
Approximating Directed Weighted-Degree Constrained Networks∗

Zeev Nutov

The Open University of Israel

nutov@openu.ac.il

Key-words: Directed network design; Intersecting supermodular requirements; Weighted degree

constraints; Bicriteria approximation algorithms.

Abstract

Given a graph H = (V, F ) with edge weights {we : e ∈ F}, the weighted degree of a node v

in H is
∑

{wvu : vu ∈ F}. We give bicriteria approximation algorithms for problems that seek

to find a minimum cost directed graph that satisfies both intersecting supermodular connectivity

requirements and weighted degree constraints. The input to such problems is a directed graph

G = (V,E) with edge-costs {ce : e ∈ E} and edge-weights {we : e ∈ E}, an intersecting

supermodular set-function f on V , and degree bounds {b(v) : v ∈ B ⊆ V }. The goal is to

find a minimum cost f -connected subgraph H = (V, F ) (namely, at least f(S) edges in F enter

every S ⊆ V ) of G with weighted degrees ≤ b(v). Our algorithm computes a solution of cost

≤ 2 ⋅ opt, so that the weighted degree of every v ∈ V is at most: 7b(v) for arbitrary f and

5b(v) for a 0, 1-valued f ; 2b(v) + 4 for arbitrary f and 2b(v) + 2 for a 0, 1-valued f in the case

of unit weights. Another algorithm computes a solution of cost ≤ 3 ⋅ opt and weighted degrees

≤ 6b(v). We obtain similar results when there are both indegree and outdegree constraints, and

better results when there are indegree constraints only: a (1, 4b(v))-approximation algorithm for

arbitrary weights and a polynomial time algorithm for unit weights. Similar results are shown

for crossing supermodular f . We also consider the problem of packing maximum number k

of pairwise edge-disjoint arborescences so that their union satisfies weighted degree constraints,

and give an algorithm that computes a solution of value at least ⌊k/36⌋. Finally, for unit weights

and without trying to bound the cost, we give an algorithm that computes a subgraph so that

the degree of every v ∈ V is at most b(v) + 3, improving over the approximation b(v) + 4 of [2].

∗Preliminary version in APPROX 2008, pp. 219–232.

1



1 Introduction

1.1 Problem definition

In many Network Design problems one seeks to find a low-cost subgraph H of a given graph G that

satisfies prescribed connectivity requirements. Such problems are vastly studied in Combinatorial

Optimization and Approximation Algorithms. Known examples are Min-Cost k-Flow, b-Edge-Cover,

Min-Cost Spanning Tree, Traveling Salesperson, directed/undirected Steiner Tree, Steiner Forest, k-

Edge/Node-Connected Spanning Subgraph, and many others. See, e.g., surveys in [18, 5, 10, 12, 14].

In Degree Constrained Network Design problems, one seeks the cheapest subgraph H of a given

graph G that satisfies both prescribed connectivity requirements and degree constraints. One such

type of problems are the matching/edge-cover problems, which are solvable in polynomial time,

c.f., [18]. For other degree constrained problems, even checking whether there exists a feasible

solution is NP-complete, hence one considers bicriteria approximation when the degree constraints

are relaxed. For example, checking whether a directed graph contains an arborescence of maximum

outdegree 1, or whether and undirected graph contains a spanning tree of maximum degree 2, is

the directed/undirected Hamiltonian Path problem, which is NP-complete.

We consider directed network design problems, so all the graphs in this paper are assumed to be

directed, unless stated otherwise. The connectivity requirements can be specified by a set-function

f on V as follows. For an edge set or a graph H on node set V and node subset S ⊆ V let �H(S)

(�inH (S)) denote the set of edges in H leaving (entering) S. We will write �H(v) instead of �H({v}).

Definition 1.1 Given a set-function f from subsets of V to non-negative integers, and a graph

H = (V, F ) we say that H is f -connected if at least f(S) edges in F enter every S ⊆ V , namely:

∣�inH (S)∣ ≥ f(S) for all S ⊆ V. (1)

Several types of f are considered in the literature, among them the following known ones:

Definition 1.2 A set-function f on V is intersecting supermodular if any X,Y ⊆ V that intersect

(namely, X ∩ Y ∕= ∅) satisfy the supermodularity condition

f(X) + f(Y ) ≤ f(X ∩ Y ) + f(X ∪ Y ) . (2)

If any X,Y ⊆ V that cross (namely, the sets X ∩ Y,X ∖ Y, Y ∖ X,V ∖ (X ∪ Y ) are non-empty)

satisfy the supermodularity condition (2), then f is crossing supermodular.

For a weight/cost function x on an edge set F of a graph H, let x(H) = x(F ) =
∑

e∈F xe be the

weight/cost of F (or of H). We consider directed network design problems with weighted-degree

constraints. For simplicity of exposition, we will consider the cases of outdegree constraints and

indegree constraints separately, but our results easily extend to the case with both indegree and

outdegree constraints, see Section 6. The outdegree constrained version of our problem is:

2



Directed Weighted Degree Constrained Network (DWDCN)

Instance: A directed graph G = (V,E) with edge-costs {ce : e ∈ E} and edge-weights

{we : e ∈ E}, a set-function f on V , and degree bounds b = {b(v) : v ∈ B ⊆ V }.

Objective: Find a minimum cost f -connected subgraph H = (V, F ) of G that satisfies

the weighted degree constraints

w(�H (v)) ≤ b(v) for all v ∈ B . (3)

The set-function f may not be given explicitly but rather implicitly in a compact form. We

need that some queries related to f can be answered in polynomial time. Specifically, we assume

that f admits a polynomial time evaluation oracle. Since for most set-functions f even checking

whether DWDCN has a feasible solution is NP-complete, we consider bicriteria approximation

algorithms. Assuming that the problem has a feasible solution, an (�, �(b(v)))-approximation

algorithm for DWDCN either computes an f -connected subgraph H of G of cost ≤ � ⋅ opt that

satisfies w(�H(v)) ≤ �(b(v)) for all v ∈ B, or correctly determines that the problem has no feasible

solution. Note that even if the problem does not have a feasible solution, the algorithm may still

return a subgraph that violates the degree constraints (3) within �(b(v)).

Now we mention what connectivity types can be represented by intersecting supermodular

and crossing supermodular functions. A graph H is k-edge-outconnected from r if it has k-edge-

disjoint paths from r to any other node. A graph is k-edge-connected if it has k-edge-disjoint

paths between every pair of its nodes. DWDCN with intersecting supermodular f includes as a

special case the Weighted Degree Constrained k-Edge-Outconnected Subgraph problem, by setting

f(S) = k for all ∅ ∕= S ⊆ V ∖ {r}, and f(S) = 0 otherwise. For k = 1 we get the Weighted Degree

Constrained Arborescence problem. DWDCN with crossing supermodular f includes as a special

case the Weighted Degree Constrained k-Edge-Connected Subgraph problem, by setting f(S) = k for

all ∅ ∕= S ⊂ V , and f(S) = 0 otherwise.

We also consider the problem of packing maximum number k of edge-disjoint arborescences

rooted at r so that their union H satisfies (3). By Edmond’s Theorem [4], this is equivalent to

requiring that H is k-edge-outconnected from r and satisfies (3). This gives the following problem:

Weighted Degree Constrained Maximum Arborescence Packing (WDCMAP)

Instance: A directed graph G = (V,E) with edge-weights {we : e ∈ E}, degree bounds

b = {b(v) : v ∈ B ⊆ V }, and a root r ∈ V .

Objective: Find a k-edge-outconnected from r spanning subgraph H = (V, F ) of G that

satisfies the degree constraints (3) so that k is maximum.

