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In the Tree Augmentation problem we are given a tree T = (V, F ) and a set E ⊆ V × V of

edges with positive integer costs {ce : e ∈ E}. The goal is to augment T by a minimum cost edge
set J ⊆ E such that T ∪ J is 2-edge-connected. We obtain the following results.

—Recently, Adjiashvili [SODA 17] introduced a novel LP for the problem and used it to break the

2-approximation barrier for instances when the maximum cost M of an edge in E is bounded

by a constant; his algorithm computes a 1.96418 + ε approximate solution in time n(M/ε2)
O(1)

.

Using a simpler LP, we achieve ratio 12
7

+ ε in time 2O(M/ε2). This gives ratio better than 2
for logarithmic costs, and not only for constant costs. We also show that (for arbitrary costs)

the problem admits ratio 3/2 for trees of diameter ≤ 7.

—One of the oldest open questions for the problem is whether for unit costs (when M = 1) the
standard LP-relaxation, so called Cut-LP, has integrality gap less than 2. We resolve this

open question by proving that for unit costs the integrality gap of the Cut-LP is at most

28/15 = 2− 2/15. In addition, we will prove that another natural LP-relaxation, that is much
simpler than the ones in previous work, has integrality gap at most 7/4.

Categories and Subject Descriptors: F.2.2 [Nonnumerical Algorithms and Problems]: Com-
putations on discrete structures; G.2.2 [Discrete Mathematics]: Graph Algorithms

General Terms: Tree augmentation; Logarithmic costs; Approximation algorithm; Half-integral
extreme points; Integrality gap

1. INTRODUCTION

We consider the following problem:

Tree Augmentation
Input: A tree T = (V, F ) and an additional set E ⊆ V × V of edges with
positive integer costs c = {ce : e ∈ E}.
Output: A minimum cost edge set J ⊆ E such that T ∪ J is 2-edge-connected.

The problem was studied extensively, c.f. [Frederickson and Jájá 1981; Khuller
and Thurimella 1993; Cheriyan et al. 1999; Nagamochi 2003; Even et al. 2001; 2009;
Cheriyan et al. 2008; Maduel and Nutov 2010; Cohen and Nutov 2013; Kortsarz and
Nutov 2016b; Cheriyan and Gao 2015; Kortsarz and Nutov 2016a]. For a long time
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2 · Zeev Nutov

the best known ratio for the problem was 2 for arbitrary costs [Frederickson and
Jájá 1981] and 1.5 for unit costs [Even et al. 2001; Kortsarz and Nutov 2016b]; see
also [Even et al. 2009] for a simple 1.8-approximation algorithm. It is also known
that the integrality gap of a standard LP-relaxation for the problem, so called Cut-
LP, is at most 2 [Frederickson and Jájá 1981] and at least 1.5 [Cheriyan et al. 2008].
Several other LP and SDP relaxations were introduced to show that the algorithm
in [Even et al. 2001; 2009; Kortsarz and Nutov 2016b] achieves ratio better than
2 w.r.t. to these relaxations, c.f. [Cheriyan and Gao 2015; Kortsarz and Nutov
2016a]. For additional algorithms with ratio better than 2 for restricted versions
see [Cohen and Nutov 2013; Maduel and Nutov 2010].

Let M denote the maximum cost of an edge in E. Recently [Adjiashvili 2017]
introduced a novel LP for the problem – so called the k-Bundle-LP, and used it
to break the natural 2-approximation barrier for instances when M is bounded by
a constant. To introduce this result we need some definitions.

The edges of T will be called T -edges to distinguish them from the edges in E.
Tree Augmentation can be formulated as a problem of covering the T -edges by
paths. Let Tuv denote the unique uv-path in T . We say that an edge uv covers
a T -edge f if f ∈ Tuv. Then T ∪ J is 2-edge-connected if and only if J covers T .
For a set B ⊆ F of T -edges let ψ(B) denote the set of edges in E that cover some
f ∈ B, and τ(B) the minimum cost of an edge set in E that covers B. For J ⊆ E
let x(J) =

∑
e∈J xe. The standard LP for the problem which we call the Cut-LP

seeks to minimize cTx =
∑
e∈E cexe over the Cut-Polyhedron

ΠCut =
{
x ∈ RE : x(ψ(f)) ≥ 1 ∀f ∈ F, x ≥ 0

}
The k-Bundle-LP of [Adjiashvili 2017] adds over the standard Cut-LP the con-
straints

∑
e∈ψ(B) cexe ≥ τ(B) for any forest B in T that has at most k leaves,

where k = Θ(M/ε2). The algorithm of [Adjiashvili 2017] computes a 1.96418 + ε

approximate solution w.r.t. the k-Bundle-LP in time nk
O(1)

. For unit costs, a
modification of the algorithm achieves ratio 5/3 + ε.

Here we observe that it is sufficient to consider just certain subtrees of T instead
of forests. Root T at some node r. The choice of r defines an ancestor/descendant
relation on V . The leaves of T are the nodes in V \ {r} that have no descendants.
For any subtree S of T , the node s of S closest to r is the root of S, and the pair
S, s is called a rooted subtree of T, r; we will not mention the roots of trees if
they are clear from the context. We say that S is a complete rooted subtree if
it contains all descendants of s in T , and a full rooted subtree if for any non-leaf
node v of S the children of v in S and T coincide; see Fig. 1(a,b). A branch of S,
or a branch hanging on s, is a rooted subtree B of S induced by the root s of S
and the descendants in S of some child s′ of s; see Fig. 1 (c). We say that a subtree
B of T is a branch if it is a branch of a full rooted subtree, or if it is a full rooted
subtree with root r. Equivalently, a branch is a union of a full rooted subtree and
its parent T -edge.

Let Bk denote the set of branches in T with less than k leaves. The k-Branch-LP
seeks to minimize cTx =

∑
e∈E cexe over the k-Branch-Polyhedron ΠBr

k ⊆ RE
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Fig. 1. (a) complete rooted subtree; (b) full rooted subtree; (c) branch of a full rooted subtree.

defined by the constraints: ∑
e∈ψ(f)

xe ≥ 1 ∀f ∈ F

∑
e∈ψ(B)

cexe ≥ τ(B) ∀B ∈ Bk

xe ≥ 0 ∀e ∈ E

The set of constrains of the k-Branch-LP is a subset of constraints of the k-
Bundle-LP of [Adjiashvili 2017], hence the k-Branch-LP is both more compact
and its optimal value is no larger than that of the k-Bundle-LP. The first main
result in this paper is:

Theorem 1.1. For any 1 ≤ λ ≤ k − 1, Tree Augmentation admits a 4k ·
poly(n) time algorithm that computes a solution of cost at most ρ + 8

3
λM

k−λM + 2
λ

times the optimal value of the k-Branch-LP, where ρ = 12
7 for arbitrary costs and

ρ = 1.6 for unit costs.

For a given ε, choosing properly λ = Θ(1/ε) and k = Θ(M/ε2) gives ratio ρ + ε

in time 2O(M/ε2) · poly(n).
In parallel to our work Fiorini, Groß, Könemann, and Sanitá [Fiorini et al. 2017]

augmented the k-Bundle LP of [Adjiashvili 2017] by additional constraints –

{0, 1
2}-Chvátal-Gomory Cuts, to achieve ratio 1.5 + ε in n(M/ε2)

O(1)

time, thus al-
most matching the best known ratio for unit costs [Even et al. 2001; Kortsarz and
Nutov 2016b]. Our result in Theorem 1.1, done independently, shows that already
the k-Bundle LP has integrality gap closer to 1.5 than to 2. Our version of the
algorithm of [Adjiashvili 2017] is also simpler than the one in [Fiorini et al. 2017].
In fact, combining our approach with [Fiorini et al. 2017] enables to achieve ratio

1.5 + ε in 2O(M/ε2) · poly(n) time. Note that this allows to achieve this ratio for
logarithmic costs, and not only for constant costs. We will provide an additional
comparison of our results and those in [Fiorini et al. 2017] in Section 2.3.

