfy

the connectivity requirements between sensor terminals is by increasing the transmission range of

some sensors. However, the energy needed to transmit through a distance d might be proportional

to d4 [8]. Since energy is a limited source, an alternative way to increase the connectivity is by

adding new sensors. Thus the problem of adding a minimum number of new sensors to satisfy the

requirements arises. We consider the simplest case, when all sensors have the same transmission

radius, which can be assumed to be 1. This motivates the following definition.

Definition 1.1 Given a finite set of points U ⊂ M in a metric space (M,d), the unit disc graph

G[U ] induced by U has node set U and edge set {uv : u, v ∈ U, 0 < d(u, v) ≤ 1}.

We consider SNDP problems on unit-disc graphs, where the goal is to add a minimum number

of Steiner points (transmitters) to satisfy the connectivity requirements between the terminals.

Namely, given a metric space, (M,d), a finite set V ⊆ M of terminals, and connectivity requirements

{r (u, v) : u, v ∈ V }, we wish to adjust the network to satisfy the requirements between the terminals

by adding a minimum number of transmitters (Steiner points). Formally, our problem is as follows.

Survivable Network with Minimum Number of Steiner Points (SN-MSP)

Instance: A finite set V of points in a metric space (M,d) and pairwise connectivity requirements

r = {r(u, v) : u, v ∈ R ⊆ V }.
Objective: Find a minimum size set of points S ⊂ M \ V such that G[V ∪ S] satisfies r.
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Note that the size of a solution to an SN-MSP instance may not be polynomial in the input size,

as the solution size may depend on the maximum distance maxu,v∈V d(u, v) between the terminals.

Hence we will say that an algorithm for SN-MSP is polynomial if its running time is polynomial in

the size of the input and the optimal solution size. For simplicity of exposition, let us even assume

that maxu,v∈V d(u, v) is polynomial in the input size.

An important special case is the case of uniform requirements, when r(u, v) = k for all u, v ∈ V .

We call this particular case k-Connectivity with Minimum Number of Steiner Points (k-C-MSP). In

SNDP problems, also the following types of requirements are often considered in the literature, c.f.

[6, 18].

• Rooted requirements: there is s ∈ V such that r(u, v) > 0 implies u = s or v = s; in

rooted-uniform requirements r(s, v) = k for all v ∈ V − {s}.

• Subset uniform requirements: there is R ⊆ V such that r(u, v) = k for all u, v ∈ R, and

r(u, v) = 0 otherwise; (k-C-MSP is the case of uniform requirements when R = V ).

1.2 Our results

Given an instance of SNDP or of SN-MSP, let k = max
u,v∈R

r(u, v) denote the maximum connectivity

requirement. As in practical networks k is rather small, we focus on obtaining approximation

ratios that depend on k only. For k = 1, SN-MSP with uniform requirements is the Steiner Tree

with Minimum Number of Steiner Points problem (ST-MSP). In the Euclidean plane, this problem

admits a 2.5-approximation algorithm [7]. On graphs with unit edge lengths ST-MSP includes the

Set-Cover problem [15], and thus has an Ω(ln |V |)-approximation threshold. Hence for SN-MSP one

cannot expect in arbitrary metric spaces a ratio that depends on k only. We will consider instances

of SN-MSP defined on a normed space (M, ‖·‖), when the metric d is induced by the norm ‖·‖.

One can easily reduce SN-MSP to an SNDP variant with unit weights on the nodes rather

than with costs on the edges; this reduction invokes a constant loss factor in the approximation

ratio. In this reduction however, uniform requirements in SN-MSP instance become subset uni-

form requirements in the SNDP instance. The currently best known ratios for SNDP with node

weights are: O(k2 log |V |) for rooted requirements, O(k3 log |V |) for subset uniform requirements,

and O(k4 log2 |V |) for general requirements [18]. The factor O(log |V |) in these ratios is unavoidable

even for k = 1, as even for k = 1 the problem includes the Set-Cover problem [15].

Obtaining an approximation ratio that depends on k only for k-C-MSP in R
2 was posed as an

open problem in [3]. We will prove a much more general result. Our ratios are expressed in terms

of k and the following parameter that depends on the normed space.