3



1.2 Our results

Our main results are summarized in the following two theorems. Let �∗ denote the optimal value of

the following natural LP-relaxation for DWDCN that for x ∈ ℝ
E seeks to minimize c⋅x =

∑

e∈E cexe

over the following polytope P (f, b):

x(�inE (S)) ≥ f(S) for all ∅ ∕= S ⊂ V
∑

e∈�E(v)

xewe ≤ b(v) for all v ∈ B

0 ≤ xe ≤ 1 for all e ∈ E

Theorem 1.1 DWDCN with intersecting supermodular f admits a polynomial time algorithm that

computes an f -connected graph of cost ≤ 2�∗ so that the weighted degree of every v ∈ B is at most:

7b(v) for arbitrary f and 5b(v) for a 0, 1-valued f ; for unit weights, the degree of every v ∈ B is

at most 2b(v) + 4 for arbitrary f and 2b(v) + 2 for a 0, 1-valued f . The problem also admits a

(3, 6b(v))-approximation algorithm for arbitrary weights and arbitrary intersecting supermodular f .

Interestingly, we can show a much better result for the version of DWDCN with indegree con-

straints w(�inH (v)) ≤ bin(v) for all v ∈ B (for the case of both indegree and outdegree constraints

see Section 6).

Theorem 1.2 DWDCN with indegree constraints and with intersecting supermodular f admits a

polynomial time algorithm that computes an f -connected graph of cost �∗ so that the weighted

indegree of every v ∈ B is at most: min{4, fmax}⋅b
in(v) for arbitrary weights and min{bin(v), fmax}

for unit weights, where fmax = maxS⊆V f(S) is the maximum f -value. In particular, for a 0, 1-

valued f and arbitrary weights, or for unit weights and arbitrary intersecting supermodular f , the

problem admits an exact polynomial time algorithm.

We leave an open question whether DWDCN with indegree constraints and arbitrary inter-

secting supermodular f admits a polynomial time algorithm for arbitrary weights. By combining

Theorems 1.1 and 1.2 we can easily obtain approximation algorithms for DWDCN with crossing

supermodular f . Any crossing supermodular set-function f can be naturally represented by two

intersecting supermodular set-functions as follows, see, e.g. [8].

Fact 1.3 Let f be a crossing supermodular set-function on V and let r ∈ V . Let f in(S) = f(S)

if r /∈ S and f(S) = 0 otherwise, and let f out(S) = f(V ∖ S) if r /∈ S and f(S) = 0 otherwise.

Then f in, f out are intersecting supermodular set-functions, and H is f -connected if, and only if, H

is f in-connected and the reverse graph of H is f out-connected.

Corollary 1.4 DWDCN with crossing supermodular f admits a polynomial time algorithm that

computes an f -connected graph of cost ≤ 3�∗ so that the weighted degree of every v ∈ B is at most:

(7 + min{4, fmax}) ⋅ b(v)) for arbitrary f and 6b(v) for a 0, 1-valued f ; for unit weights, the degree

4



of every v ∈ B is at most 2b(v)+4+min{fmax, b(v)}) for arbitrary f and 2b(v)+3 for a 0, 1-valued

f . The same ratios apply for the version with indegree constraints.

Table 1 summarizes the ratios in Theorems 1.1, 1.2, and Corollary 1.4.

type of f intersecting supermodular crossing supermodular

constraints outdegree indegree outdegree/indegree

any f , any w (2, 7b(v)) (1,min{4, fmax} ⋅ b
in(v)) (3, (7 + min{4, fmax}) ⋅ b(v))

(3, 6b(v)) (4, (6 + min{4, fmax}) ⋅ b(v))

0, 1-f , any w (2, 5b(v)) (1, bin(v)) (3, 6b(v))

any f , w ≡ 1 (2, 2b(v) + 4) (1,min{fmax, b
in(v)}) (3, 2b(v) + 4 + min{fmax, b(v)})

0, 1-f , w ≡ 1 (2, 2b(v) + 2) (1,min{1, bin(v)}) (3, 2b(v) + 3)

Table 1: Bicriteria approximation ratios for DWDCN with indegree or outdegree constraints (but

not both) for intersecting and crossing supermodular f . Each ratio in the right column (crossing

supermodular f) is a sum of the corresponding ratios in the first two columns.

Theorem 1.1 has several applications. Bang-Jensen, Thomassé, and Yeo [1] conjectured that

every k-edge-connected directed graph G = (V,E) contains a spanning arborescence H so that

∣�H(v)∣ ≤ ∣�G(v)∣/k + 1 for every v ∈ V . Bansal, Khandekar, and Nagarajan [2] proved that

even if G is only k-edge-outconnected from r, then G contains a spanning arborescence H so that

∣�H(v)∣ ≤ ∣�G(v)∣/k + 2. We prove that for any ℓ ≤ k, G contains an ℓ-outconnected from r

spanning subgraph H whose cost and weighted degrees are not much larger than the “expected”

values c(G) ⋅ (ℓ/k) and w(�G(v)) ⋅ (ℓ/k). In particular, one can find an arborescence with both low

weighted degrees and low cost.

Corollary 1.5 Let Hk = (V, F ) be a k-edge-outconnected from r directed graph with edge costs

{ce : e ∈ F} and edge weights {we : e ∈ F}. Then for any ℓ ≤ k the graph Hk contains an

ℓ-outconnected from r spanning subgraph Hℓ so that c(Hℓ) ≤ c(Hk) ⋅ (2ℓ/k) and so that for all

v ∈ V : w(�Hℓ
(v)) ≤ w(�Hk

(v)) ⋅ (7ℓ/k), and w(�Hℓ
(v)) ≤ w(�Hk

(v)) ⋅ (5/k) for ℓ = 1; for unit

weights, ∣�Hℓ
(v)∣ ≤ ∣�Hk

(v)∣ ⋅ (2ℓ/k) + 2. There also exists Hℓ so that c(Hℓ) ≤ c(Hk) ⋅ (3ℓ/k) and

w(�Hℓ
(v)) ≤ w(�Hk

(v)) ⋅ (6ℓ/k) for all v ∈ V .

Proof: Consider the Weighted Degree Constrained ℓ-Edge-Outconnected Subgraph problem on Hk

with degree bounds b(v) = w(�Hk
(v)) ⋅ (ℓ/k). Clearly, xe = ℓ/k for every e ∈ F is a feasible solution

of cost c(Hk) ⋅ (ℓ/k) to the LP-relaxation min{c ⋅x : x ∈ Pf} where f(S) = ℓ for all ∅ ∕= S ⊆ V ∖{r},

and f(S) = 0 otherwise. By Theorem 1.1, our algorithm computes a subgraph Hℓ as required. □

Another application is for the WDCMAP problem. Ignoring costs, Theorem 1.1 implies a

“pseudo-approximation” algorithm for WDCMAP that computes the maximum number k of packed

arborescences, but violates the weighted degree constraints. E.g., using the (3, 6)-approximation

algorithm from Theorem 1.1, we can compute a k-edge-outconnected H that violates the weighted

5



degree bounds by a factor of 6, where k is the optimal value to WDCMAP. Note that assuming

P ∕=NP, WDCMAP cannot achieve a 1/�-approximation algorithm for any � > 0, since deciding

whether k ≥ 1 is equivalent to the Degree Constrained Arborescence problem, which is NP-complete.

We can however show that if the optimal value k is not too small, then the problem does admit a

constant ratio approximation.

Theorem 1.6 WDCMAP admits a polynomial time algorithm that computes a feasible solution H

that satisfies (3) so that H is ⌊k/36⌋-outconnected from r.