Let diam(T ) denote the diameter of T . Tree Augmentation admits a poly-
nomial time algorithm when diam(T ) ≤ 3. If diam(T ) = 2 then T is a star and
we get the Edge-Cover problem, while the case diam(T ) = 3 is reduced to the
case diam(T ) = 2 by “guessing” some optimal solution edge that covers the central
T -edge. The problem becomes NP-hard when diam(T ) = 4 even for unit costs
[Frederickson and Jájá 1981]. We prove that (without solving any LP) for arbitrary
costs Tree Augmentation with trees of diameter ≤ 7 admits ratio 3/2.
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Our second main result resolves one of the oldest open questions concerning the
problem – whether for unit costs the integrality gap of the Cut-LP is less than 2.
This was conjectured in the 90’s by Cheriyan, Jordán & Ravi [Cheriyan et al. 1999]
for arbitrary costs, but so far there was no real evidence for this even for unit costs.
Our second main result resolves this old open question.

Theorem 1.2. For unit costs, the integrality gap of the Cut-LP is at most
28/15 = 2− 2/15.

In addition, we will show that for unit costs, another natural simple LP-relaxation,
has integrality gap at most 7/4.

2. ALGORITHM FOR BOUNDED COSTS (THEOREM 1.1)

The Theorem 1.1 algorithm is a modification of the algorithm of [Adjiashvili 2017].
We emphasize some differences. We use the k-Branch-LP instead of the k-
Bundle-LP of [Adjiashvili 2017]. But, unlike [Adjiashvili 2017], we do not solve
our LP at the beginning. Instead, we combine binary search with the ellipsoid algo-
rithm as follows. We start with lower and upper bounds p and q on the value of the
k-Branch-LP, e.g., p = 0 and q is the cost of some feasible solution to the problem.
Given a “candidate” x with q ≤ cTx ≤ p, the outer iteration (see Algorithm 1) of
the entire algorithm either returns a solution of cost at most (ρ+ 8

3
λM

k−λM + 2
λ )cTx

or a constraint of the k-Branch-LP violated by x; we show that this can be done

in time 4k · poly(n), rather than in time nk
O(1)

as in [Adjiashvili 2017]. We set
p ← p+q

2 in the former case and q ← p+q
2 in the latter case and continue to the

next iteration, terminating when p − q is small enough. This essentially gives a
4k · poly(n) time separation oracle for the k-Branch-LP (if a violated k-branch
constraint is found). Since the ellipsoid algorithm uses a polynomial number of
calls to the separation oracle, the running time is 4k · poly(n). Note that checking
whether x ∈ ΠCut is trivial, hence for simplicity of exposition we will assume that
the “candidate” x is in ΠCut.

For a set S of T -edges we denote by T/S the tree obtained from T by contracting
every T -edge of S. This defines a new Tree Augmentation instance (that may
have loops and parallel edges), where contraction of a T -edge uv leads to shrinking
u, v into a single node in the graph (V,E) of edges. In the algorithm, we repeatedly
take a certain complete rooted subtree Ŝ, and either find a k-branch-constraint
violated by some branch in Ŝ, or a “cheap” cover JS of a subset S of the T -edges
of Ŝ; in the latter case, we add JS to our partial solution J , contract Ŝ, and iterate
on the instance T ← T/Ŝ. At the end of the loop, the edges that are still not
covered by the partial solution J are covered by a different procedure, by a total
cost 2

λ · c
Tx, as follows.

We call a T -edge f ∈ F λ-thin if x(ψ(f)) ≤ λ, and f is λ-thick otherwise. We
need the following lemma from [Adjiashvili 2017], for which we provide a proof for
completeness of exposition.

Lemma 2.1 [Adjiashvili 2017]. There exists a polynomial time algorithm that
given x ∈ ΠCut, λ > 1, and a set F ′ ⊆ F of λ-thick T -edges computes a cover J ′

of F ′ of cost ≤ 2
λ · c

Tx.

Proof. Since all T -edges in F ′ are λ-thick, x/λ is a feasible solution to the
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Fig. 2. Branches hanging on s after contracting S′; λ-thick T -edges are shown by thick lines.

Cut-LP for covering F ′. Thus any polynomial time algorithm that computes a
solution J ′ of cost at most 2 times the optimal value of the Cut-LP for covering
F ′ has the desired property. There are several such algorithms, see [Frederickson
and Jájá 1981; Goemans et al. 1994; Jain 2001].

We say that a complete rooted subtree S of T is a (k, λ)-subtree if S has at least
k leaves and if either the parent T -edge f of S is λ-thin or s = r. For λ = Θ(1/ε)
and k = Θ(M/ε2) we choose Ŝ to be an inclusionwise minimal (k, λ)-subtree. Let
us focus on the problem of covering such Ŝ. Let S′ be the set of T -edges of the
inclusionwise maximal subtree of Ŝ that contains the root s of Ŝ and has only λ-
thick T -edges (possibly S = ∅); see Fig. 2(a). We postpone covering the T -edges
in S′ to the end of the algorithm, so we contract S′ into s and consider the tree
S ← Ŝ/S′; see Fig. 2(b). In S, every branch B hanging on s has less than k leaves,
by the minimality of S, hence it has a corresponding constraint in the k-Branch-
LP. We will show that for a k-branch B an optimal set of edges that covers B
can be computed in time 4k · poly(n). If

∑
e∈ψ(B) cexe < τ(B) for some branch B

hanging on s in S, then we return the corresponding k-branch constraint violated
by x; otherwise, we will show how to compute a “cheap” cover of S. More formally,
in the next section we will prove:

Lemma 2.2. Suppose that we are given a Tree Augmentation instance and
x ∈ ΠCut such that any complete rooted proper subtree of the input tree has less
than k leaves. Then there exists a 4k · poly(n) time algorithm that either finds a
k-branch constraint violated by x, or computes a solution of cost ≤ ρ

∑
e∈E\R cexe+

4
3

∑
e∈R cexe, where ρ is as in Theorem 1.1 and R is the set of edges in E incident

to the root.

To find a cheap covers of S, we consider the Tree Augmentation instance
obtained from T/S′ by contacting into s all nodes not in S. Note that every edge
that was in ψ(S)∩ ψ(f) is now incident to the root. Thus since ρ ≥ 4

3 , Lemma 2.2
implies:

Corollary 2.3. There exists a 4k ·poly(n) time algorithm that either finds a k-
branch-constraint violated by x, or a cover JS of S of cost c(JS) ≤ ρ

∑
e∈γ(S) cexe+

4
3

∑
e∈ψ(f) cexe, where ρ is as in Theorem 1.1 and γ(S) denotes the set of edges with

both endnodes in S, and f is the parent T -edge of S.

The outer iteration of the algorithm is as follows:

ACM Journal Name, Vol. V, No. N, Month 20YY.



6 · Zeev Nutov

Algorithm 1: Outer-Iteration(T = (V, F ), E, x, c, k, r, λ)

1 J ← ∅, F ′ ← ∅
2 while T has at least 2 nodes do

3 let Ŝ be an inclusionwise minimal (k, λ)-subtree of T

4 let S′ be the edge-set of the inclusionwise maximal subtree of Ŝ that

contains the root s of Ŝ and has only λ-thick edges
5 apply the algorithm from Corollary 2.3 on S ← Ŝ/S′

6 if Corollary 2.3 algorithm returns a cover JS of S then do:

F ′ ← F ′ ∪ S′, J ← J ∪ JS , T ← T/Ŝ
7 else, return a k-branch constraint violated by x and STOP

8 compute a cover J ′ of F ′ of cost c(J ′) ≤ 2
λ · c

Tx using Lemma 2.1 algorithm
9 return J ∪ J ′

Note that at step 7 the T -edges in F ′ are all λ-thick and thus Lemma 2.1 applies.
We will now analyze the performance of the algorithm assuming than no k-branch-
constraint violated by x was found. Let δ(S) denote the set of edges with exactly
one endnode in S and γ(S) the set of edges with both endnodes in S. Let f be the
parent T -edge of S. Since f is λ-thin∑

e∈ψ(f)

cexe ≤
∑

e∈ψ(f)

Mxe ≤M · x(ψ(f)) ≤Mλ .

