
A (1 + ln 2)-Approximation Algorithm for
Minimum-Cost 2-Edge-Connectivity

Augmentation of Trees with constant radius

Nachshon Cohen and Zeev Nutov

The Open University of Israel,
nachshonc@gmail.com, nutov@openu.ac.il

Abstract. We consider the Tree Augmentation problem: given a graph
G = (V,E) with edge-costs and a tree T on V disjoint to E, find a
minimum-cost edge-subset F ⊆ E such that T ∪ F is 2-edge-connected.
Tree Augmentation is equivalent to the problem of finding a minimum-
cost edge-cover F ⊆ E of a laminar set-family. The best known appro-
ximation ratio for Tree Augmentation is 2, even for trees of radius 2.
As laminar families play an important role in network design problems,
obtaining a better ratio is a major open problem in network design. We
give a (1 + ln 2)-approximation algorithm for trees of constant radius.
Our algorithm is based on a new decomposition of problem solutions,
which may be of independent interest.

1 Introduction

We consider the following problem:

Tree Augmentation

Instance: A graph G = (V,E) with edge-costs {c(e) : e ∈ E}, and a tree T on
V disjoint to E.

Objective: Find a minimum-cost edge-set F ⊆ E such that T ∪ F is 2-edge-
connected.

The case when T is a path reduces to the Shortest Path problem (c.f. [7]),
and the case when T is a star is equivalent to the Minimum-Cost Edge-Cover

problem. Tree Augmentation is equivalent to the problem of finding a minimum
cost edge-cover of a laminar set-family; namely, given a graph G = (V,E) with
edge-costs and a laminar set-family ℒ on V , we seek a minimum cost edge-set
F ⊆ E such that for every S ∈ ℒ there is uv ∈ F with u ∈ S and v /∈ S. The
problem is also equivalent to the problem of augmenting a k-edge-connected
graph to be (k + 1)-connected by adding a minimum cost edge-set, for odd k;
this is since when k is odd, the minimum cuts of a k-edge-connected graph form
a laminar set-family. In general, laminar set-families play an important role in
network design problems; see [6] and surveys in [5, 7, 8], for various network
design problems and applications of laminar set-families.



Fredrickson and Jájá [4] gave a 2-approximation algorithm for Tree Augmen-

tation, and showed that it is NP-hard even for trees of radius 2 (the radius
R = R(T ) of a tree T is ⌈D/2⌉, where D is the diameter of T ). Cheriyan, Jordán
and Ravi [1] proved that Tree Augmentation is NP-hard also in the case of unit
costs when E is a cycle on the leaves of T , and gave a 4/3-approximation al-
gorithm for this version. They also conjectured that a standard LP-relaxation
for the problem has integrality gap less than 2, while in [2] it is shown that the
integrality gap is at least 3/2.

Achieving a ratio better than 2 for Tree Augmentation, even for the particular
case of unit costs, was posed as a major open problem in connectivity network
design in the survey by Khuller [7]. This open question was resolved by Naga-
mochi [10] that gave a (1.875 + ")-approximation scheme for this version. The
currently best known approximation ratio for Tree Augmentation with unit costs
is 3/2, by Even, Kortsarz, and Nutov [3]. Even better ratios are known for unit
costs when every edge in E connects two leaves of T [9]: 17/12 for general trees,
11/8 for trees of radius 3, and 4/3 for trees of radius 2.

However, for arbitrary costs, no ratio better than 2 is known, not even for
trees of radius 2. We prove the following.

Theorem. Tree Augmentation admits an algorithm that computes a (1 + ln 2)-

approximate solution in time n3ℎ(T )

⋅ poly(n), where n = ∣V ∣ and ℎ(T ) is the
radius of T . In particular, Tree Augmentation on trees with radius bounded by a
constant admits a (1 + ln 2)-approximation algorithm.

Our algorithm is based on a new decomposition of Tree Augmentation feasible
solutions, which may be of independent interest.

2 Proof of the Theorem

2.1 A local replacement algorithm for Set-Cover

We start by describing a generic local-replacement algorithm for the following
well known problem.