Proof: The algorithm is as follows. We set b′(v) ← b(v)/6 for all v ∈ V and apply the (3, 6b(v))-

approximation algorithm from Theorem 1.1. The degree of every node v in the subgraph computed

is at most 6b′(v) ≤ b(v), hence the solution is feasible. All we need to prove is that if the original

instance admits a packing of size k, then the new instance admits a packing of size ⌊k/36⌋. Let Hk

be an optimal solution to WDCMAP. Substituting ℓ = ⌊k/36⌋ in the last statement of Corollary 1.5

and ignoring the costs we obtain that Hk contains a subgraph Hℓ which is ℓ-outconnected from r

so that w(�Hℓ
(v)) ≤ w(�Hk

(v)) ⋅ (6ℓ/k) ≤ w(�Hk
(v))/6 ≤ b(v)/6 for all v ∈ V , as claimed. □

We note that Theorem 1.6 easily extends to the case when edges have costs; the cost of the

subgraph H computed is at most the minimum cost of a feasible k-edge-outconnected subgraph.

Finally, for unit weights and without trying to bound the cost, we obtain the following result

that improves over the degree approximation b(v) + 4 of [2].

Theorem 1.7 DWDCN with intersecting supermodular f and unit weights (and costs ignored)

admits a polynomial time algorithm that computes an f -connected subgraph so that the degree of

every v ∈ B is at most b(v) + 3.

1.3 Previous and related work

Fürer and Raghavachari [7] considered the problem of finding a spanning tree with maximum degree

≤ Δ, and gave an algorithm that computes a spanning tree of maximum degree ≤ Δ + 1. This

is essentially the best possible since computing the optimum is NP-hard. A variety of techniques

were developed in attempt to generalize this result to the minimum-cost case – the Minimum

Degree Spanning Tree problem, c.f., [17, 13, 3]. Goemans [9] presented an algorithm that computes

a spanning tree of cost ≤ opt and with degrees at most b(v) + 2 for all v ∈ B, where b(v) is the

degree bound of v. An optimal result was obtained by Singh and Lau [19]; their algorithm computes

a spanning tree of cost ≤ opt and with degrees at most b(v) + 1 for all v ∈ B. The algorithm of

Singh and Lau [19] uses the method of iterative rounding. This method was initiated in a seminal

paper of Jain [11] that gave a 2-approximation algorithm for the Steiner Network problem. Without

degree constraints, this method is as follows: given an optimal basic solution to an LP-relaxation

for the problem, round at least one entry, and recurse on the residual instance. The algorithm of

6



Singh and Lau [19] for the Minimum Bounded Degree Spanning Tree problem is a surprisingly simple

extension – either round at least one entry, or remove a degree constraint from some node v. The

non-trivial part usually is to prove that basic fractional solution have certain “sparse” properties.

For unit weights, the following results were obtained recently. Lau, Naor, Salvatipour, and

Singh [15] were the first to consider general connectivity requirements. They gave a (2, 2b(v) + 3)-

approximation for undirected graphs in the case when f is weakly supermodular. For directed

graphs, they gave a (4, 4b(v)+6)-approximation for intersecting supermodular f , and (8, 8b(v)+6)-

approximation for crossing supermodular f . Recently, in the full version of [15], these ratios were

improved to (3, 3b(v)+5) for crossing supermodular f , and (2, 2b(v)+2) for a 0, 1-valued intersecting

supermodular f . For the latter case we have the same ratio, but our proof is simpler than the one

in the full version of [15].

Bansal, Khandekar, and Nagarajan [2] obtained for an intersecting supermodular set-function

f a (1
"
, ⌈ b(v)1−"

⌉+ 4)-approximation scheme, 0 ≤ " ≤ 1/2; substituting " = 1/2 gives a (2, 2b(v) + 4)-

approximation as in our Theorem 1.1, but our proof of this particular case is very simple. They also

showed that this ratio cannot be much improved based on the standard LP-relaxation. For crossing

supermodular f [2] gave a (2
"
, ⌈ b(v)1−"

⌉+4+ fmax)-approximation scheme. For the Degree Constrained

Arborescence problem (without costs) [2] gave an algorithm that computes an arborescence H with

∣�H(v)∣ ≤ b(v) + 2 for all v ∈ B. Some additional results for related problems can also be found in

[2].

For weighted degrees, Fukunaga and Nagamochi [6] considered undirected network design prob-

lems and gave a (1, 4b(v))-approximation for minimum spanning trees and a (2, 7b(v))-approximation

algorithm for arbitrary weakly supermodular set-function f .

2 Proof of Theorem 1.1

Given an edge set (partial solution) J , let

fJ(S) = f(S)− ∣�inJ (S)∣ for all ∅ ∕= S ⊂ V

b�J(v) = b(v)− w(�J (v))/� for all v ∈ B (� ≥ 1 is a fixed parameter).

It is known and easy to see that if f admits a polynomial time evaluation oracle and is intersecting

supermodular, then so is fJ , for any J . The algorithm starts with J = ∅ and performs iterations.

In any iteration, we work with the residual polytope P (fJ , b
�
J ), and remove some edges from E

and/or some nodes from B.

Let us recall some facts from polyhedral theory. Let x belong to a polytope P ⊆ ℝ
m defined

by a system of linear inequalities; an inequality is tight (for x) if it holds as equality for x. A point

x ∈ P is a basic solution for (the system defining) P if there exists a set of m tight inequalities in

the system defining P such that x is the unique solution for the corresponding equation system;

that is, the corresponding m tight equations are linearly independent. It is well known that if the

7



LP min{c ⋅ x : x ∈ P} has an optimal solution, then it has an optimal solution which is basic, and

that a basic optimal solution for min{c ⋅ x : x ∈ P (fJ , b
�
J )} can be computed in polynomial time

for any J , c.f. [15].

Definition 2.1 The polytope P (fJ , b
�
J ) is (�,Δ)-sparse for integers �,Δ ≥ 1 if any basic solution

x ∈ P (fJ , b
�
J ) has an edge e ∈ E with xe = 0, or satisfies at least one of the following:

xe ≥ 1/� for some e ∈ E (4)

∣�E(v)∣ ≤ Δ for some v ∈ B (5)

We prove the following two general statements that imply Theorem 1.1:

Theorem 2.1 If for any J the polytope P (fJ , b
�
J ) is (�,Δ)-sparse (if non-empty), then DWDCN

admits an (�,�+Δ)-approximation algorithm; for unit weights the algorithm computes a solution

F so that c(F ) ≤ � ⋅ �∗ and ∣�F (v)∣ ≤ �b(v) + Δ− 1 for all v ∈ V .

Theorem 2.2 P (fJ , b
�
J ) is (2, 4)-sparse and (3, 3)-sparse for intersecting supermodular f ; if f is

0, 1-valued, then P (fJ , b
�
J ) is (2, 3)-sparse.

3 The Algorithm (Proof of Theorem 2.1)

The algorithm performs iterations. Every iteration excludes at least one edge from E or at least

one node from B. In the case of unit weights we assume that all the degree bounds are integers.

Algorithm for DWDCN with intersecting supermodular f

Initialization: J ← ∅, E ← E ∖ {vu ∈ E : w(vu) > b(v)}.

If P (f, b) = ∅, then return “UNFEASIBLE” and STOP.

While E ∕= ∅ do:

1. Find a basic solution x ∈ P (fJ , b
�
J ).

2. Remove from E all edges with xe = 0.

3. Add to J and remove from E all edges with xe ≥ 1/�.

4. Remove from B every v ∈ B with ∣�E(v)∣ ≤ Δ.

EndWhile

Return F ← J .