Definition 1.2 Given a metric space (M,d) let ∆ = ∆(M,d) be the minimum integer h such that

for any V ⊆ M contained in a unit ball, G[V ] has a dominating set of size at most h.
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On graphs with unit edge lengths we have ∆ = 1, but note that this is not a normed space. It

is known that ∆ = 5 in R
2 and ∆ = 11 in R

3. In [23] it is proved that for M = R
ℓ with the norm

‖(x1, x2, . . . , xℓ)‖p =
(

∑ℓ
i=1 |xi|p

)1/p
, ∆ is at most the Hadwiger number of the unit ball. (The

Hadwiger number of an open convex set X is the maximal number of disjoint translations of X

which share a boundary point with X). Thus, for the Euclidean R
ℓ, ∆ ≤ 20.401ℓ(1+o(1)), by [14].

Let ρ(k) = 2⌈k/2⌉(∆k/2+⌈k/2⌉+1) (so ρ(k) = k2(∆+1)/2+k if k is even and ρ(2) = 2(∆+2)).

Our main result is the following.

Theorem 1.1 An α-approximation algorithm for SNDP (on multigraphs) implies an α · ρ(k)-
approximation algorithm for SN-MSP, and this is so also for subset uniform, uniform, rooted,

rooted subset uniform, and rooted uniform requirements.

In SNDP problems, the input graph is usually assumed to be simple, while in Theorem 1.1 it

may have parallel edges. One novelty in our approach is considering SNDP on multigraphs, and

proving that the best known ratios for SNDP with different requirement types remain the same on

multigraphs. Specifically, we will prove the following statement in Section 2.

Lemma 1.2 There exists an approximation ratio preserving reduction from SNDP on multigraphs

to SNDP on simple graphs, for approximation ratios that do not depend on |V |. The reduction is

requirement type preserving for uniform, rooted, and subset uniform requirements. In the case of

rooted uniform requirements, the problem on multigraphs admits a 2-approximation algorithm.

The best known values of α are as follows. For k-Connected Subgraph on simple graphs, an

O(log k)-approximation algorithm for k = O(
√
n) [4] was obtained long time ago. This ratio was

recently extended to almost all values of n, k in [19]; specifically, the ratio in [19] is O(ln |V |
|V |−k · ln k)

(which is O(ln k) unless k = |V | − o(|V |)). For other SNDP problems, the currently best known

approximation ratios are: 2 for rooted uniform requirements [11], O(k ln k) for rooted requirements

[18], O(k2 ln k) for subset uniform requirements [18], and O(k3 ln |R|) for general requirements [5].

By substituting the currently best known values of α in Theorem 1.1, we obtain the following.

Corollary 1.3 k-C-MSP admits an approximation ratio O
(

ln |V |
|V |−k · ln k

)

· ρ(k) = O(k2 ln k).

Other SN-MSP problems admit the following approximation ratios: 2ρ(k) = O(k2) for rooted uni-

form requirements, O(k ln k) · ρ(k) = O(k3 ln k) for rooted requirements, and O(k2 ln k) · ρ(k) =

O(k4 ln k) for subset uniform requirements,

Corollary 1.3 solves an open problem of Bredin, Demaine, Hajiaghayi, and Rus [3], by giving

the first non-trivial approximation algorithm for k-C-MSP with k ≥ 2. In [3] the problem of adding

a minimum size set S of Steiner points such that the entire graph G[V ∪ S] is k-connected was

considered (note that in k-C-MSP we require k-connectivity only between terminals). For this

problem in R
2, [3] gave a reduction that invokes a loss of O(k4). They also conjectured that

for k-C-MSP an adaptation of their reduction can be used to reduce the instance to an SNDP
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instance with subset uniform requirements, thus leading to an approximation ratio that depends

on k only, and with a loss of O(k3), provided existence of such an approximation for SNDP with

subset uniform requirements. Here we prove a stronger result. Note that even if the conjecture of

[3] were proved, it leads to ratio O(k3 · k2 log k), which is much worse than the ratio O(k2 · log k)
proved in this paper. The reason is not only the worse reduction factor, but also since [3] reduces

instances with uniform requirements into instances with subset uniform requirements, while our

reduction preserves the requirements type; consequently, our results for k-C-MSP rely on algorithms

for k-Connected Subgraph only, and not on recently discovered algorithms for SNDP with subset

uniform requirements [18]. Furthermore, our algorithm works for arbitrary normed spaces, and for

various connectivity requirement types.