Set-Cover

Instance: A collection E of subsets of a groundset T with costs {c(e) : e ∈ E}.
Objective: A minimum-costs subcollection F ⊆ E such that T ⊆

∪

e∈F

e.

Definition 1. Given an instance of Set-Cover and S, F ⊆ E let

RF (S) =

{

f ∈ F : f ⊆
∪

e∈S

e

}

.

We say that a set-family S ⊆ 2E overlaps F ⊆ E if
∪

S∈S

RF (S) = F , namely,

if for every f ∈ F there is S ∈ S with f ∈ RF (S). We say that F ⊆ E is
q-overlapped by F ∗ ⊆ E if F ∗ admits a partition S into parts of size at most q
that overlaps F .



The following statement is immediate.

Fact 1 Let F ⊆ E be a feasible solution. Then F ∖RF (S) ∪ S is also a feasible
solution for any S ⊆ E.

The following technique was introduced by Zelikovsky in [12] in the context
of the Steiner Tree problem. We reinterpret Zelikovsky’s result in a more general
Set-Cover setting.

Lemma 1. Suppose that for an instance of Set-Cover we are given an �-appro-
ximate solution F0 that is q-overlapped by some optimal solution F ∗. Then the
problem admits a (1+ ln�)-approximation in mq ⋅poly(m) time, where m = ∣E∣.

Proof. Let S be a partition of F ∗ into parts of size at most q each that overlaps
F . Clearly,

∑

S∈S

c(S) = opt. For any F ⊆ F0 we have
∑

S∈S

c(RF (S)) ≥ c(F ), hence

by an averaging argument there exist S ∈ S such that

c(RF (S))

c(F )
≥

c(S)

opt
. (1)

The algorithm is as follows.

Initialization: I ← ∅, F ← F0.
While F ∕= ∅ do:

Find S ⊆ E ∖ I with ∣S∣ ≤ q satisfying (1).
- If c(RF (S)) ≤ c(S) then STOP and Return F ∪ I;
- Else do F ← F ∖RF (S) and I ← I ∪ S.

EndWhile
Return F ∪ I.

The time complexity is straightforward, and feasibility follows from Fact 1.
We prove the approximation ratio. Let Si be the set picked at iteration i and
let Fi be the set stored in F after iteration i. When the algorithm stops, either
F = ∅ or c(RF (S)) ≤ c(S); note that the later case implies that c(F ) ≤ opt, by
(1). In both cases, there exist an iteration j such that c(Fj−1) > opt ≥ c(Fj).
Hence there exists � ∈ (0, 1] such that c(Fj−1) − � ⋅ c(RFj−1(Sj)) = opt. Note
that c(F ∪ I) is decreasing after each iteration, hence the cost of the solution
produced by the algorithm is at most

c(F ∪I) ≤ c(Fj−1)−� ⋅c(Rj−1(Sj))+

j−1
∑

i=1

c(Si)+�c(Sj) = opt+

j−1
∑

i=1

c(Si)+�c(Sj) .

We can assume w.l.o.g that c(S) ≥ 1 for all S ∈ E. Since at each iteration
Fi, Si satisfy (1), we have

c(Fi+1) =

(

1−
c (RFi

(Si))

c(Fi)

)

c(Fi) ≤

(

1−
c(Si)

opt

)

c(Fi) ≤

(

1−
1

opt

)c(Si)

c(Fi) .



Applying the same argument for iteration j we get

opt = c(Fj−1)− �c(RFj−1 (S)) ≤

(

1−
1

opt

)�c(Sj)

c(Fj−1)

≤

(

1−
1

opt

)

∑

j−1

i=1
c(Si)+�c(Sj)

⋅ c(F0)

≤

(

1−
1

opt

)

∑

j−1

i=1
c(Si)+�c(Sj)

⋅ � ⋅ opt

This implies

c(F ∪ I) ≤ opt+

j−1
∑

i=1

c(Si) + �c(Sj) ≤ opt+ ln� ⋅ opt = (1 + ln�) ⋅ opt .