Since x(δ(v)) ≥ 1 for every leaf v of S, ce ≥ 1 for every e ∈ E, and since S is a
(k, λ)-subtree

2
∑

e∈γ(Ŝ)

cexe =
∑
v∈Ŝ

∑
e∈δ(v)

cexe −
∑

e∈ψ(f)

cexe ≥
∑

v∈Ŝ\{s}

x(δ(v))− λM ≥ k − λM .

Consider a single iteration in the while-loop. Let ∆(cTx) denote the decrease in
the LP-solution value as a result of contracting Ŝ. Then

∆(cTx) =
∑

e∈γ(Ŝ)

cexe ≥
k − λM

2
.

On the other hand, by Lemma 2.2, the partial solution cost increases by at most

c(JS) ≤ ρ
∑

e∈γ(S)

cexe +
4

3

∑
e∈ψ(f)

cexe ≤ ρ
∑

e∈γ(Ŝ)

cexe +
4

3
λM .

Thus

c(JS)

∆(cTx)
≤ ρ+

8

3

λM

k − λM
.

The while-loop terminates when the LP-solution value becomes 0, hence by a
standard local-ratio/induction argument we get that at the end of the while-loop

c(J) ≤
(
ρ+ 8

3
λM

k−λM

)
cTx. At step 7 we add an edge set of cost ≤ 2

λc
Tx, and

Theorem 1.1 follows. It only remains to prove Lemma 2.2, which we will do in the
subsequent sections.
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2.1 Proof of Lemma 2.2

Assume that we are given an instance T = (V, F ), E, c of Tree Augmentation
with root r and x as in Lemma 2.2. It is known that Tree Augmentation
instances when T is a path can be solved in polynomial time. This allows us to
assume that the graph (V,E) is a complete graph and that cuv = τ(Tuv) for all
u, v ∈ V . Note that we use this assumption only in the proof of Lemma 2.2, where
the running time does not depend on the maximum cost M of an edge in E. Let
us say that an edge uv ∈ E is:

—a cross-edge if r is an internal node of Tuv;

—an in-edge if r does not belong to Tuv;

—an r-edge if r = u or r = v;

—an up-edge if one of u, v is an ancestor of the other.

For a subset E′ ⊆ E of edges the E′-up vector of x is obtained from x as
follows: for every non-up edge e = uv ∈ E′ increase xua and xva by xe and then
reset xe to 0, where a is the least common ancestor of u and v. The fractional
cost of a set J of edges w.r.t. c and x is defined by

∑
e∈J cexe. Let C in

x , Ccr
x , and Crx

denote the fractional cost of in-edges, cross-edges, and r-edges, respectively, w.r.t.
c and x. We fix some x∗ ∈ ΠCut and denote by C in, Ccr, and Cr the fractional
cost of in-edges, cross-edges, and r-edges, respectively, w.r.t. c and x∗. We give
two rounding procedures, given in Lemmas 2.4 and 2.5. The rounding procedure
in Lemma 2.4 is similar to that of [Adjiashvili 2017], but we show that it can be

implemented in time 4k · poly(n) instead of nk
O(1)

.

Lemma 2.4. There exists a 4k · poly(n) time algorithm that either finds a k-
branch inequality violated by x∗, or returns an integral solution of cost at most
C in + 2Ccr + Cr.

Proof. Let B be the set of branches hanging on r. For every B ∈ B compute
an optimal solution JB . If for some B ∈ B we have τ(B) >

∑
e∈ψ(B) cex

∗
e then a

k-branch inequality violated by x∗ is found. Else, the algorithm returns the union
J =

⋃
B∈B JB of the computed edge sets. As every cross-edge has its endnodes in

two distinct branches, while every in-edge or r-edge has its both endnodes in the
same branch, we get

c(J) ≤
∑
B∈B

τ(B) ≤
∑
B∈B

∑
e∈ψ(B)

cex
∗
e =

∑
B∈B

 ∑
e∈δ(B)

cex
∗
e +

∑
e∈γ(B)

cex
∗
e

 = 2Ccr+C in+Cr .

It remains to show that an optimal solution in each branch of r can be computed
in time 4k · poly(n). More generally, we will show that Tree Augmentation
instances with k leaves can be solved optimally within this time bound. Recall that
we may assume that the graph (V,E) is a complete graph and that cuv = τ(Tuv)
for all u, v ∈ V . We claim that then we can assume that T has no node v with
degT (v) = 2. This is a well known reduction (e.g. see [Marx and Végh 2015]). In
more details, we show that any solution J can be converted into a solution of no
greater cost that has no edge incident to v, and thus v can be “shortcut”. If J
has edges uv, vw then it is easy to see that (J \ {uv, vw}) ∪ {uw} is also a feasible
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solution, of cost at most c(J), since cuw ≤ cuv + cvw. Applying this operation
repeatedly we may assume that degJ(v) ≤ 1. If degJ(v) = 0, we are done. Suppose
that J has a unique edge e = vw incident to v. Let vu and vu′ be the two T -edges
incident to v, where assume that vu′ is not covered by e. Then there is an edge
e′ ∈ J that covers vu′. Since e′ is not incident to v, it must be that e′ covers vu.
Replacing e by the edge wu gives a feasible solution without increasing the cost.

Consequently, we reduce our instance to an equivalent instance with at most
2k − 1 tree edges. Now recall that Tree Augmentation is a particular case of
the Min-Cost Set-Cover problem, where the set F of T -edges are the elements
and {Te : e ∈ E} are the sets. The Min-Cost Set-Cover problem can be solved
in 2n · poly(n) time via dynamic programming, where n is the number of elements;
such an algorithm is described in [Cygan et al. 2016, Sect. 6.1] for unit costs,
but the proof extends to arbitrary costs [Cygan 2016]. Thus our reduced Tree
Augmentation instance can be solved in 22k−1 · poly(n) ≤ 4k · poly(n) time.

For the second rounding procedure [Adjiashvili 2017] proved that for any λ > 1
one can compute in polynomial time an integral solution of cost at most 2λC in +
4
3

λ
λ−1C

cr . We prove:

Lemma 2.5. There exists a polynomial time algorithm that computes a solution
of cost 4

3 (2C in + Ccr + Cr), and a solution of size 2C in + 4
3C

cr + Cr in the case of
unit costs.

Consider the case of arbitrary bounded costs. If C in ≥ 2
5C

cr we use the rounding
procedure from Lemma 2.4 and the rounding procedure from Lemma 2.5 otherwise.
In both cases we get c(J) ≤ 12

7 (C in + Ccr) + 4
3C

r. In the case of unit costs, if
C in ≥ 2

3C
cr we use the rounding procedure from Lemma 2.4, and the procedure

from Lemma 2.5 otherwise. In both cases we get c(J) ≤ 1.6(C in + Ccr) + Cr.
Lemma 2.5 is proved in the next section. The proof relies on properties of extreme

points of the Cut-Polyhedron ΠCut that are of independent interest.

2.2 Properties of extreme points of the Cut-Polyhedron (Lemma 2.5)

W.l.o.g., we augment the Cut-LP by the constraints xe ≤ 1 for all e ∈ E, while
using the same notation as before. Then (the modified) Cut-LP always has an
optimal solution x that is an extreme point or a basic feasible solution of
ΠCut. Geometrically, this means that x is not a convex combination of other points
in ΠCut; algebraically this means that there exists a set of |E| inequalities in the
system defining ΠCut such that x is the unique solution for the corresponding linear
equations system. These definitions are known to be equivalent and we will use both
of them, c.f. [Lau et al. 2011].

A set family L is laminar if any two sets in the family are either disjoint or one
contains the other. Note that Tree Augmentation is equivalent to the problem of
covering the laminar family of the node sets of the complete rooted proper subtrees
of T , where an edge covers a node set S if it has exactly one endnode in S. In
particular, note that the constraint

∑
e∈ψ(f) xe ≥ 1 is equivalent to the constraint

x(δ(S)) ≥ 1 where S is the node set of the complete rooted subtree with parent
T -edge f .

ACM Journal Name, Vol. V, No. N, Month 20YY.
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Lemma 2.6. Let (V,E) be a graph, L a laminar family on V , and b ∈ NL.
Suppose that for every S ∈ L there is no edge between two distinct children of
S and that the equation system {x(δ(S)) = bS : S ∈ L} has a unique solution
0 < x∗ < 1. Then x∗e = 1/2 for all e ∈ E. Furthermore, each endnode of every
e ∈ E belongs to some S ∈ L.