Lemma 3.1 The algorithm has approximation ratio (�,�+Δ) if each polytope P (fJ , b
�
J ) considered

during the algorithm is (�,Δ)-sparse; furthermore, for unit weights, the algorithm computes a

solution F such that c(F ) ≤ � ⋅ �∗ and ∣�F (v)∣ ≤ �b(v) + Δ− 1 for all v ∈ V .

Proof: Clearly, if P (f, b) = ∅ then the problem has no feasible solution, and the algorithm indeed

outputs “UNFEASIBLE”. At every iteration of the while loop, if x is a feasible LP-solution found

8



at the beginning of the iteration, then at the end of the iteration x remains a feasible solution to the

residual LP. In particular, if P (f, b) ∕= ∅ then P (fJ , b
�
J ) ∕= ∅ throughout the subsequent iterations.

Hence if the problem has a feasible solution, the algorithm returns an f -connected graph, and

we need only to prove the approximation ratio. As for every edge added we have xe ≥ 1/�, the

algorithm indeed computes a solution of cost ≤ � ⋅ �∗.

Now we prove the approximability of the degrees. Consider a node v ∈ V . Let J ′ be the set of

edges in �F (v) added to J while v ∈ B, and let J ′′ be the set of edges in E leaving v at Step 3 when

v was excluded from B. Clearly, �F (v) ⊆ J ′ ∪ J ′′. Note that at the moment when v was excluded

from B the set J ′′ of remaining edges satisfied the weighted degree constraints with bounds b�J ′(v),

namely,
∑

e∈J ′′ xewe ≤ b�J ′(v) = b(v) − w(�J ′(v))/�. By rearranging terms we have

w(J ′) ≤ �

(

b(v)−
∑

e∈J ′′

xewe

)

.

In particular, w(J ′) ≤ �b(v). Also, ∣J ′′∣ ≤ Δ and thus, by the initialization step of the algorithm,

w(J ′′) ≤ ∣J ′′∣ ⋅ b(v) ≤ Δb(v). Consequently, w(�F (v)) ≤ w(J ′) + w(J ′′) ≤ �b(v) + Δb(v) =

(�+Δ)b(v).

Now consider the case of unit weights. We had ∣J ′∣ ≤ �
(

b(v) −
∑

e∈J ′′ xe
)

when v was excluded

from B. Moreover, we had xe > 0 for all e ∈ J ′′, since edges with xe = 0 were removed at Step 2,

before v was excluded from B. Hence if J ′′ ∕= ∅ then ∣J ′∣ < �b(v), and thus ∣�F (v)∣ ≤ ∣J
′∣+ ∣J ′′∣ <

�b(v) + Δ. Since all numbers are integers, this implies ∣�F (v)∣ ≤ �b(v) + Δ − 1. If J ′′ = ∅, then

∣�F (v)∣ = ∣J
′∣ ≤ �b(v) ≤ �b(v) + Δ − 1. Consequently, in both cases ∣�F (v)∣ ≤ �b(v) + Δ − 1, as

claimed. □

4 Sparseness of P (fJ , b
�
J) (Proof of Theorem 2.2)

Note that if x ∈ P (fJ , b
�
J ) is a basic solution so that 0 < xe < 1 for all e ∈ E, then every tight

equation is induced by either:

∙ cut constraint x(�inE (S)) ≥ fJ(S) defined by some set ∅ ∕= S ⊂ V with fJ(S) ≥ 1.

∙ degree constraint
∑

e∈�E(v) xewe ≤ b�J(v) defined by some node v ∈ B.

A family ℱ of sets is laminar if its members are pairwise non-crossing, namely, if for every

S, S′ ∈ ℱ , either S ∩ S′ = ∅, or S ⊂ S′, or S′ ⊂ S. We use the following statement observed in [15]

for unit weights, which also holds in our setting.

Lemma 4.1 For any basic solution x to P (fJ , b
�
J ) with 0 < xe < 1 for all e ∈ E, there exist a

laminar family ℒ on V and T ⊆ B, such that fJ(S) ≥ 1 for all S ∈ ℒ, and such that x is the

9



unique solution to the linear equation system:

x(�inE (S)) = fJ(S) for all S ∈ ℒ
∑

e∈�E(v)

xewe = b�J(v) for all v ∈ T

In particular, ∣ℒ∣ + ∣T ∣ = ∣E∣ and the characteristic vectors of {�inE (S) : S ∈ ℒ} are linearly

independent.

Proof: Let ℱ = {∅ ∕= S ⊂ V : x(�inE (S)) = fJ(S) ≥ 1} be the family of the tight sets and

T = {v ∈ B :
∑

e∈�E(v) xewe = b(v) − w(�J (v))/�} the set of tight nodes in B. For ℱ ′ ⊆ ℱ

let span(ℱ ′) denote the linear space generated by the characteristic vectors of �inE (S), S ∈ ℱ ′.

Similarly, span(T ′) is the linear space generated by the weight vectors of �E(v), v ∈ T ′. In [11]

(see also [16]) it is proved that a maximal laminar subfamily ℒ of ℱ satisfies span(ℒ) = span(ℱ).

Since x ∈ P (fJ , b
�
J ) is a basic solution, and 0 < xe < 1 for all e ∈ E, ∣E∣ is equal to the dimension

of span(ℱ) ∪ span(T ) = span(ℒ) ∪ span(T ). Hence repeatedly removing from T a node v so that

span(ℒ) ∪ span(T − v) = span(ℒ) ∪ span(T ) results in ℒ and T as required. □

Let ℒ and T be as in Lemma 4.1. Define a child-parent relation on the members of ℒ ∪ T as

follows. For S ∈ ℒ or v ∈ T , its parent is the inclusion minimal member of ℒ properly containing

it, if any. Note that if v ∈ T and {v} ∈ ℒ, then {v} is the parent of v, and that no member of T

has a child. For every edge uv ∈ E assign one tail-token to u and one head-token to v, so every

edge contributes exactly 2 tokens. The number of tokens is thus 2∣E∣.

Definition 4.1 A tail-token or a head-token assigned to a node contained in S is an S-token if it

is not a tail-token of an edge vu leaving S so that v /∈ T (so a tail-token of an edge vu leaving S is

an S-token if, and only if, v ∈ T ).

Recall that we need to prove that if x ∈ P (fJ , b
�
J ) is a basic solution so that 0 < xe < 1 for all

e ∈ E, then there exists e ∈ E with xe ≥ 1/� or there exists v ∈ B with ∣�(v)∣ ≤ Δ. Assuming this

is not so, we have:

The Negation Assumption:

- 0 < xe < 1/� for every e ∈ E; hence ∣�in(S)∣ ≥ �+ 1 for every S ∈ ℒ.

- ∣�E(v)∣ ≥ Δ+ 1 for every v ∈ T .

We obtain the contradiction ∣E∣ > ∣ℒ∣ + ∣T ∣ by showing that for any S ∈ ℒ we can assign

the S-tokens so that every proper descendant of S in ℒ ∪ T gets 2 S-tokens and S gets at least 3

S-tokens. Except the proof of (2, 3)-sparseness of 0, 1-valued f , our assignment scheme will be:

The (2, �+ 1)-Scheme:

- Every proper descendant of S in ℒ ∪ T gets 2 S-tokens.

- S gets �+ 1 S-tokens.

10



The rest of the proof is by induction on the number of descendants of S in ℒ. If S has no

children/descendants in ℒ, it has at least ∣�inE (S)∣ ≥ �+ 1 head-tokens of the edges in �inE (S). We

therefore assume that S has in ℒ at least one child. Given S ∈ ℒ with at least one child in ℒ, let

CS be the set of edges entering some child of S, AS the set of edges entering S or a child of S but

not both, and DS the set of edges that enter a child of S and their tail is in T ∩ S. Formally:

CS =
∪

{�inE (R) : R is a child in ℒ of S}

AS = (�inE (S) ∖ CS) ∪ (CS ∖ �
in
E (S))

DS = {vu ∈ AS : v ∈ T ∩ S} = {vu ∈ CS : v ∈ T ∩ S} .