We also note that Theorem 1.1 together with theO(k3 ln |R|)-approximation algorithm for SNDP

of [5] implies the ratio O(k3 ln |R|) · ρ(k) = O(k5 ln |R|) for SN-MSP with arbitrary requirements.

It is an open question whether in this case, a ratio that depends on k only can be achieved.

2 Preliminaries

In this section we give some generic statements that are used later, most of them on connectivity

of graphs, and also prove Lemma 1.2.

We start with two (essentially known) statements on k-connected graphs. Recall that a graph

H = (V,E) is k-connected if κH(u, v) ≥ k for all u, v ∈ V . A theorem of Whitney (c.f. [10,

Theorem 7.5]) states that for |V | ≥ k + 1, H is k-connected if, and only if, H \Q is connected for

any Q ⊆ V with |Q| ≤ k − 1. The following two statements can be easily deduced from Whitney’s

Theorem. For completeness of exposition, we provide a direct proof for the first one, using the

following undirected node-connectivity version of Menger’s Theorem, c.f. [10, Theorem 7.5]: If u, v

are non-adjacent nodes in a graph H, then κH(u, v) = min{|Q| : Q ⊆ V \ {u, v}, κH\Q(u, v) = 0}.

Lemma 2.1 Let H = (V,E) be a graph on at least k + 1 nodes. If κH(u, v) ≥ k holds for every

pair of non-adjacent nodes u, v ∈ V , then H is k-connected.

Proof: Suppose to the contrary that H is not k-connected. Then there is ab ∈ E such that

κH(a, b) ≤ k − 1. Consider the graph H ′ obtained by removing all ab-edges from H. Note that

κH′(a, b) ≤ κH(a, b) − 1 ≤ k − 2. By Menger’s Theorem, we can disconnect a, b by removing a

set Q ⊆ V \ {a, b} such that |Q| = κH′(a, b). Thus there exists a partition {A,Q,B} of V such

that a ∈ A, b ∈ B, |Q| = κH′(a, b) ≤ k − 2, and there is no edge between A and B in H ′. Since

|Q| ≤ k − 2 and |V | ≥ k + 1, |A| ≥ 2 or |B| ≥ 2, say |A| ≥ 2. Consider the partition {A′, Q′, B} of

V , where Q′ = Q ∪ {a} and A′ = A \ {a}. Note that A′ 6= ∅, that |Q′| = |Q|+ 1 ≤ k − 1, and that

there is no edge between A′ and B in H. Now let z ∈ A′. Then zb /∈ E, and hence by Menger’s

Theorem we have κH(z, b) ≤ |Q′| ≤ k − 1. This contradicts the assumption of the lemma. �
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Lemma 2.2 Let H be a k-connected graph on at least k nodes. Then the graph obtained from H

by adding a new node and joining it to some k nodes of H is also k-connected. �

Now we prove Lemma 1.2, which is restated here for the convenience of the reader.

Lemma 1.2 There exists an approximation ratio preserving reduction from SNDP on multigraphs

to SNDP on simple graphs, for approximation ratios that do not depend on |V |. The reduction is

requirement type preserving for uniform, rooted, and subset uniform requirements. In the case of

rooted uniform requirements, the problem on multigraphs admits a 2-approximation algorithm.

Proof: Given an SNDP instance (with parallel edges), insert a new node into every edge, and

divide (arbitrarily) the cost of the edge between the corresponding two new edges. Clearly, the

obtained graph is simple. It is easy to see that an α-approximation for the modified instance

implies an α-approximation for the original instance and that this transformation is requirement

type preserving for subset uniform, rooted, and rooted subset uniform requirements. It remains

therefore to consider uniform and rooted uniform requirements.

We now consider the case of uniform requirements, when feasible solutions are k-connected

spanning subgraphs of G. Let H = (V,E) be a minimally k-connected multi-graph (so H− e is not

k-connected for every e ∈ E).