Proof. For every uv ∈ E put one token at u and one token at v. The total
number of tokens is 2|E|. For S ∈ L let t(S) be the number of tokens placed at
nodes in S that belong to no child of S. Since L is laminar, every token is placed
in at most one set in L, and thus

∑
S∈L t(S) ≤ 2|E|. Let S ∈ L and let C(S) be

the set of children of S in L. Let ES be the set of edges in δ(S) that cover no child
of S, and EC(S) the set of edges not in δ(S) that cover some child of S. Note that
no e ∈ EC(S) connects two distinct children of S. Observe that

x∗(ES)− x∗(EC(S)) = x∗(δ(S))−
∑

C∈C(S)

x∗(δ(C)) = bS −
∑

C∈C(A)

bC ≡ b′S .

Thus x∗(ES) − x∗(EC(S)) is an integer. We cannot have |ES | = |EC(S)| = 0 by
linear independence, and we cannot have |ES | + |EC(S)| = 1 by the assumption
0 < x < 1. Thus |ES | + |EC(S)| ≥ 2. Since no e ∈ E goes between children of
S, t(S) ≥ |ES | + |EC(S)|. Consequently, since

∑
S∈L t(S) ≤ 2|E|, we get: t(S) =

|ES | + |EC(S)| = 2 ∀S ∈ L. Moreover, if an endnode of some e ∈ E belongs to no
S ∈ L, then we get the contradiction

∑
S∈L t(S) ≥ 2|E| + 1. Now we replace our

equation system by an equivalent one
{
x(ES)− x(EC(S)) = b′S : S ∈ L

}
obtained

by elementary operations on the rows of the coefficients matrix. Note that x∗ is
also a unique solution to this new equation system. Moreover, this equation system
has exactly two variables in each equation and all its coefficients are integral. By
[Hochbaum et al. 1993], the solution of such systems is always half-integral.

Let us say that Tree Augmentation instance is spider-shaped if every in-edge
in E is an up-edge. By a standard “iterative rounding” argument (c.f. [Lau et al.
2011]), and using the correspondence between rooted trees and laminar families,
we get from Lemma 2.6:

Corollary 2.7. Suppose that we are given a spider-shaped Tree Augmenta-
tion instance and b ∈ NF . Let x be an extreme point of the polytope {x ∈ RE :
x(ψ(f)) ≥ bf ∀f ∈ F, 0 ≤ x ≤ 1}. Then x is half-integral (namely, xe ∈ {0, 1

2 , 1}
for all e ∈ E) and xe ∈ {0, 1} for every e ∈ δ(r).

The algorithm that computes an integral solution of cost 4
3 (2C in +Ccr +Cr) is as

follows. We obtain a spider-shaped instance by removing all non-up in-edges and
compute an optimal extreme point solution x to the Cut-LP. By Corollary 2.7,
x is half-integral and xe ∈ {0, 1} for every e ∈ δ(r). We take into our solution
every edge e with xe = 1 and round the remaining 1/2 entries using the algorithm
of Cheriyan, Jordán & Ravi [Cheriyan et al. 1999], that showed how to round a
half-integral solution to the Cut-LP to integral solution within a factor of 4/3.
Thus we can compute a solution J of cost at most c(J) ≤ 4

3c
Tx ≤ 4

3c
Tx∗. We

claim that cTx ≤ 2C in + Ccr + Cr. To see this let E in be the set of in-edges and
let x′ be the E in-up vector of x∗. Then x′ is a feasible solution to the Cut-LP
of value 2C in + Ccr + Cr, in the obtained Tree Augmentation instance with all
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Fig. 3. Illustration to the proof that no two cycles in (V,Ecr) are connected by a path.

non-up in-edges removed. But since x is an optimal solution to the same LP, we
have cTx ≤ cTx′ = 2C in +Ccr +Cr. This concludes the proof of Lemma 2.5 for the
case of arbitrary costs.

In the rest of this section we consider the case of unit costs.

Lemma 2.8. Let a, b ≥ 0 and let x be an extreme point of the polytope

Π = {x ∈ ΠCut : C in
x = a,Ccr

x = b}

such that xe > 0 for every cross-edge e. Then the graph (V,Ecr) of cross-edges has
no even cycle and each one of its connected components has at most one cycle.

Proof. Let Q be a cycle in Ecr and let ε = mine∈Q xe. Since xe > 0 for all
e ∈ Ecr, ε > 0. If |Q| is even, let Q′, Q′′ be a partition of Q into two perfect
matchings. Let z be a vector defined by ze = ε if e ∈ Q′, ze = −ε if e ∈ Q′′, and
ze = 0 otherwise. By the choice of ε, x + z, x − z are non-negative, and it is not
hard to verify that x+z, x−z ∈ Π. However, x = 1

2 (x+z)+ 1
2 (x−z), contradicting

that x is an extreme point.
Suppose that |Q| is odd. Let u, v be nodes on Q, possibly u = v. We claim that

(V,Ecr \Q) has no uv-path; this also implies that any two odd cycles in (V,Ecr) are
node disjoint. Suppose to the contrary that (V,Ecr \ Q) has a uv-path P . Let P ′

and P ′′ be the two internally disjoint uv-paths in Q where |P ′| is odd and |P ′′| is
even. Then one of P ∪ P ′ and P ∪ P ′′ is an even cycle, contradicting that (V,Ecr)
has no even cycles.

Finally, we show that no two cycles in (V,Ecr) are connected by a path. Suppose
to the contrary that (V,Ecr) has a uv-path P that connects two distinct cycles Qu
and Qv, see Fig. 3. Let z be defined as in Fig. 3. By the choice of ε, each one
of the vectors x + z and x − z is non-negative, and they are both in Π. However,
x = 1

2 (x+ z) + 1
2 (x− z), contradicting that x is an extreme point.

Note that Lemma 2.8 implies that extreme points of ΠCut have the property
given in the lemma. From Lemma 2.8 we also get:

Corollary 2.9. In the case of unit costs there exists a polynomial time algo-
rithm that computes x ∈ Π such that the graph (V,Ecr) of cross edges of positive
x-value is a forest and such that and C in

x = C in, Crx = Cr, and Ccr
x ≤ 4

3C
cr.

Proof. Let Π be as in Lemma 2.8 where a = C in and b = Cr and let x be an
optimal extreme point solution to the LP min{

∑
e∈E xe : x ∈ Π}. Let Q be a cycle

of cross-edges and e the minimum x-value edge in Q. We update x by adding xe
to each of xe′ , xe′′ and setting xe = 0. The increase in the value of x is at most
1
3

∑
e∈Q xe, and it is not hard to verify that x remains a feasible solution. In this

way we can eliminate all cycles, ending with x ∈ Π as required.
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Remark. Corollary 2.9 holds also for arbitrary costs, but in this case the proof is
much more involved. Specifically, we use the following statement, which we do not
prove here, since it currently has no application:
Let q ≥ 3 and let ci, xi ≥ 0 be reals, i = 0, . . . , q − 1. Denote ai = ci−1 − ci + ci+1

where the indices are modulo k. Then
∑k−1
i=0 cixi ≥ 3 ·min0≤i≤k−1 aixi.

Let x be as in Corollary 2.9 and let x′ be an E in-up vector of x. Note that
x′ ∈ ΠCut, since x ∈ ΠCut. We will show how to compute a solution J of size
c(J) ≤ x′(E) ≤ 2C in + 4

3C
cr + Cr. While there exists a pair of edges e = uv and

e′ = u′v′ such that x′e, x
′
e′ > 0 and Tu′v′ ⊂ Tuv we do x′e ← x′e + x′e′ and x′e′ ← 0.

Then x′ remains a feasible solution to the Cut-LP without changing the value
(since we are in the case of unit costs). Hence we may assume that there is no such
pair of edges. Let E′ be the support of x′. If every leaf of T has some cross-edge
in E′ incident to it, then by the assumption above there are no up-edges. In this
case, since E′ is a forest, xe ≥ 1 for every e ∈ E′ and E′ is a solution as required.