The lemma follows. ⊓⊔

2.2 Algorithm for Tree Augmentation

Given an instance of Tree Augmentation, we will call the edges in E links, to
distinguish them from the edges of the tree T . For u, v ∈ V let Tuv denote the
(unique) uv-path in T . We say that a link uv ∈ E covers an edge e ∈ T if
e ∈ Tuv. It is well known and easy to see that F ⊆ E is a feasible solution to
an instance of Tree Augmentation if, and only if, F covers all the edges of T .
Hence Tree Augmentation is equivalent to the problem of finding a minimum-
cost link-set F ⊆ E that covers all the edges of T ; namely, Tree Augmentation

can be casted as a Set-Cover problem with groundset being the edge-set of T ,
and the collection of sets obtained by replacing every link e = uv ∈ E by the
set Te = Tuv of cost c(e). In this setting, the restriction of Definition 1 to Tree

Augmentation can be formulated as follows.

Definition 2. Given an instance of Tree Augmentation and S, F ⊆ E let

RF (S) =

{

f ∈ F : Tf ⊆
∪

e∈S

Te

}

.

We say that a set-family S ⊆ 2E of links overlaps a set F ⊆ E of links if
∪

S∈S

RF (S) = F , namely, if for every f ∈ F there is S ∈ S with f ∈ RF (S). We

say that F ⊆ E is q-overlapped by F ∗ ⊆ E if F ∗ admits a partition S into parts
of size at most q that overlaps F .

To apply Lemma 1, we would like to show that given an instance of Tree
Augmentation, one can find in polynomial time a 2-approximate solution F0 that
is q-overlapped by some optimal solution F ∗, for q = 3ℎ(T )−1. However, for this
to be true, we need to apply a certain transformation to modify the instance, as
is explained bellow.



Definition 3. A link u′v′ is a shadow of a link uv if Tu′v′ is a subpath of Tuv.
We say that F is a shadow-minimal cover of T if for every link uv ∈ F , removing
uv or replacing uv by any proper shadow of uv results in an edge-set that is not
a cover of T .

Given an instance of Tree Augmentation, we can obtain an equivalent instance
by applying “shadow completion”: for every existing link e ∈ E, add all its
shadows, of cost c(e) each (if parallel links arise, then for every inclusion-maximal
set of parallel links we keep only the cheapest one). Note that shadow completion
does not affect the optimal solution value, since every shadow can be replaced
by some original link covering all edges of T covered by the shadow. Hence we
can assume the following.

Assumption 1. If uv ∈ E and u′, v′ ∈ Tuv then u′v′ ∈ E and c(u′v′) ≤ c(uv).

In the next section we will prove the following statement.

Lemma 2. Under Assumption 1, Tree Augmentation admits a polynomial time
algorithm that finds a 2-approximate solution F0 that is 3ℎ(T )−1-overlapped by
any feasible solution F ∗.

Lemmas 1 and 2 easily imply the Theorem; note that the running time is
bounded by

m3ℎ(T )−1

poly(n) ≤
(

n2
)3ℎ(T )−1

poly(n) ≤ n3ℎ(T )

poly(n) ,

as claimed.
In the rest of this paper we prove Lemma 2.

2.3 Proof of Lemma 2

Root the tree at a center s of T (so ∣Tsv∣ ≤ ℎ(T ) for every v ∈ V ). This defines
an ancestor-descendant relation (partial order) on the nodes of T , where u is an
ancestor of v (and v is a descendant of u) if u ∈ Tvs; if also uv ∈ T then v is a
child of u and u is the parent of v.

Definition 4. We say that a link is an up-link if one of its endnodes is an
ancestor of the other. We say that a cover F of T is an up-cover of T if every
link in F is an up-link.

The following statement is known, and was implicitly proved in [4]. For com-
pleteness of exposition, we provide a proof-sketch.

Lemma 3. Under Assumption 1, for any cover F ∗ of T there exists an up-cover
F of T such that c(F ) ≤ 2c(F ∗). Furthermore, a minimum-cost up-cover can be
computed in polynomial time. Consequently, there exists a shadow-minimal up-
cover F0 of cost at most 2opt, and such cover be computed in polynomial time.