If |V | ≥ k + 1 then H is simple, by Lemma 2.1; thus we can keep for every maximal set of

pairwise parallel edges of G only the cheapest one. Now suppose that |V | ≤ k. We claim that then

H has exactly k+2−|V | edges between every pair of it nodes; thus an optimal solution is found by

taking the k + 2− |V | cheapest edges in G between every pair of nodes. Note that if |V | ≤ k and

if H has exactly k + 2 − |V | edges between every pair of its nodes, then H is k-connected. Hence

it is sufficient to prove that there are at least k + 2− |V | edges between every two nodes of H. To

see this, consider a set of k internally disjoint uv-paths in H. At most |V | − 2 of these paths may

not be edges between u, v, thus at least k − (|V | − 2) of these paths are edges between u, v.

Finally, for rooted uniform requirements, we note that the existing 2-approximation algorithm

in [11] does not have the restriction that G is simple, and hence works also for multi-graphs. �

Clearly, a k-connected graph on q nodes has at least ⌈kq/2⌉ edges. For any q ≥ k+1 this bound

is achievable by so called Harary graphs [12]. We use the construction of Harary for k even.

Lemma 2.3 (Harary [12]) Let V = {1, 2, . . . , q} be a set of nodes and let k ≤ q − 1 be even.

Then the graph on V with edge set E(V, k) = {ij : 1 ≤ i < j ≤ q,min{j − i, q + i − j} ≤ k/2} is

k-connected and has kq/2 edges.

For a subset C of nodes of a graph G let ΓG(C) denote the set of neighbors of C in G. The

following lemma plays a key role in the proof of Theorem 1.1, but it also of independent interest and

may have other applications. To understand the implications of this lemma, consider the following

scenario. We are given a set V of terminals in a graph G and an integer k. We want to remove from
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G the nonterminal nodes and to add a “small” number of new edges, such that in the resulting

graph J we will have κJ(u, v) ≥ min{κG(u, v), k} for all u, v ∈ V . We may do it by repeatedly

removing a connected component C of the graph G \V and adding new edges on ΓG(C); note that

ΓG(C) ⊆ V , since C is a connected component of G \ V . Formally, our statement is the following.

Lemma 2.4 Let V be a subset of nodes of a graph G, let k be an integer, and let C be a connected

component of G \ V . Let JC be a set of new edges on ΓG(C) such that the following holds.

(i) If |ΓG(C)| ≤ k then JC has min{ℓuv, k − |Iuv|} uv-edges for any u, v ∈ ΓG(C), where Iuv is

the set of uv-edges in G and ℓuv is the maximum number of internally disjoint uv-paths in

the subgraph of G induced by {u, v} ∪ C.

(ii) If |ΓG(C)| ≥ k + 1 then the graph induced by ΓG(C) in G ∪ JC is k-connected.

Let J = (G \ C) ∪ JC . Then κJ(u, v) ≥ min{κG(u, v), k} for all u, v ∈ V .

Proof: The case |ΓG(C)| ≤ k easily follows from the following construction. Let u, v ∈ G \ C.

Given a set Π of at most k internally disjoint uv-paths in G, for every P ∈ Π do the following.

For every maximal u′v′-subpath of P that visits C and has all its internal nodes in C, replace this

subpath by a u′v′-edge e not used by any other path in Π. Such e is chosen to be an edge of G

if {u′, v′} 6= {u, v} and Iu′v′ 6= ∅ or if {u′, v′} = {u, v} and min{ℓuv, k − |Iuv|} = 0. Otherwise, e

is a new edge added to G. This gives a set of |Π| internally disjoint uv-paths that do not visit C.

Since the paths in Π are internally disjoint, the set of edges added to G may have parallel edges

only between u and v, and by the construction, the number of uv-edges added, if any, can be at

most min{ℓuv, |Π| − |Iuv|} ≤ min{ℓuv, k − |Iuv|}.