Otherwise, there is a leaf v of T such that no cross-edge in E′ is incident to v.
Then there is a unique up-edge e incident to v, and x′e ≥ 1. We take such e into
our partial solution, updating x′ and E′ accordingly. Note that some cross-edges
may become r-edges, but no up-edge can become a cross-edge, and the set of cross-
edges remains a forest. Applying this as long as such leaf v exists, we arrive at the
previous case, where adding E′ to the partial solution gives a solution as required.
This concludes the proof of Lemma 2.5.

2.3 Comparison to the results of Fiorini et al.

We need some definitions to compare Corollary 2.7 to a result of Fiorini, Groß,
Könemann, and Sanitá [Fiorini et al. 2017], that showed that spider-shaped Tree
Augmentation instances can be solved in polynomial time. Consider the polyhe-
dron Π(b) = {x : Ax ≥ b, x ≥ 0} where A is a given integral matrix, and let ΠI(b)
be convex hull of the integral points in Π(b). The {0, 1

2}-Chvátal-Gomory cuts
(see [Gomory 1958; Chvátal 1973; Caprara and Fischetti 1996]) are inequalities of
the form (λTA + µT)x ≥ dλTbe, for vectors λ, µ with entries in {0, 1

2} such that
λTA+ µT is an integral vector.

A matrix A is 2-regular if each of its non-singular square submatrices is half-
integral. It is known that A is 2-regular if and only if the extreme points of Π(b)
are half-integral for any integral vector b, and that if A is 2-regular then PI(b) is
described by the {0, 1/2}-Chvátal-Gomory cuts [Appa and Kotnyek 2004]. Thus in
matrix terms our Corollary 2.7 implies the following:

Corollary 2.10. In spider-shaped Tree Augmentation instances, the inci-
dence matrix A of the T -edges and the paths {Te : e ∈ E} is 2-regular.

Note that 2-regularity of A does not imply that the corresponding integer pro-
gram min{cTx : x ∈ ΠI(b)} is in P, since we have no guarantee that the separation
problem for {0, 1/2}-Chvátal-Gomory cuts is in P. However, a particular class of
2-regular matrices has this nice property. A matrix A is a binet matrix if there
exists a square non-singular integer matrix R such that ‖z‖1 ≤ 2 for any column
z of R or of RA, where ‖z‖1 =

∑
i |zi| is the L1-norm of z. It is known that any

binet matrix is 2-regular, but binet matrices have the advantage that the separation
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problem for {0, 1/2}-Chvátal-Gomory cuts is in P [Appa et al. 2007]. All in all, we
have that if A is binet then the integer program min{cTx : x ∈ ΠI(b)} can be solved
efficiently, by a combinatorial algorithm [Appa et al. 2007]. The following result,
that is stronger than our Corollary 2.10, was proved by Fiorini, Groß, Könemann
& Sanitá [Fiorini et al. 2017] in parallel to our work; for completeness of exposition
we provide a proof-sketch.

Lemma 2.11 [Fiorini et al. 2017]. In spider-shaped Tree Augmentation
instances, the incidence matrix A of the T -edges and the paths {Te : e ∈ E} is binet.

Proof. For f ∈ F let ch(f) denote the set of child T -edges of f in T . Define
a square matrix R ∈ {−1, 0, 1}F×F as follows: Rf,f = 1, Rf,g = −1 if g ∈ ch(f),
and the other entries of R are 0. Let z be the column in R of g ∈ F . Then zg = 1
and if g has a parent T -edge f then zf = −1; other entries of z are 0. Thus
‖z‖1 ≤ 2. We prove by induction on |F | that R is non-singular. The case |F | = 1
is trivial. If |F | ≥ 2, let f be a leaf T -edge. The row of f in R has a unique
non-zero entry Rf,f = 1. Let T ′ be obtained from T by removing f and the leaf
of f . The matrix R′ that corresponds to T ′ is obtained from R by removing the
row of f and the column of f . By the induction hypothesis, det(R′) 6= 0. Thus
|det(R)| = |det(R′)| 6= 0, implying that R is non-singular.

We now describe the entries of the matrix RA. Let y be the row in R of f ∈ F .
Then yf = 1 and yg = −1 for g ∈ ch(f); other entries of y are 0. Column e in A
encodes the path Te, namely, has 1 for each Te-edge; other entries are 0. Thus

(RA)f,e = |f ∩ Te| − |ch(f) ∩ Te| .

In particular, if z is the column in RA of e ∈ E then:

—If f ∈ Te then zf = 1 if |ch(f) ∩ Te| = 0 and zf = 0 otherwise.

—If f /∈ Te then zf = −|ch(f) ∩ Te|.

Now let e = uv and let a be the least common ancestor of u, v. Consider two cases,
in which we indicate only non-zero entries of z. If a ∈ {u, v} (e is an up-edge), say
a = v, then zf = 1 if f is the parent T -edge of u and zf = −1 if a 6= r and f is the
parent T -edge of v. If a /∈ {u, v} then zf = 1 if f is the parent T -edge of u or of
v, and zf = −2 if f is the parent T -edge of a; however, in a spider-shaped Tree
Augmentation instance we cannot have zf = −2, since if e is a cross edge then
a = r and thus a has no parent T -edge. Consequently, in both cases ‖z‖1 ≤ 2.

By a result of [Appa et al. 2007] (an integer program min{cTx : x ∈ ΠI(b)} is in
P if A is binet), Lemma 2.11 immediately implies:

Corollary 2.12 [Fiorini et al. 2017]. Spider-shaped Tree Augmentation
instances admit a polynomial time algorithm.

[Fiorini et al. 2017] also provided a direct simple proof that the problem of sep-
arating the {0, 1/2}-Chvátal-Gomory cuts of the Cut-LP is in P. Combining this
with our Corollary 2.10 and a result of [Appa and Kotnyek 2004] (PI(b) is de-
scribed by the {0, 1/2}-Chvátal-Gomory cuts if A is 2-regular), also enables to
deduce Corollary 2.12.
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[Fiorini et al. 2017] considered the Odd-Cut k-Bundle LP obtained by adding
to the k-Bundle LP of [Adjiashvili 2017] the “odd-cuts” (the {0, 1/2}-Chvátal-
Gomory cuts). They showed that this LP is compatible with the decomposition
of [Adjiashvili 2017], namely, that if x a feasible solution to this LP, then for any
k-bundle B the restriction of x to ψ(B) is a feasible solution to this LP on B.
Since each k-branch is a k-bundle, the more compact Odd-Cut k-Branch LP is
also compatible with [Adjiashvili 2017] decomposition. As was mentioned in the
Introduction, combining the [Fiorini et al. 2017] and our paper techniques gives:
For any 1 ≤ λ ≤ k−1, Tree Augmentation admits a 4k ·poly(n) time algorithm
that computes a solution of cost at most 3

2 + 2λM
k−λM + 2

λ times the optimal value of
the Odd-Cut k-Branch LP.
Let us briefly describe the modifications needed for this combined result.

—Lemma 2.1 is used in the same way as before, namely, just to cover by cost 2
λc

Tx
the λ-thick edges uncovered by the main algorithm.

—Recall that [Fiorini et al. 2017] showed that separating the odd-cuts is in P.
The new Lemma 2.4 would state that given x∗ ∈ RE , there exists a 4k · poly(n)
time algorithm that either finds a k-branch inequality or an odd-cut inequality
violated by x∗, or returns an integral solution of cost at most C in + 2Ccr + Cr.

—Lemma 2.5 will be replaced by a result of [Fiorini et al. 2017] that a solution of
cost 2C in + Ccr + Cr can be computed in polynomial time.

—In an improved version of Corollary 2.3 one gets that if no violated inequality is
found then c(JS) ≤

∑
e∈γ(S) cexe +

∑
e∈ψ(f) cexe. And then, the same calcula-

tions as after Algorithm 1 give c(JS)
∆(cTx)

≤ 3
2 + 2λM

k−λM .

Let us now illustrate another application of Corollary 2.12.

Lemma 2.13. Tree Augmentation admits ratio 3/2 for trees of diameter ≤ 7.