Proof. Let F be obtained from F ∗ by replacing every link e = uv ∈ F by the two
links ua, va, where a is the least common ancestor of u, v in T . By Assumption 1,
the links ua, va exist, and the cost of each of them is at most c(uv). Hence
c(F ) ≤ 2c(F ∗). It is easy to see that F is a feasible solution, which concludes
the proof of the first statement of the lemma. The problem of computing a
minimum-cost up-cover is reduced to the Minimum-Cost Arborescence problem
(which is solvable in polynomial time, c.f. [11]) as follows. It is known and easy
to see [4] that F is an-up cover of T if, and only if, the directed graph obtained
by directing the edges of T towards the root s and directing the links in F
from ancestors to descendants, has a path from s to every other node. Hence
to compute a minimum-cost up-cover do the following. Direct the edges of T
towards the root, remove all links that are not up-links, and direct all up-links
from ancestors to descendants. Then in the obtained directed graph compute a
minimum-cost arborescence. The set of links (that are not edges of T ) in the
underlying graph of the computed arborescence, is a minimum-cost up-cover of
T .

The last statement of the lemma follows by observing that under Assump-
tion 1 we can replace any up-cover F of T by a shadow-minimal up-cover F0 of
no greater cost. ⊓⊔

Lemma 4. Let uv, xy be up-links such that Tuv and Txy have an edge in common
but none of them is a subpath of the other. Then one of uv, xy has a proper
shadow that together with the other link they cover all edges in Tuv ∪ Txy.

Proof. As Tuv and Txy intersect, either y is an ancestor of v, or v is an ancestor
of y. Assume w.l.o.g. that y is an ancestor of v. Let z be the lowest (farthest
from root) node that Txy, Tuv have in common. Than uz is a proper shadow of
uv, and {xy, uz} cover all edges in Tuv ∪ Txy. As the link xy covers an edge on
Tuv, one of x, y, say x, must be an internal node of the path Tuv. Since none of
Tuv, Txy is a subpath of the other, y must be either a proper ancestor of v or
a proper descendant of u. In the former case vy is a proper shadow of xy and
{uv, vy} cover all edges in Tuv ∪ Txy. In the latter case yu is a proper shadow of
xy and {uv, yu} cover all edges in Tuv ∪ Txy. ⊓⊔

From Lemma 4 we deduce the following.

Corollary 1. Let F be a shadow-minimal up-cover of T . Then every edge of T
is covered by a unique link in F .

Definition 5. The height ℎ(v) of a node v ∈ V is the distance from v to the
farthest descendant of v in T (note that by our choice of s, ℎ(s) is the radius
ℎ(T ) of T ). For u, v ∈ V let lca(u, v) denote the least common ancestor of u and
v in T . For a link e = uv let lca(e) = lca(u, v). The height ℎ(e) of a link e = uv
is ℎ(lca(e)).

In the rest of this section we will prove the following statement, that together
with Lemma 3 and Corollary 1 implies Lemma 2.



Lemma 5 (The Decomposition Lemma). Let F ∗ be a cover and F an up-
cover of a tree T rooted at s, such that every edge of T is covered by a unique
link in F . Then F is 3ℎ(s)−1-overlapped by F ∗, namely, there exist a partition
S of F ∗ into parts of size at most 3ℎ(s)−1 each, such that for every f ∈ F there
exists S ∈ S with f ∈ RF (S).

The bound 3ℎ(s)−1 in Lemma 5 is tight, as is shown in the next section.
Namely, for any integer ℎ ≥ 1, there exists a tree T rooted at s and F, F ∗ as in
Lemma 5, such any partition of F ∗ that overlaps F has a part of size at least
3ℎ(s)−1.