Now suppose that |ΓG(C)| ≥ k + 1, so ΓG(C) induces in G + JC a k-connected graph. Let

u, v ∈ G − C. Let Iuv be a set of uv-edges in J . Let Q be a minimum size subset of nodes of

J such that J \ (Q ∪ Iuv) has no uv-path. By Menger’s Theorem κJ(u, v) = |Q| + |Iuv|. Thus if

|Q| + |Iuv| ≥ k then κJ(u, v) ≥ k ≥ min{κG(u, v), k}. We claim that if |Q| + |Iuv| ≤ k − 1 then

G\(Q∪Iuv) has no uv-path, hence by Menger’s Theorem κJ(u, v) = |Q|+|Iuv| ≥ κG(u, v). Suppose

to the contrary that G \ (Q ∪ Iuv) has a uv-path P . Going along P from u to v, let u′ be the first

and v′ the last node in ΓG(C); such u′, v′ exist since P must contain at least one node from C, as

P is not a uv-path in J \ (Q∪ Iuv). As J has k internally disjoint u′v′-paths and |Q|+ |Iuv| ≤ k−1,

the graph J \ (Q ∪ Iuv) has at least one u′v′-path P ′. Replacing the u′v′-subpath of P by P ′ gives

a uv-path in J \ (Q ∪ Iuv), contradicting the definition of Q. �

We also need the following lemma on dominating sets in unit disc graphs; this is the only place

where we use Definition 1.2. Given a graph G = (U,E), we say that D ⊆ U is a k-dominating set

in G if |ΓG(u) ∩D| ≥ k for every u ∈ U \D; note that for k = 1 we get the usual definition of a

dominating set in a graph.
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Lemma 2.5 Let (M,d) be a metric space, let ∆ ≥ 2 be as in Definition 1.2, let U ⊆ M , and let C

be a dominating set in G[U ]. Then for any k ≤ |U \ C| there is a k-dominating set D in G[U \ C]

of size |D| ≤ ∆k|C|.

Proof: For every u ∈ C let Du be defined as follows. Let Γu = ΓG[U ](u) \C. Since Γu is contained

in the unit ball centered at u, there is a dominating set D1
u of size at most ∆ in G[Γu], by the

definition of ∆. By the same argument there is a dominating set D2
u of size at most ∆ in G[Γu\D1

u].

The set Du is obtained by repeating the process k times and accumulating the dominating sets.

Clearly, |Du| ≤ k∆ and Du is a k-dominating set in G[Γu]. Let D =
⋃

u∈C Du. Then |D| ≤ k∆|C|,
and since

⋃

u∈C Γu = U \ C, D is a k-dominating set in G[U \ C]. �

3 Proof of the main result

To prove Theorem 1.1, we will prove the following statement.

Lemma 3.1 There exists a polynomial time algorithm that, given an instance V, r of SN-MSP,

constructs an instance G = (V,E), c, r of SNDP such that the following holds. Any solution of cost

C to SNDP can be converted in polynomial time to a solution of size ≤ C to SN-MSP, and for

every solution S to SN-MSP there exists a solution J of cost ≤ |S| ·ρ(k) to SNDP. Furthermore, the

construction preserves the requirement type (subset uniform, uniform, rooted, rooted subset uniform,

and rooted uniform).

Theorem 1.1 easily follows from Lemma 3.1. To see this, consider the following approximation

algorithm for SN-MSP.

1. Construct the SNDP instance (G = (V,E), c, r) as in Lemma 3.1.

2. Compute a subgraph J ⊆ G satisfying r using an α-approximation algorithm.

3. Construct from J a feasible solution S to SN-MSP.

Lemma 3.1 ensures that the algorithm runs in polynomial time and computes a feasible solution

S to the SN-MSP instance. We prove the approximation ratio. Let J∗ be a minimum cost subgraph

of G satisfying r, and let S∗ be a minimum size set of points such that G[V ∪ S∗] satisfies r. Then

|S| ≤ c(J) ≤ α · c(J∗) ≤ α · |S∗| · ρ(k) .

The second inequality is since J is computed using an α-approximation algorithm, and the last

inequality is by Lemma 3.1.