Proof. The case diam(T ) = 7 is reduced to the case diam(T ) ≤ 6 by “guess-
ing” some optimal solution edge that covers the central T -edge. So assume that
diam(T ) ≤ 6. Let r be a center of T . Fix some optimal solution and let C in and Ccr

denote the fractional cost of in-edges and cross-edges in this solution. As before,
apply the following two procedures.

(1) Each branch B hanging on r is a tree of diameter ≤ 3, hence an optimal cover
JB of B can be computed in polynomial time. The union of the edge sets JB
gives a solution of cost at most C in + 2Ccr.

(2) Compute an optimal solution of the spider-shaped instance obtained by remov-
ing all non-up in-edges using Lemma 2.11; the cost of this solution is 2C in+Ccr.

Choosing the better among the two computed solutions gives a solution of cost at
most min{C in + 2Ccr, 2C in + Ccr}, while the optimal solution cost is C in + Ccr. It
is easy to see that the approximation ratio is bounded by 3/2; if C in ≤ Ccr then
C in + 2Ccr ≤ 3

2 (C in + Ccr), while if C in > Ccr then 2C in + Ccr < 3
2 (C in + Ccr).

Lemma 2.13 can be used further to obtain ratio 9/5 for trees of diameter ≤ 15.
As before, we can reduce the case diam(T ) = 15 to the case diam(T ) ≤ 14 by
guessing some optimal solution edge that covers the central T -edge. We compute
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a 3/2-approximate cover of each branch, which gives a solution of cost at most
3
2 (C in + 2Ccr). We also compute a solution of cost at most 2C in + Ccr as before,
using Corollary 2.12. The worse case is when these two bounds are equal, namely,

when C in = 4Ccr. In this case we get that 2C in+Ccr

C in+Ccr = 1 + C in

C in+Ccr = 1 + 4
4+1 = 9

5 . In
a similar way, one can further obtain ratio better than 2 when diam(T ) ≤ 31, and
so on, but the ratio approaches 2 when the diameter becomes higher.

We note that the effort in proving Lemma 2.11 of [Fiorini et al. 2017] and our
Corollary 2.10 is roughly the same. However, the result in Lemma 2.11 of [Fiorini
et al. 2017] is more general and thus enables to obtain easily results for related
problems, as we illustrate below. Note however that our main result is extending
the range of costs for which a ratio better than 2 can be achieved, by a simpler
algorithm. Moreover, the proof idea of Corollary 2.7 might be useful for half-integral
network design problems for which the corresponding matrix is not binet.

It is known that if A is binet then also the problem of minimizing cTx over
{x ∈ ΠI(b) : p ≤ x ≤ q} can be solved in polynomial time for any integer vectors
p and q [Appa and Kotnyek 2004; Appa et al. 2007]. Now consider the following
generalization of Tree Augmentation, which we call the Generalized Tree
Augmentation problem. Here we are also given demands {bf : f ∈ F} on the
T -edges, and require that at least bf edges will cover every T -edge f ∈ F ; we also
require that for every edge e ∈ E at most q copies of e are selected. Then from
Lemma 2.11 of [Fiorini et al. 2017] and [Appa and Kotnyek 2004; Appa et al. 2007]
we immediately get:

Corollary 2.14. Spider-shaped Generalized Tree Augmentation instan-
ces admit a polynomial time algorithm.

3. BOUND ON THE INTEGRALITY GAP OF THE CUT-LP (THEOREM 1.2)

Let us write the (unit costs) Cut-LP as well as its dual LP explicitly:

min
∑
e∈E

xe max
∑
f∈F

yf

s.t.
∑

e∈ψ(f)

xe ≥ 1 ∀f ∈ F s.t.
∑

ψ(f)3e

yf ≤ 1 ∀e ∈ E

xe ≥ 0 ∀e ∈ E yf ≥ 0 ∀f ∈ F

To prove that the integrality gap of the Cut-LP is at most 28/15 we will show
that a simplified version from [Kortsarz and Nutov 2016a] of the algorithm of [Even
et al. 2009] has the desired performance. For the analysis, we will use the dual
fitting method. We will show how to construct a (possibly infeasible) dual solution
y ∈ RF+, that has the following two properties:
Property 1. y fully pays for the constructed solution J , namely, |J | ≤

∑
f∈F yf .

Property 2. y may violate the dual constraints by a factor of at most ρ = 28/15.
From the second property we get that y/ρ is a feasible dual solution, hence by
weak duality the value of y is at most ρ times the optimal value of the Cut-LP.
Combining with the first property we get that |J | is at most ρ times the optimal
value of the Cut-LP.
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Fig. 4. Dangerous trees. Here and in subsequent figures T -edges are shown by bold lines, edges

in M by dashed lines, some other existing edges by thin solid lines, and edges that cannot exist
by dotted lines. Nodes that must be original are shown by black circles, while nodes that may be

compound nodes are shown by gray circles. Some of the edges may be paths, possibly of length 0.

A dangerous tree of type (i) has two nodes with exactly 2 children each, and contracting the path
between these two nodes results in a dangerous tree of type (ii).

The algorithm iteratively finds a pair T ′, J ′ where T ′ is a subtree of the current
tree and J ′ covers T ′, contracts T ′, and adds J ′ to J . We refer to nodes created by
contractions as compound nodes and denote by C the set of non-leaf compound
nodes of the current tree. Non-compound nodes are referred to as original nodes.
For technical reasons, the root r is considered as a compound node. Whenever T ′

contains the root of T , the new compound node becomes the root of the new tree.
To identify a pair T ′, J ′ as above, the algorithm maintains a matching M on the

original leaves. We denote by U the leaves of the current tree unmatched by M .
A subtree T ′ of T is M-compatible if for any bb′ ∈ M either both b, b′ belong to
T ′ or none of b, b′ belongs to T ′; in this case we will also say that a contraction of
T ′ is M -compatible. Assuming all compound nodes were created by M -compatible
contractions, then the following type of contractions is also M -compatible.

Definition 3.1 (greedy contraction). Adding to the partial solution J an
edge e with both endnodes in U and contracting Te is called a greedy contraction.

Given a complete rooted M -compatible subtree T ′ of T we use the notation:

—M ′ = M(T ′) is the set of edges in M with both endnodes in T ′.

—U ′ = U(T ′) is the set of unmatched leaves of T ′.

—C ′ = C(T ′) is the set of non-leaf compound nodes of T ′.

Definition 3.2 (semi-closed tree). Let T ′ be a complete rooted subtree of T .
For a subset A of nodes of T ′ we say that T ′ of is A-closed if there is no edge from
A to a node outside T ′, and T ′ is A-open otherwise. Given a matching M on the
leaves of T , we say that T ′ is semi-closed if it is M -compatible and U ′-closed.

The following definition characterizes semi-closed subtrees that we want to avoid.
We will say that T ′ with 3 leaves is of type (i) if it has two nodes with exactly two
children each (see the node w and its parent in Fig. 4(i)) and T ′ is of type (ii)
otherwise (see Fig. 4(ii)).

Definition 3.3 (dangerous semi-closed tree). A semi-closed subtree T ′ of
T is dangerous if it is as in Fig. 4. Namely, |M ′| = 1, |U ′| = 1, |C ′| = 0, and if a
is the leaf of T ′ unmatched by M then: T ′ is a-closed and there exists an ordering
b, b′ of the matched leaves of T ′ such that ab′ ∈ E, the contraction of ab′ does not
create a new leaf, and T ′ is b-open.
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Definition 3.4 (twin-edge, stem). Let L denote the set of leaves of T . An
edge on L is a twin-edge if its contraction results in a new leaf. The least common
ancestor of the endnodes of a twin-edge is a stem.

In [Even et al. 2009] the following is proved:

Lemma 3.1 [Even et al. 2009]. Suppose that M has no twin-edges and that
the current tree T was obtained from the initial tree by sequentially applying a greedy
contraction or a semi-closed tree contraction, and that T has no greedy contraction.
Then there exists a polynomial time algorithm that finds a non-dangerous semi-
closed subtree T ′ of T and a cover J ′ of T ′ of size |J ′| = |M ′|+ |U ′|.