Lemma 4.2 Let S ∈ ℒ. Then every edge e ∈ AS ∖ DS has an endnode which was assigned

an S-token that is not an R-token of any child R of S in ℒ. Furthermore, if one of the sets

�inE (S) ∖ CS , CS ∖ �
in
E (S) is empty, then the other has at least �+ 1 edges. In particular, ∣AS ∣ ≥ 2.

Proof: The first statement is straightforward. Note that CS = �inE (S) contradicts linear inde-

pendence, hence at least one of the sets �inE (S) ∖ CS, CS ∖ �
in
E (S) is nonempty. It is easy to verify

that

x(CS)− x(�inE (S)) =
∑

R is a child of S

x(�inE (R))− x(�inE (S)) =
∑

R is a child of S

f(R)− f(S) .

Thus x(CS) − x(�inE (S)) is an integer. If one of the sets �inE (S) ∖ CS , CS ∖ �
in
E (S) is empty, say

�inE (S) ∖ CS = ∅, then x(CS)− x(�inE (S)) must be a positive integer since CS ∖ �
in
E (S) ∕= ∅ and since

xe > 0 for every e ∈ E. Consequently, ∣CS ∖ �
in
E (S)∣ ≥ � + 1, as otherwise xe ≥ 1/� for some

e ∈ CS ∖ �inE (S). The proof of the case CS ∖ �inE (S) = ∅ is identical. □

4.1 Arbitrary intersecting supermodular f

For (2, 5)-sparseness the Negation Assumption is ∣�inE (S)∣ ≥ 3 for all S ∈ ℒ, and ∣�E(v)∣ ≥ 6 for all

v ∈ T . We prove that then the (2, 3)-Scheme is feasible. First, for every v ∈ T , we reassign the

∣�E(v)∣ tail-tokens of the edges in �E(v) as follows:

- 3 tokens to v;

- 1/2 token to every edge in �E(v) (this is feasible since ∣�E(v)∣ ≥ 6).

Claim 4.3 If S has at least 3 children in ℒ, then the (2, 3)-Scheme is feasible.

Proof: By moving one token from each child of S to S we get an assignment as required. □

Claim 4.4 If S has exactly 2 children in ℒ then the (2, 3)-Scheme is feasible.

Proof: S can get 2 tokens by taking one token from each child, and needs 1 more token. If there

is e ∈ AS ∖DS then S can get 1 token from an endnode of e, by Lemma 4.2. Else, ∣DS ∣ = ∣AS ∣ ≥ 2.

As every edge in DS owns 1/2 token, S can collect 1 token from edges in DS . □

11



Claim 4.5 If S has exactly 1 child in ℒ, say R, then the (2, 3)-Scheme is feasible.

Proof: S gets 1 token from R, and needs 2 more tokens. By our assignment scheme, S gets

∣AS ∖DS ∣+ ∣DS ∣/2 + ∣T ∩ (S ∖R)∣ S-tokens that are not R-tokens from edges in AS and from the

children of S in T . We claim that ∣AS ∖DS ∣ + ∣DS ∣/2 + ∣T ∩ (S ∖ R)∣ ≥ 2. If ∣AS ∖ DS ∣ ≥ 2, we

are done. If ∣AS ∖DS ∣ ≤ 1 then by Lemma 4.2 ∣AS ∩DS ∣ ≥ 1, which implies ∣T ∩ (S ∖R)∣ ≥ 1. If

∣AS ∖DS ∣ = 0 then ∣DS ∣ = ∣AS ∣ ≥ 2. In all cases, our claim holds. □

It is not hard to verify that during our distribution procedure no token was assigned twice. For

“node” tokens this is obvious. For 1/2 “edge” tokens, note that if a 1/2 token of an edge e was

assigned S, then S is the unique minimal inclusion set that contains both endnodes of e.

For (3, 3)-sparseness the Negation Assumption is ∣�inE (S)∣ ≥ 4 for all S ∈ ℒ and ∣�E(v)∣ ≥ 4 for

all v ∈ T . In this case we can easily prove that the (2, 4)-Scheme is feasible. If S has at least 2

children in ℒ, then by moving 2 tokens from each child to S we get an assignment as required. If S

has exactly 1 child in ℒ, say R, then S gets 2 tokens from R, and needs 2 more tokens. If DS = ∅

then S can get 2 tokens from endnodes of the edges in AS . Else, S has a child in T , and can get 2

tokens from this child.

4.2 Improved sparseness for 0, 1-valued f

Here the Negation Assumption is ∣�inE (S)∣ ≥ 3 for all S ∈ ℒ and ∣�E(v)∣ ≥ 4 for all v ∈ T . Assign

colors to members of ℒ ∪ T as follows. All nodes in T are black; S ∈ ℒ is black if S ∩ T ∕= ∅, and

S is white otherwise. We show that given S ∈ ℒ, we can assign the S-tokens so that:

The (2, 3, 4)-Scheme

- every proper descendant of S gets 2 S-tokens;

- S gets at least 3 S-tokens, and S gets 4 S-tokens if S is black.

As in the other cases, the proof is by induction on the number of descendants of S in ℒ. If S

has no descendants in ℒ, then S gets ∣�inE (S)∣ ≥ 3 head tokens of the edges in �inE (S); if S is black,

then S has a child in T and S gets 1 more token from this child.

Lemma 4.6 If AS = DS then S has a child in T or at least 2 black children in ℒ.

Proof: If AS = DS then the tail of every edge in AS is in T ∩ S, so it either belongs to a black

child of S in ℒ or is a child of S in T . Thus if the statement of the lemma does not hold, then

all edges in AS must have tails in T ∩R for some child R of S, and every edge that enters S also

enters some child of S. Thus �inE (R) ⊆ �in(S), and since x(�inE (R)) = x(�inE (S)) = 1, we must have

�inE (R) = �inE (S). This contradicts linear independence. □

Claim 4.7 If S has in ℒ ∪ T at least 3 children, then the (2, 3, 4)-Scheme is feasible.

12



Proof: S gets 3 tokens by taking 1 token from each child; if S is black, then one of these children

is black, and S can get 1 more token. □

Claim 4.8 If S has in ℒ exactly 2 children, say R,R′, then the (2, 3, 4)-Scheme is feasible.

Proof: If S has a child v ∈ T , then we are in the case of Claim 4.7. If both R,R′ are black, then S

gets 4 tokens, 2 from each of R,R′. Thus we assume that S has no children in T , and that at least

one of R,R′ is white, say R′ is white. In particular, S is black if, and only if, R is black. Thus S

only lacks 1 token, that does not come directly from R,R′. By Lemma 4.6 there is e ∈ AS ∖DS ,

and S can get a token from an endnode of e, by Lemma 4.2. □

Claim 4.9 If S has in ℒ exactly one child, say R, then the (2, 3, 4)-Scheme is feasible.

Proof: Suppose that T ∩ (S ∖R) = ∅. Then S is black if, and only if, R is black. Thus S needs 2

S-tokens not from R. By the definition of DS , every edge in DS has tail in T ∩ (S ∖R), hence the

assumption T ∩ (S ∖R) = ∅ implies DS = ∅. Consequently, ∣AS ∖DS ∣ = ∣AS ∣ ≥ 2, by Lemma 4.2.

Thus S can get 2 S-tokens from endnodes of the edges in AS .