In the rest of this section we prove Lemma 3.1. We start by describing the construction of the

SNDP instance G = (V,E), c, r.
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Definition 3.1 Given a finite set of points V ⊂ M in a metric space (M,d) and an integer k ≥ 1,

the graph KV is obtained by connecting every u, v ∈ V by k parallel edges, one of cost ⌈d(u, v)⌉ − 1

and the others of cost ⌈d(u, v)⌉.

Clearly, given an SN-MSP instance, (V, r), the graph KV with the corresponding edge costs

c(e) can be constructed in polynomial time. The triple (KV , c, r) will serve as the SNDP instance

guaranteed in Lemma 3.1. The construction preserves the requirement types listed in Lemma 3.1.

Let J be a subgraph of KV . Let u, v ∈ V be connected in J by j+1 ≤ k edges. Place ⌈d(u, v)⌉− 1

new points uniformly on the line segment between u and v, dividing the segment into ⌈d(u, v)⌉
subsegments, each of length d(u,v)

⌈d(u,v)⌉ ≤ 1. Since M is a normed space, and thus is also a linear

space, this can be done; in fact, for 1 ≤ i ≤ ⌈d(u, v)⌉ − 1, the ith point is of the form

(

1− i

⌈d(u, v)⌉

)

u+
i

⌈d(u, v)⌉v

On each subsegment, place uniformly j new points in a similar fashion. Let S(u, v) be the set of

added points. Denote by S(J) the union of S(u, v) over all adjacent pairs u, v ∈ V .

Claim 3.2 |S(J)| ≤ c(J) holds for any subgraph J of KV . Furthermore, if H = G[V ∪ S(J)] is

the unit disc graph induced by V ∪ S(J) then κH(u, v) ≥ κJ(u, v) for all u, v ∈ V .

Proof: To prove that |S(J)| ≤ c(J) it is enough to show that for all u, v ∈ V , |S(u, v)| is at most

the sum of the costs of all uv-edges in J . Note that KV contains one uv-edge of cost ⌈d(u, v)⌉ − 1,

and k − 1 uv-edges of cost ⌈d(u, v)⌉ each. Thus, if J contains j + 1 ≤ k uv-edges, the sum of their

costs is at least ⌈d(u, v)⌉ − 1 + j ⌈d(u, v)⌉ = |S(u, v)|.

We prove that κH(u, v) ≥ κJ(u, v) for all u, v ∈ V . Let u, v ∈ V and let H ′ = G[{u, v}∪S(u, v)].
Assume that J contains j + 1 ≤ k uv-edges. To show that κH(u, v) ≥ κJ(u, v) it is sufficient to

show that κH′(u, v) ≥ j + 1. Let U0 be the set of points placed uniformly on the uv-segment. The

distance between every pair of consecutive points is d(u,v)
⌈d(u,v)⌉ ≤ 1. The distance between u and the

first point and v and the last point is also at most 1. Thus there is a uv-path in H ′ with node-set

U0 ∪ {u, v}. Next, we order the sets of j points placed uniformly on each subsegment 1, 2, . . . , j

by their distance from u. For 1 ≤ i ≤ j let Ui be the set obtained by taking the ith point on

each subsegment. The distance between every pair of consecutive points in Ui is
d(u,v)
⌈d(u,v)⌉ ≤ 1. The

distance between u and the ith point on the first subsegment is i·d(u,v)
(j+1)·⌈d(u,v)⌉ ≤ 1. The distance

between v and the ith point on the last subsegment is d(u,v)
⌈d(u,v)⌉ −

i·d(u,v)
(j+1)·⌈d(u,v)⌉ = (j+1−i)·d(u,v)

(j+1)·⌈d(u,v)⌉ ≤ 1.

Thus for every i, there is a uv-path in H ′ with node-set Ui∪{u, v}. Since U0, U1, . . . , Uj are pairwise

disjoint, the result follows. �

Clearly, S(J) can be computed from J in polynomial time. This proves all parts of Lemma

3.1, except the one stating that for every solution S to SN-MSP there exists a solution J of cost

c(J) ≤ |S| · ρ(k) to SNDP; this will be proved in the rest of this section.
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Let S be a feasible solution to an SN-MSP instance, so G = G[V ∪S] satisfies r. The key step in

constructing a solution J to SNDP of cost c(J) ≤ |S| · ρ(k) is replacing every connected component

C of G \ V by an edge set JC as in Lemma 2.4. Obviously, ΓG(C) ⊆ V , and thus JC ⊆ KV . The

following lemma shows that there exists such JC of low cost.