Let L(M) denote the set of leaves matched by M . The algorithm is as follows:

Algorithm 2: Iterative-Contraction(T = (V, F ), E)

1 initialize: M ← inclusionwise maximal matching on L among non twin-edges
J ← inclusionwise maximal matching on L \ L(M)

2 contract every link in J
3 while T has at least 2 nodes do
4 exhaust greedy contractions
5 if T has at least 2 nodes then for T ′, J ′ as in Lemma 3.1 do:

J ← J ∪ J ′, T ← T/T ′

6 return J

We now describe how to construct y satisfying Properties 1 and 2 as above. For
simplicity of exposition let us use the notation yv to denote the dual variable of the
parent T -edge of v. With this notation, Algorithm 3 incorporates into Algorithm 2
the steps of the construction of the dual (possibly infeasible) solution y.

Algorithm 3: Dual-Construction(T = (V, F ), E)

1 initialize: M ← inclusionwise maximal matching on L among non twin-edges
J ← inclusionwise maximal matching on L \ L(M) (see Fig. 5)

• yv ← 1 if v ∈ L \ (M ∪ J)
• yv ← 4/5 if v ∈ L(M)
• yv ← 14/15 if v ∈ L(J)
• yv ← 2/15 if v is a stem of an edge in J

2 contract every link in J
3 while T has at least 2 nodes do
4 exhaust greedy contractions
5 if T has at least 2 nodes then for T ′, J ′ as in Lemma 3.1 do:

J ← J ∪ J ′, T ← T/T ′

Case 1: |C ′| = 0 and either: |M ′| = 0 or |M ′| = 1, |U ′| ≥ 2
• update y as shown in Fig. 6

Case 2: |C ′| = 0 and |M ′| = |U ′| = 1
• update y as shown in Fig. 7

6 return J
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Fig. 5. T -edges are shown by bold lines, edges in M by dashed lines, some other existing edges

by thin solid lines, and edges that cannot exist by dotted lines. (a) Initial duals at step 1 of
Algorithm 3 and the initial loads. Here there is one stem and |M | = 1. (b) After contracting the

twin-edge at step 2, the new compound node c has credit 1.

++

(b)
+

+
+

+
(a)

+

Fig. 6. Duals updates in Case 1 of Algorithm 3. (a) |M ′| = 0; here “+” means increasing the dual

variable by 1/2. (b) |M ′| = 1, |U ′| ≥ 2; here “+” means increasing the dual variable by 2/5 and

“−” means decreasing the dual variable by 2/5.
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Fig. 7. Non-dangerous trees with |M ′| = |U ′| = 1 and duals updates in Case 2 of Algorithm 3.
Here “+” means increasing the dual variable by 2/5 and “−” means decreasing the dual variable
by 2/5. All trees are a-closed. The trees in (a,b) are non-dangerous trees of type (i), and the

trees in (c,d,e) are non-dangerous trees of type (ii). In (a) the edge ab′ is missing and in (b) ab′

is present and T ′ is b-closed. In (c) both edges ab and ab′ are present, hence to be non-dangerous

the tree must be both b′-closed and b-closed. In (d) ab′ is present hence the tree must be b-closed;

the case when ab present and the tree is b′-closed is identical. In (e) both ab and ab′ are missing.
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We now define certain quantities that will help us to prove that at the end of the
algorithm |J | ≤

∑
f∈F yf and that y violates the dual constraints by a factor of at

most 28/15.

Definition 3.5 (load of an edge). Given y ∈ RF+ and an edge e ∈ E, the
load σ(e) of e is the sum of the dual variables in the constraint of e in the dual
LP, namely σ(e) =

∑
ψ(f)3e yf .

Definition 3.6 (credit of a node). Consider a constructed dual solution y
and a node c of T during the algorithm, where c is obtained by contracting the
(possibly trivial) subtree S of T . The credit π(c) is defined as follows. Let π′(c) be
the sum of the dual variables y of the edges of S and the parent edge of c minus the
number of edges used by the algorithm to contract S into c. Then π(c) = π′(c) + 1
if r ∈ S and π(c) = π′(c) otherwise.

Our goal is to prove that at the end of the algorithm σ(e) ≤ 28/15 for all e ∈ E,
and that the unique node of T has credit at least 1. For an edge e that connects
nodes u, v of the current tree T the level `(e) of e (w.r.t. the current tree T )
is the number of compound nodes and original leaves (of the current tree T ) in
{u, v}. Clearly, `(e) ∈ {0, 1, 2} and note that if both endnodes of e lie in the same
compound node then e is a loop and `(e) = 2.

Lemma 3.2. At the end of step 2 of Algorithm 3, and then at the end of every
iteration in the “while” loop, the following holds.

(i) π(c) ≥ 1 if c is an unmatched leaf or a compound node of T .

(ii) For any edge e:

• σ(e) ≤ 28/15 if `(e) = 2.
• σ(e) ≤ 16/15 if `(e) = 1.
• σ(e) = 0 if `(e) = 0.

Proof. It is easy to see that the statement holds at the end of step 2, see Fig. 5.
We will prove by induction that the statement continues to hold after each con-
traction step of the while-loop. Let us consider such contraction step that resulted
in a new compound node c and denote by σ′, `′, π′ the new values of σ, `, π after
the contraction. By the induction hypothesis σ, `, π satisfy properties (i) and (ii)
above, and we prove that σ′, `′, π′ satisfy (i) and (ii) as well.

For (i) it is sufficient to prove that π′(c) ≥ 1, as π′ = π for other nodes. Consider
a greedy contraction with an edge e connecting two unmatched leaves u and v.
By the induction hypothesis, π(u), π(v) ≥ 1. Thus π′(c) ≥ π(u) + π(v) − 1 ≥ 1.
Now suppose that a semi-closed tree T ′ was contracted into c. Let ∆(y) denote the
increase in the value of y during the contraction step and note that

π′(c) ≥
(
π(C ′) +

8

5
|M ′|+ |U ′|

)
− (|M ′|+ |U ′|) + ∆(y) ≥ |C ′|+ 3

5
|M ′|+ ∆(y) .

If |C ′| ≥ 1 or |M ′| ≥ 2 then π′(c) ≥ |C ′|+ 3
5 |M

′| ≥ 1. If |M ′| = 0 (Fig. 6(a)) then
π′(c) ≥ ∆(y) ≥ 1

2 (|U ′| + 1) ≥ 1. If |M ′| = 1 then ∆(y) = 2
5 , since in all cases in

Figures 6(b) and 7, the number of “+” signs is larger by one than the number of
“−” signs; thus π′(c) ≥ 3

5 |M
′|+ 2

5 ≥ 1. In all cases π′(c) ≥ 1, as required.
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We now show that property (ii) holds. Note that if σ′(e) = σ(e) then (ii) continues
to hold for e, since contractions can only increase the edge level and since the bounds
in (ii) are increasing with the level. Thus we only need to consider the cases when
we change the dual variables, namely, when a semi-closed tree T ′ was contracted
into c; these are the cases given in Figures 6 and 7.

It is sufficient to consider edges with at least one endnode in T ′, as σ′ = σ and
`′ = ` holds for other edges. Let e be an edge that has an endnode in T ′. Let q(e)
denote the number of “+” signs minus the number of “−” signs in Figures 6 and 7
along the path Te; we have σ′(e)−σ(e) = 1

2q(e) in Fig. 6(a) and σ′(e)−σ(e) = 2
5q(e)

in all other cases. One can verify that q(e) ≤ 0 if e connects a leaf of T ′ to another
leaf of T ′ or to a node outside T ′. Thus it remains to consider the case when e is
incident to a non-leaf node of T ′. Then `′(e) > `(e), since |C ′| = 0. One can verify
that q(e) ≤ 1, except one case – q(e) = 2 if in Fig. 7(a) e connects the leaf a to a
node v in T ′ that is an ancestor of w; this tight case is the one that determined our
initial assignment of dual variables. In all cases we have σ′(e) − σ(e) ≤ 4

5 , which
equals the minimum difference 28−16

15 in the bounds in (ii) due to an increase of an
edge level. This concludes the proof of (ii) and of the lemma.