If there is v ∈ T ∩ (S ∖ R), then S can get 1 token from R, 2 tokens from v, and needs 1

more token. We claim that there is e ∈ �inE (S) − �inE (R), and thus S can get the head-token of

e. Otherwise, �inE (S) ⊆ �inE (R), and since x(�inE (S)) = x(�inE (R)) = 1, we obtain �inE (S) = �inE (R),

contradicting linear independence. □

This finishes the proof of Theorem 2.2, and thus also the proof of Theorem 1.1 is complete.

5 Indegree constraints (Proof of Theorem 1.2)

Here we prove Theorem 1.2. Consider the following polytope P in(f, bin):

x(�inE (S)) ≥ f(S) for all ∅ ∕= S ⊂ V
∑

e∈�in
E

(v)

xewe ≤ bin(v) for all v ∈ Bin

0 ≤ xe ≤ 1 for all e ∈ E

Here we set � = 1 and define binJ (v) = bin(v) − ∣�inJ (v)∣. We say that P (fJ , b
in
J ) is Δ-sparse

if any basic solution x ∈ P (fJ , b
in
J ) has an edge e ∈ E with xe ∈ {0, 1} or a node v ∈ Bin with

∣�inE (v)∣ ≤ Δ. Lemma 3.1 and Theorem 2.1 easily extend to the indegree case, if in the algorithm

at Step 4 we remove from Bin every v ∈ Bin with ∣�inE (v)∣ ≤ Δ. We prove:

Theorem 5.1 P in(fJ , b
in
J ) is 3-sparse for intersecting supermodular f . For unit weights and inte-

gral indegree bounds, any basic solution of P in(fJ , b
in
J ) always has an edge e with xe ∈ {0, 1}.

13



Theorem 1.2 now easily follows by combining Theorem 5.1 with the following essentially known

fact, for which we provide a proof-sketch for completeness of exposition.

Fact 5.2 Let f be an intersecting supermodular set-function on V , and let F be an inclusion

minimal edge set on V so that H = (V, F ) is f -connected. Then ∣�inE (v)∣ ≤ fmax for all v ∈ V ,

where fmax = max{f(S) : S ⊆ V }.

Proof: Consider the set-family ℱ = {S : ∣�inF (S)∣ = f(S) > 0}. It is well known and easy to see

that ℱ is an intersecting family, namely, X ∩ Y,X ∪ Y ∈ ℱ for any X,Y ∈ ℱ that intersect. For

e ∈ F let ℱe = {S ∈ ℱ : e ∈ �inF (S)}. Since F is an inclusion minimal edge set so that (V, F ) is

f -connected, ℱe is non-empty for every e ∈ F . Furthermore, ℱe is an intersecting family, hence

among all sets S ∈ ℱe there is a unique set Se with ∣Se∣ minimal.

Suppose to the contrary that ∣�inF (v)∣ ≥ fmax + 1 for some v ∈ V . Let e ∈ �inF (v) and let Se as

above. Since ∣�inF (v)∣ ≥ fmax + 1 there is e′ ∈ �inF (v) that does not enter Se. Now consider the sets

Se and Se′ . These sets intersect and belong to ℱ , hence S = Se ∩ Se′ ∈ ℱ . It is also easy to see

that e, e′ ∈ �inF (S). This contradicts the minimality of ∣Se∣ or of ∣Se′ ∣. □

In the rest of this section we prove Theorem 5.1. In Lemma 4.1, we now have a set T in of nodes

corresponding to tight in-degree constraints. We prove that if x ∈ P in(fJ , b
in
J ) is a basic solution

so that xe > 0 for all e ∈ E, then there exists e ∈ E with xe = 1 or there exists v ∈ T in with

∣�inE (v)∣ ≤ 3. Otherwise, we must have:

The Negation Assumption:

- ∣�inE (S)∣ ≥ 2 for all S ∈ ℒ;

- ∣�inE (v)∣ ≥ 4 for all v ∈ T in.

Here an S-token is a token that is not a tail-token of an edge leaving S. Assuming Theorem 5.1

is not true, we show that given S ∈ ℒ, we can assign the S-tokens so that:

The (2, 2)-Scheme:

S and every proper descendant of S in ℒ ∪ T in gets 2 S-tokens.

The contradiction ∣E∣ > ∣ℒ∣+ ∣T in∣ is obtained by observing that if S is an inclusion maximal

set in ℒ, then there are at least 2 edges entering S, and their tail-tokens are not assigned, since

they are not S′-tokens for any S′ ∈ ℒ.

Initial assignment:

For every v ∈ T in, we assign the 4 head-tokens of some edges in �inE (v).

The rest of the proof is by induction on the number of descendants of S, as before. If S has no

children/descendants, it contains at least ∣�inE (S)∣ ≥ 2 head-tokens, as claimed. If S has in ℒ∪ T in

14



at least one child v ∈ T in, then S gets 2 tokens from this child.

Thus we may assume that S has at least 1 child in ℒ and no children in T in. Let AS be as in

Lemma 4.2, so ∣AS ∣ ≥ 2. One can easily verify that S can collect 1 S-token from an endnode of

every edge in AS . Thus the (2, 2)-Scheme is feasible.

For the case of unit weights (and integral degree bounds), we can prove that any basic solution

x ∈ P in(fJ , b
in
J ) has an edge e with xe ∈ {0, 1}. This follows by the same proof as above, after

observing that if v ∈ T in is a child of S ∈ ℒ, then �inE (v) ∕= �inE (S), as otherwise we obtain a

contradiction to the linear independence in Lemma 4.1. Thus assuming that there are at least 2

edges in E entering any member of ℒ ∪ T in, we obtain a contradiction in the same way as before,

by showing that the (2, 2)-Scheme is feasible. Initially, every minimal member of ℒ ∪ T in gets 2

head-tokens of some edges entering it. In the induction step, any S ∈ ℒ can collect at least 2

S-tokens that are not tokens of its children, by Lemma 4.2.

Remark: Note that we also showed the well known fact (c.f., [18]), that if there are no degree

constraints at all, then there is an edge e ∈ E with xe ∈ {0, 1}.

6 The case of both indegree and outdegree constraints

Here we describe the slight modifications required to handle the case when there are both indegree

and outdegree constraints. In this case, in Lemma 4.1, we consider the polytope P = P (fJ , b
�
J) ∩

P in(fJ , b
in
J ). Then we have sets T and T in of nodes corresponding to tight outdegree and indegree

constraints, respectively. In the definition of (�,Δ,Δin)-sparseness we require that xe ≥ 1/� for

some e ∈ E, or ∣�E(v)∣ ≤ Δ for some v ∈ B, or ∣�inE (v)∣ ≤ Δin for some v ∈ Bin. Lemma 3.1 and

Theorem 2.1 easily extend to the both indegree and outdegree constraints case.

Now we analyze the minor adjustment of the credit scheme. In what follows, let S ∈ ℒ, and

suppose that S has in ℒ ∪ T ∪ T in a unique child v ∈ T in (possibly S = {v}).

Arbitrary weights: For arbitrary weights, we can show that P has sparseness (�,Δ,Δin) =

(2, 5, 4), in the same way as in Section 4.1. The Negation Assumption for v ∈ T in is ∣�inE (v)∣ ≥ 5, and

we do not put any tokens on the edges leaving v (unless their tail is in T ). Even if �inE (S) = �inE (v)

(in the case of arbitrary weights this may not contradict linear independence), the head-tokens of

at least 5 edges entering v suffice to assign 2 tokens for v and 3 tokens to S. Hence in this case the

approximation is (�, (� + Δ) ⋅ b(v),min{� + Δin, fmax} ⋅ b
in(v)) = (2, 7b(v),min{6, fmax} ⋅ b

in(v)).