Lemma 3.3 For every connected component C of G \ V there exists an edge set JC on ΓG(C) as

in Lemma 2.4 of edges of KV such that c(JC) ≤ ρ(k) · |C|.

We prove Lemma 3.3 after the following corollary, which implies the last part of Lemma 3.1.

Corollary 3.4 Let C be the set of connected components of G \ V . For C ∈ C let JC be an edge

set as in Lemma 3.3. Then J = (G \ S)
⋃

(
⋃

C∈C

JC) is a subgraph of KV of cost c(J) ≤ ρ(k) · |S|
that satisfies r.

Proof: It is easy to see that for any u, v ∈ V the number of uv-edges in J is at most k. Hence J

is a subgraph of KV . As C is a partition of S, we have by Lemma 3.3

c(J) ≤
∑

C∈C

c(JC) ≤
∑

C∈C

ρ(k) · |C| = ρ(k) · |S| .

We prove that J satisfies r. Let C = {C1, C2, . . . , Cm}. Let G0 = G and for j = 1, . . . ,m let

Gj =

(

G \ (
j
⋃

i=1
Ci)

)

⋃

(
j
⋃

i=1
JCi

). Using Lemma 2.4, a simple induction shows that for all 1 ≤ j ≤ m,

Gj satisfies r. In particular, this is so for J = Gm. �

Now we prove Lemma 3.3. Let C ∈ C. We start with the case |ΓG(C)| ≤ k. In the notation

of Lemma 2.4, ℓuv is the maximum number of internally disjoint uv-paths in the subgraph of G

induced by {u, v} ∪ C. Then JC has at most ℓuv edges for every u, v ∈ ΓG(C). Let u, v ∈ ΓG(C).

Since there are ℓuv internally disjoint uv-paths in the subgraph of G induced by {u, v} ∪ C, there

is one such path containing no more than ⌊|C|/ℓuv⌋ points in C. Since the distance between two

consecutive nodes in the path is at most 1, and due to the triangle inequality, d(u, v) ≤ ⌊|C|/ℓuv⌋+1.

Thus c(u, v) ≤ ⌈d(u, v)⌉ ≤ ⌊|C|/ℓuv⌋+1. Consequently, the total cost of uv-edges in JC is bounded

by ℓuv ·
(

|C|
ℓuv

+ 1
)

= |C|+ ℓuv ≤ 2|C|. Thus as |ΓG(C)| ≤ k we have

c(JC) ≤
(

k

2

)

· 2|C| ≤ 1

2
k(k − 1) · 2|C| = k(k − 1)|C| ≤ ρ(k) · |C| .

This finishes the proof of Lemma 3.3 for the case |ΓG(C)| ≤ k.

If |ΓG(C)| = k + 1, JC is the complete graph on ΓG(C). By the triangle inequality, d(u, v) ≤
|C|+ 1 for every u, v ∈ ΓG(C). Hence we get

c(JC) ≤
(

k + 1

2

)

· 2|C| ≤ 1

2
k(k + 1) · (|C|+ 1) ≤ k(k + 1)|C| ≤ ρ(k) · |C| .

This finishes the proof of Lemma 3.3 for the case |ΓG(C)| = k + 1.
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Figure 1: Illustration to the proof of Lemma 3.5.

In the rest of the proof of Lemma 3.3 assume that |ΓG(C)| ≥ k + 2 > 2⌈k/2⌉.

Lemma 3.5 Let U ⊆ M , let C be a connected dominating set in G[U ], and let D = U \ C. Then

for any k ≤ |D| − 1 even there is ED ⊆ KD such that the graph (D,ED) is k-connected and

c(ED) ≤ k|D|/2 + k(k + 2)|C|/2.