4. INTEGRALITY GAP OF THE 3-BUNCH-LP

The following simple LP-relaxation was suggested by the author several years before
[Adjiashvili 2017] and [Fiorini et al. 2017]. Let us call an odd size set B of edges
of T a bunch if no 3 edges in B lie on the same path in T . Let B denote the set
of bunches in T . For every B ∈ B at least wB := (|B| + 1)/2 edges are needed to
cover B. The corresponding Bunch-LP and its dual LP are:

min
∑
e∈E

xe max
∑
B∈B

wByB

s.t.
∑

e∈ψ(B)

xe ≥ wB ∀B ∈ B s.t.
∑

ψ(B)3e

yB ≤ 1 ∀e ∈ E

xe ≥ 0 ∀e ∈ E yB ≥ 0 ∀B ∈ B

A k-bunch is a bunch of size k. Let k-Bunch-LP be the restriction of the
Bunch-LP to bunches of size ≤ k. Note that 1-Bunch-LP is just the Cut-LP,
and that Theorem 1.1 says that the integrality gap of the 1-Bunch-LP is at most
28/15. We can easily prove a better bound for the 3-Bunch-LP.

Theorem 4.1. For unit costs, the integrality gap of the 3-Bunch-LP is at most
7/4.

Proof. We use the same algorithm as before, but define the dual variables
differently. In the initialization step we set (see Fig. 8):

• yv ← 1 if v ∈ L \ L(M ∪ J)

• yv ← 3/4 if v ∈ L(M)

• yv ← 1/2 if v ∈ L(J)

• yB ← 1/2 if B is the 3-bunch of the T -edges incident to a stem of an edge in J

In the updates of the dual variables in Figures 6 and 7, “+” and “−” means
increasing and decreasing the dual variable by 1/2, respectively, with one exception:
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MM

(a)

3/4

1load=7/4

(b)

3/43/4

1 1

load=7/4

stem

1/2
load=3/2 load=3/2

load=7/41

load=5/4

1 1 load=3/2

c
3/4 1/2

1/2

load=7/4

load=5/4

load=3/2

load=3/2

Fig. 8. Initial duals of the 3-Bunch-LP and the initial loads. The 3-bunch of the edges incident

to the stem is shown by a light gray circle.

in Fig. 7(a) the updates are yb ← yb − 1/2 and yB ← 1/2, where B is the 3-bunch
formed by the parent T -edges of a, b, w. Similarly to Lemma 3.2 we prove that after
step 2 the following holds:

(i) π(c) ≥ 1 if c is an unmatched leaf or a compound node of T .

(ii) For any edge e: σ(e) ≤ 7/4 if `(e) = 2, σ(e) ≤ 1 if `(e) = 1, and σ(e) = 0 if
`(e) = 0.

It is easy to see that the statement holds at the end of step 2, see Fig. 8; note
that after step 2 the edge with load 5/4 has level 2. As in Lemma 3.2 we continue
by induction while using the same notation, but focus only on the arguments that
are different from the ones in Lemma 3.2.

Suppose that a semi-closed tree T ′ was contracted into a compound node c. Then

π′(c) ≥
(
π(C ′) +

3

2
|M ′|+ |U ′|

)
− (|M ′|+ |U ′|) + ∆(y) ≥ |C ′|+ 1

2
|M ′|+ ∆(y) .

If |C ′| ≥ 1 or |M ′| ≥ 2 then π′(c) ≥ |C ′| + 1
2 |M

′| ≥ 1. If |M ′| = 0 (Fig. 6(a))
then π′(c) ≥ ∆(y) ≥ 1

2 (|U ′| + 1) ≥ 1. If |M ′| = 1 then ∆(y) = 1
2 and thus

π′(c) ≥ 1
2 |M

′| + ∆(y) ≥ 1; this is since in each one of the cases in Figures 6(b)
and 7(b,c,d,e) the number of “+” signs is larger by one than the number of “−”
signs, while in the case in Fig. 7(a) we gain 2 · 1

2 = 1 when increasing by 1
2 the dual

variable of a 3-bunch, and loose just 1
2 by decreasing yb by 1

2 . In all cases we have
π′(c) ≥ 1, as required.

We now show that property (ii) holds. Consider a semi-closed tree T ′ was con-
tracted into c and an edge e with at least one endnode in T ′. Note that now 3

4 is
the minimum difference in the bounds in (ii) due to an increase of an edge level.

Let us consider the case in Fig. 7(a). If e is incident to b or if e = vb′ for
some v ∈ T ′ then σ′(e) ≤ σ(e). In all the other cases we have `′(e) > `(e) and
σ′(e)− σ(e) ≤ 1

2 <
3
4 . Hence the induction step holds in this case.

For the other cases, as before, let q(e) denote the number of “+” signs minus
the number of “−” signs in Figures 6 and 7(b,c,d,e) along the path Te; we have
σ′(e) − σ(e) = 1

2q(e) in all cases. One can verify that q(e) ≤ 0 if e connects a leaf
of T ′ to another leaf of T ′ or to a node outside T ′. If e is incident to a non-leaf
node of T ′ then `′(e) > `(e) and q(e) ≤ 1, which implies σ′(e) − σ(e) ≤ 1

2 . This
concludes the proof of (ii) and of the lemma.
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5. CONCLUSIONS

In this paper we presented an improved algorithm for Tree Augmentation, by
modifying the algorithm of [Adjiashvili 2017]. A minor improvement is that the al-
gorithm is simpler, as it avoids a technical discussion on so called “early compound
nodes”, see [Adjiashvili 2017] and [Fiorini et al. 2017]. A more important improve-

ment is in the running time – 4kpoly(n) instead of nk
O(1)

, where k = Θ(M/ε2). This
allows ratio better than 2 also for logarithmic costs, and not only costs bounded by
a constant. These two improvements are based, among others, on a more compact
and simpler LP for the problem. Another important improvement is in the ratio –
12
7 +ε instead of 1.96418+ε in [Adjiashvili 2017]. This algorithm is based on a com-

binatorial result for spider-shaped Tree Augmentation instances. We showed
that for spider-shaped instances, the extreme points of the Cut-Polyhedron are
half-integral, and thus Tree Augmentation on such instances can be approxi-
mated within 4/3. As was mentioned, a related recent result of [Fiorini et al. 2017]
shows that for spider-shaped instances, augmenting the Cut-LP by {0, 1

2}-Chvátal-
Gomory Cuts gives an integral polyhedron and that such instances can be solved
optimally in polynomial time. Overall we get that spider-shaped instances behave
as “star-instances” – when T is a star (this is essentially the Edge-Cover prob-
lem): the extreme points of the Cut-LP are half-integral, while augmenting it by
{0, 1

2}-Chvátal-Gomory Cuts gives an integral polyhedron. The description of the
{0, 1

2}-Chvátal-Gomory Cuts in [Fiorini et al. 2017] is somewhat complicated, and
a natural question is whether using the simpler Bunch-LP gives the same result.
This is so when T is a star, c.f. [Schrijver 2004] where an equivalent Edge-Cover
problem is considered.

Our second main result is that in the case of unit costs the integrality gap of
the Cut-LP is less than 2, which resolves a long standing open problem. Our goal
here was just to present the simplest verifiable proof for this fact, and we believe
that our bound 2−2/15 can be improved by a slightly more complex algorithm and
analysis. As was mentioned, several LP and SDP relaxations, more complex than
the Cut-LP, were shown to have integrality gap less than 2 for particular cases
(e.g., the k-Branch-LP with logarithmic costs). The hope was that this may lead
to ratio better than 2 for the general case. Our result suggests that already the
simplest Cut-LP, combined with the dual fitting method, may be the right one
to study to achieve this goal. More complex LP’s (e.g., the Bunch-LP or the
Odd-Cut LP) may be used to improve the ratio.
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ming 74, 3, 221–235.

Cheriyan, J. and Gao, Z. 2015. Approximating (unweighted) tree augmentation via lift-and-

project, part II. Manuscript.

Cheriyan, J., Jordán, T., and Ravi, R. 1999. On 2-coverings and 2-packing of laminar families.
In ESA. 510–520.

Cheriyan, J., Karloff, H., Khandekar, R., and Koenemann, J. 2008. On the integrality ratio

for tree augmentation. Operation Research Letters 36, 4, 399–401.
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