In a similar way we can also show the sparseness (�,Δ,Δin) = (3, 3, 4), and in this case the ratio

is (3, 6b(v),min{7, fmax} ⋅ b
in(v)).

15



Unit weights: In the case of unit weights, we must have �inE (S) ∕= �inE (v), as otherwise the

equations of S and v are linearly dependent. Hence in this case, it is sufficient to require ∣�inE (v)∣ ≥ 4,

and the sparseness is (�,Δ,Δin) = (2, 5, 3). Consequently, the approximation is (�,�b(v) + Δ −

1,min{�bin(v) + Δin − 1, fmax}) = (2, 2b(v) + 4,min{2bin(v) + 2, fmax}).

0, 1-valued f : In the case of 0, 1-valued f , we can show that P has sparseness (�,Δ,Δin) =

(2, 3, 4), in the same way as in Section 4.2. The negation assumption for a node v ∈ T in is

∣�inE ∣ ≥ 5; a member in ℒ containing a node from T in only is not black, unless it also contains a

node from T . Hence in this case the approximation is (�, (�+Δ)⋅b(v),min{�+Δin, fmax}⋅bin(v)) =

(2, 5b(v),min{6, fmax}⋅b
in(v)) = (2, 5b(v), bin(v)). If we also have unit weights, then �inE (S) ∕= �in(v),

by the linear independence; hence for unit weights we obtain the sparseness (�,Δ,Δin) = (2, 3, 3);

the approximation in this case is (�,�b(v) + Δ − 1,min{�bin(v) + Δin − 1, fmax}) = (2, 2b(v) +

2,min{2bin(v) + 2, fmax}) = (2, 2b(v) + 2, 1).

Summarizing, we obtain the following result (see Table 2):

Theorem 6.1 DWDCN with intersecting supermodular f admits a polynomial time algorithm that

computes an f -connected graph H of cost ≤ 2 ⋅ �∗ so that the weighted (degree,indegree) of every

v ∈ V is at most: (7b(v),min{6, fmax} ⋅ b
in(v)) for arbitrary f , and (5b(v), bin(v)) for a 0, 1-

valued f . Furthermore, for unit weights, the (degree,indegree) of every v ∈ V is at most (2b(v) +

4,min{2bin(v) + 2, fmax}) for arbitrary f , and (2b(v) + 2, 1) for a 0, 1-valued f . The problem also

admits a (3, 6b(v),min{7, fmax}⋅b
in(v))-approximation algorithm for arbitrary weights and arbitrary

intersecting supermodular f .

type of f intersecting supermodular crossing supermodular

any f , any w (2, 7b(v),min{6, fmax} ⋅ b
in(v)) (4, (7 + min{6, fmax}) ⋅ b(v))

(3, 6b(v),min{7, fmax} ⋅ b
in(v)) (6, (6 + min{7, fmax}) ⋅ b(v))

0, 1-f , any w (2, 5b(v), bin(v)) (4, 6b(v))

any f , w ≡ 1 (2, 2b(v) + 4,min{2bin(v) + 2, fmax}) (4, 2b(v) + 4 + min{2b(v) + 2, fmax})

0, 1-f , w ≡ 1 (2, 2b(v) + 2, 1) (4, 2b(v) + 3)

Table 2: Bicriteria approximation ratios for DWDCN with both indegree and outdegree constraints

for intersecting and crossing supermodular f . For crossing supermodular f , only the approximation

for outdegree are given, and the approximation for indegrees is the same with b(v) replaced by bin(v);

e.g., in the last row (0, 1-f , w ≡ 1) the approximation is (4, 2b(v) + 3, 2bin(v) + 3). In general,

each degree ratio in the right column (crossing supermodular f) is a sum of the corresponding

indegree+outdegree ratios for intersecting supermodular f .

Finally, we can combine Theorem 6.1 with Fact 1.3 to deduce (see Table 2):

Corollary 6.2 DWDCN with crossing supermodular f admits a polynomial time algorithm that

16



computes an f -connected graph H of cost ≤ 4�∗ so that the weighted (degree,indegree) of every v ∈ V

is at most: (7 + min{fmax, 6} ⋅ b(v), 7 + min{fmax, 6} ⋅ b
in(v)) for arbitrary f , and (6b(v), 6bin(v))

for 0, 1-valued f . Furthermore, for unit weights, the (degree,indegree) of every v ∈ V is at most

(2b(v)+4+min{2b(v)+2, fmax}, 2b
in(v)+4+min{2bin(v)+2, fmax}) for arbitrary f , and (2b(v)+

3, 2bin(v) + 3) for a 0, 1-valued f .

7 A (b(v) + 3)-approximation (Proof of Theorem 1.7)

The key statement in the proof of Theorem 1.7 is the following.

Theorem 7.1 Let f be intersecting supermodular and let x ∈ P (f, b), be a basic feasible solution

such that 0 < x < 1 and such that all edges in E have their tail in B. Then there exists v ∈ B with

∣�E(v)∣ ≤ b(v) + 3.

For a partial solution J let bJ(v) = b(v) − ∣�J (v)∣, while fJ is defined as before. Using The-

orem 7.1, it is now a routine to show that the following algorithm computes a solution as in

Theorem 1.7.

Algorithm for DWDCN with intersecting supermodular f and unit weights

Initialization: J ← ∅;

While E ∕= ∅ do:

1. Compute a basic feasible solution to P (fJ , bJ ).

2. If there is e ∈ E with xe = 0 set E ← E ∖ {e}.

3. If there is e ∈ E with xe = 1 set J ← J ∪ {e}, E ← E ∖ {e}.

4. If there is e = uv ∈ E with u /∈ B set J ← J ∪ {e}, E ← E ∖ {e}.

5. If there is v ∈ B with at most b(v)+ 3 edges in E leaving v set B ← B ∖ {v}.

EndWhile

Return F ← J .

In the rest of this section we prove Theorem 7.1.

Claim 7.2 Let ℒ and T be as in Lemma 4.1. If 2∣ℒ∣ < ∣E∣ + x(E) + (q − 1)∣B∣ for an integer q,

then there exists v ∈ B so that ∣�E(v)∣ − b(v) ≤ q.

Proof: Note that ∣E∣ = ∣T ∣+ ∣ℒ∣ ≤ ∣B∣+ ∣ℒ∣. Thus by the assumption of the claim

∣ℒ∣ < ∣E∣+ x(E) + (q − 1)∣B∣ − ∣ℒ∣ = x(E) + q∣B∣+ ∣E∣ − ∣B∣ − ∣ℒ∣ ≤ x(E) + q∣B∣ .

Thus it is sufficient to show that if ∣ℒ∣ < x(E) + q∣B∣ holds, then there exists v ∈ B so that

∣�E(v)∣ − b(v) ≤ q. As every uv ∈ E has its tail in B, it follows that
∑

v∈B ∣�E(v)∣ = ∣E∣ and

17



∑

v∈B x(�E(v)) = x(E). Since x is a feasible solution, b(v) ≥ x(�E(v)). Thus

∑

v∈B

(∣�E(v)∣−b(v)) ≤ ∣E∣−
∑

v∈B

x(�E(v)) = ∣E∣−x(E) = ∣ℒ∣+∣T ∣−x(E) ≤ ∣ℒ∣+∣B∣−x(E) < (q+1)∣B∣ .