Proof: Since C is a connected dominating set in G[U ], G[C] is connected and C ∩ ΓG[U ](v) 6= ∅
for every v ∈ D. For every v ∈ D choose some av ∈ C ∩ ΓG[U ](v). Let A = {av : v ∈ D}.
Let T be a spanning tree in G[C]. Order the nodes in A by running DFS on T . Let 1, . . . , q

be an order of D such that i < j if ai precedes aj in the DFS order of A, see Figure 1. Let

ED = E(D, k) = {ij : 1 ≤ i < j ≤ q,min{j − i, q+ i− j} ≤ k/2} be as in Lemma 2.3, so the graph

(D,ED) is k-connected and has |ED| = k|D|/2 edges.

We prove that c(ED) ≤ k|D|/2+k(k+2)|C|/2. For i, j ∈ D such that i < j, let Pi,j = P (ai, aj)

denote the unique aiaj-path in T and let |Pi,j | be the number of edges in Pi,j (|Pi,j | = 0 if ai = aj).

By the triangle inequality we have

d(i, j) ≤ d(i, ai) + d(ai, aj) + d(aj , j) ≤ 1 + |Pij |+ 1 = 2 + |Pij | .

Since the graph (D,ED) is simple, we can choose the cheapest ij-edge in KD and therefore

c(ij) = ⌈d(i, j)⌉ − 1 ≤ 2 + |Pi,j | − 1 = 1 + |Pi,j | .

This implies

c(ED) =
∑

ij∈ED

c(ij) ≤ |ED|+
∑

ij∈ED

|Pi,j | = k|D|/2 +
∑

ij∈ED

|Pi,j | .

It remains to show that
∑

ij∈ED
|Pi,j | ≤ k(k + 2)|C|/2. Note that |Pi,j | =

∑j−1
m=i |Pm,m+1| and

that
∑q−1

m=1 |Pm,m+1| = 2(|C| − 1) ≤ 2|C|. By the construction of ED, the number of times each

Pm,m+1 is shortcut by the edges in ED equals to 2 ·∑k/2
p=1 p = k(k + 2)/4. This implies

∑

ij∈ED

|Pi,j | =
∑

ij∈ED

j−1
∑

m=i

|Pm,m+1| ≤
k(k + 2)

4

q−1
∑

m=1

|Pm,m+1| ≤
k(k + 2)|C|

2
.

The proof of the lemma is complete. �
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We finish the proof of Lemma 3.3 for the case |ΓG(C)| ≥ k + 2. Note that C is a connected

dominating set in the subgraphs of G induced by C ∪D for any D ⊆ ΓG(C). By Lemma 2.5, there

is a k-dominating set D in G[ΓG(C)] of size |D| ≤ ∆k|C|. By Lemma 3.5, there is ED ⊆ KD such

that (D,ED) is 2⌈k/2⌉-connected, and

c(ED) ≤
2⌈k/2⌉|D|

2
+

2⌈k/2⌉(2⌈k/2⌉+ 2)|C|
2

= 2⌈k/2⌉ (|D|/2 + (⌈k/2⌉+ 1)|C|) .

Combining we get

c(ED) ≤ 2⌈k/2⌉ (|D|/2 + (⌈k/2⌉+ 1)|C|) ≤ 2⌈k/2⌉ (∆k|C|/2 + (⌈k/2⌉+ 1)|C|) = ρ(k)|C| .

Let E0 = {uv : u, v ∈ ΓG(C), d(u, v) ≤ 1} be the set of edges of cost 0 in KΓG(C). Let JC = ED∪E0.

Clearly, JC ⊆ KΓG(C) and c(JC) = c(ED) ≤ ρ(k)|C|. Since (D,ED) is k-connected, and since D is

a k-dominating set in G[ΓG(C)], the graph (ΓG(C), JC) is k-connected, by Lemma 2.2.

This finishes the proof of Lemma 3.3, and thus also the proof of Lemma 3.1 is complete.

A tight example: The following example shows that our analysis is tight (up to constants). Given

k points in a ball of radius 1/2 with uniform requirements as an instance for SN-MSP, an optimal

solution size is 1 – add one Steiner point in the ball. An optimal solution for the SNDP instance has

cost
(

k
2

)

, as it is a union of two cliques on V : in one clique every edge uv has cost ⌈d(u, v)⌉− 1 = 0,

while in the other every edge uv has cost ⌈d(u, v)⌉ = 1.
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