This implies that there is v ∈ B with ∣�E(v)∣ − b(v) < q + 1, and since ∣�E(v)∣ − b(v) is an integer,

we must have ∣�E(v)∣ − b(v) ≤ q. □

We apply Claim 7.2 with q = 3, namely, we will prove that 2∣ℒ∣ < ∣E∣ + x(E) + 2∣B∣ using a

counting argument. We assign tokens to edges in E and nodes in B of total amount ∣E∣+x(E)+2∣B∣,

and show that these tokens can be redistributed among the sets of ℒ so that every set gets at least

2 tokens, and at least one set gets at least 3 tokens.

Initial token assignment:

1 + xe tokens to every e ∈ E placed at the head of e, 2 tokens to every v ∈ B.

Definition 7.1 A set S ∈ ℒ is black if S ∩B ∕= ∅ and S is white otherwise.

The assignment scheme

- Every proper descendant of S in ℒ gets 2 tokens;

- S gets 3 tokens if S is a white leaf, and S gets 4 tokens otherwise.

We prove that the above assignment scheme is feasible by induction on the number of descen-

dants of S in ℒ.

Claim 7.3 If S is a leaf or if S is white then the above assignment scheme is feasible.

Proof: Let ES be the set of edges entering S that do not enter the children of S. From linear

independence and the integrality of cuts it follows that if S is a leaf, or if S is white, then ∣ES ∣ ≥ 2

and x(ES) is a positive integer. Hence S gets ∣ES ∣+ x(ES) ≥ 3 tokens from the edges in ES . If S

is a black leaf, then it gets 1 more token from some v ∈ B ∩S. If S is not a leaf then S gets 1 more

token from its child. □

Claim 7.4 If S is black and has at least 3 children then the above assignment scheme is feasible.

Proof: S gets at least 3 tokens from its children, and if one of them is black then S gets another

token from this child. If all the children of S are white, then there is v ∈ B ∩ S so that v does not

belong to a child of S; hence S gets 1 token from v. □

Claim 7.5 If S is black and has exactly 2 children then the above assignment scheme is feasible.

Proof: If no child of S is a white leaf, then S gets 2 tokens from each child, a total of 4 tokens.

If both children of S are white leaves, then S gets 1 token from each child, and also 2 tokens from

some v ∈ B ∩ S. The remaining case is when one child R is black and the other R′ is a white

leaf. S gets 2 tokens from R and 1 token from R′. S gets 1 more token if there is an edge entering

18



S but not a child of S, or if there is v ∈ B ∩ S so that v does not belong to a child of S. In

the remaining case, �E(S) ∪ �E(R) ∪ �E(R
′) is a disjoint union of the three sets: �E(S) ∩ �E(R),

�E(S)∩�E(R
′), and the set �E(R,R′) of edges that go from R to R′. By linear independence and the

integrality of cuts, each one of these sets contains at least 2 edges, and its x-value is an integer. Thus

x(�E(R
′)) = x(�E(S)∩�E(R

′))+x(�E(R,R′)) ≥ 2. Consequently, ∣�E(R
′)∣+x(�E(R

′)) ≥ 4+2 = 6,

hence the white leaf R′ has 2 (and in fact at least 4) spare tokens for S. □

Claim 7.6 If S is black and has a unique child R then the above assignment scheme is feasible.

Proof: Let ES = �E(S)∖�E(R) and ER = �E(R)∖�E(S). By the linear independence and integrality

of cuts ∣ES ∣+ ∣ER∣ ≥ 2. If ∣ES ∣ ≥ 2, then S gets 3 tokens from ES and an additional token comes

from R. If ∣ES ∣ ≤ 1 then ∣ER∣ ≥ 1, and thus there is v ∈ B ∩ (S ∖ R) (any tail of an edge in ER).

If ∣ES ∣ ≤ 1 then S gets 2 tokens from v, and, unless ∣ES ∣ = 0 and R is a white leaf, S can collect

2 tokens from R and the edge in ES . The remaining case is ∣ES ∣ = 0 and R is a white leaf. Then

�E(R) is a disjoint union of two non-empty sets �E(S) and �E(R) ∖ �E(S). By linear independence

and the integrality of cuts, each one of these sets contains at least 2 edges, and its x-value is an

integer. Thus ∣�E(R)∣ ≥ 4 and x(�E(R)) ≥ 2. Consequently, ∣�E(R)∣+x(�E(R)) ≥ 4+2 = 6, hence

the white leaf R has 2 (and in fact at least 4) spare tokens for S. □

The proof of Theorem 7.1, and thus also of Theorem 1.7 is now complete.

Acknowledgment: I thank an anonymous referee for many useful comments.

References

[1] J. Bang-Jensen, S. Thomassé, and A. Yeo. Small degree out-branchings. J. of Graph Theory,

42(4):287–307, 2003.

[2] N. Bansal, R. Khandekar, and V. Nagarajan. Additive guarantees for degree bounded directed

network design. In STOC, pages 769–778, 2008.

[3] K. Chaudhuri, S. Rao, S. Riesenfeld, and K. Talwar. A push-relabel algorithm for approxi-

mating degree bounded MSTs. In ICALP, pages 191–201, 2006.

[4] J. Edmonds. Edge-disjoint branchings. Combinatorial Algorithms, pages 91–96, 1972.

[5] A. Frank. Connectivity and network flows. In R. L. Graham, M. Grötschel, and L. Lovász,

editors, Chapter 2 in Handbook of Combinatorics, pages 111–177. Elsevier, 1995.

[6] T. Fukunaga and H. Nagamochi. Network design with weighted degree constraints. In WAL-

COM, pages 214–225, 2009.

19



[7] M. Furer and B. Raghavachari. Approximating the minimum-degree Steiner tree to within one

of optimal. Journal of Algorithms, 17(3):409–423, 1994.

[8] H. N. Gabow. A representation for crossing set families with application to submodular flow

problems. In SODA, pages 202–211, 1993.

[9] M. X. Goemans. Minimum bounded degree spanning trees. In FOCS, pages 373–282, 2006.

[10] M. X. Goemans and D. P. Williamson. The primal-dual method in approximation algorithms

and its applications to network design problems. In D. S. Hochbaum, editor, Chapter 4

inApproximation Algorithms For NP-hard Problems. PWS, 1997.

[11] K. Jain. A factor 2 approximation algorithm for the generalized Steiner network problem.

Combinatorica, 21(1):39–60, 2001.

[12] S. Khuller. Approximation algorithm for finding highly connected subgraphs. In D. S.

Hochbaum, editor, Chapter 6 in Approximation Algorithms For NP-hard Problems. PWS,

1997.

[13] J. Könemann and R. Ravi. A matter of degree: Improved approximation algorithms for degree

bounded minimum spanning trees. SIAM Journal on Computing, 31(3):1783–1793, 2002.

[14] G. Kortsarz and Z. Nutov. Approximating minimum-cost connectivity problems. In T. F.

Gonzalez, editor, Chapter 58 in Approximation Algorithms and Metaheuristics. Chapman &

Hall/CRC, 2007.

[15] L. C. Lau, J. Naor, M. R. Salavatipour, and M. Singh. Survivable network design with degree

or order constraints. In STOC, pages 651–660, 2007.

[16] V. Melkonian and E. Tardos. Algorithms for a network design problem with crossing super-

modular demands. Networks, 43(4):256–265, 2004.

[17] R. Ravi, M. V. Marathe, S. S. Ravi, D. J. Rosenkrantz, and H. B. Hunt III. Many birds with

one stone: Multi objective approximation algorithms. In STOC, pages 438–447, 1993.

[18] A. Schrijver. Combinatorial Optimization, Polyhedra and Efficiency. Springer-Verlag Berlin,

Heidelberg New York, 2004.

[19] M. Singh and L. C. Lau. Approximating minimum bounded degree spanning trees to within

one of optimal. In STOC, pages 661–670, 2007.

20