In the rest of this section we prove Lemma 5. Define an auxiliary directed
graph J = (VJ , EJ) as follows. For every f ∈ F , let uf , vf be the endnodes
of f , where uf is a descendant of vf . Let If ⊆ F ∗ be some inclusion minimal
cover of the unique ufvf -path P f in T . Let k(f) = ∣If ∣ and let ef1 , e

f
2 , ...e

f

k(f)

be an ordering of If obtained as follows, see Figure 1. For i = 1, . . . , k(f), efi
is the link in If that covers the lowest (farthest from the root) edge of P f not

covered by {ef1 , . . . , e
f
i−1}. The node set of J is VJ = F ∗ and the edge set of J is

EJ = {efi+1e
f
i : f ∈ F, 1 ≤ i ≤ k(f)− 1}. We will prove:

Lemma 6. J is a collection of node-disjoint arborescences with at most 3ℎ(s)−1

nodes each.

fu

fv

fek(f)−1

fek(f)

1
fe

2
fe 3

fe

s

f

Fig. 1. Illustration to the definition of If and Fact 2.

Lemma 5 easily follows from Lemma 6. The desired partition S of F ∗ is the
one defined by the arborescences of the auxiliary graph J . Note that by the
construction, for every f ∈ F the ordering ef1 , e

f
2 , ...e

f

k(f) of If forms a directed

path in J . Hence for every f ∈ F , If belongs to the same part (arborescence),
which defines the part S ∈ S such that f ∈ RF (S).



In the rest of this section we prove Lemma 6. The following fact stems from
the definition of If (see Figure 1).

Fact 2 Let f ∈ F . Then for every i = 1, . . . , k(f), the set of edges from P f

covered by the link-set {ef1 , . . . , e
f
i } is exactly the set of edges on the ufvfi -path

in T , where vfi = lca(efi ).

Thus from the minimality of If we have the following.

Corollary 2. Let f ∈ F with k(f) ≥ 2. Then for every 1 ≤ i ≤ k(f) − 1, vfi
is an inner node of P f , ℎ(efi ) < ℎ(efi+1), and both f and efi+1 cover the parent

edge of efi (the edge between vfi and its parent) in T .

Lemma 7. J is acyclic and deginJ (e) ≤ 1 for every e ∈ F ∗. Thus J is a collec-
tion of node-disjoint arborescences.

Proof. From Corollary 2 it easily follows that J is acyclic. We will prove that
deginJ (e) ≤ 1 for every e ∈ F ∗. Suppose to the contrary that there are two edges
e′e, e′′e ∈ EJ entering e in J . By the definition of J , there are two distinct

links f ′, f ′′ ∈ F such that e = ef
′

i′ ∈ If ′ and e = ef
′′

i′′ ∈ If ′′ . By Corollary 2, e
has a parent edge in T , and both f ′, f ′′ cover the parent edge of e in T . This
contradicts the assumption that every edge of T is covered by a unique link in
F . ⊓⊔

Lemma 8. For every e ∈ F ∗, no three neighbors of e in J have the same height.

Proof. Let e′, e′′ be two distinct neighbors of e in J with ℎ(e′) = ℎ(e′′). By the

definition of J , there exist distinct f ′, f ′′ ∈ F such that e′ = ef
′

i′ , e
′′ = ef

′′

i′′ , and

e = ef
′

i′+1 = ef
′′

i′′+1. By Corollary 2, f ′ covers the parent edge of e′ and f ′′ covers
the parent edge of e′′. Since f ′ and f ′′ are distinct and since every edge of T is
covered by a unique link in F , the parent edges of e′ and e′′ are also distinct
Since e′, e′′ have the same height, the parent edges of e′ and e′′ also have the
same height. By Fact 2, e covers the parent edge of each of e′, e′′. Hence, e cannot
have a third neighbor in J , since then e will cover three distinct edges in T of
the same height, but no link can cover three distinct edges in T of the same
height. ⊓⊔

Corollary 3. For e ∈ F ∗ let Ae be the set of nodes in J reachable from e. Then
∣Ae∣ ≤ 3ℎ(e)−1. Thus every arborescence in J has at most 3ℎ(s)−1 nodes.

Proof. We prove the statement by induction on ℎ(e). If ℎ(e) = 1 then e has no
neighbors in J , by Corollary 2. Hence ∣Ae∣ = 1 and 3ℎ(e)−1 = 30 = 1, and the
statement is valid in this case. Suppose that ℎ(e) ≥ 2 and that any arborescence
A′ in J with root e′ and ℎ(e′) ≤ ℎ(e)− 1 has at most 3ℎ(e

′)−1 nodes.
Let e′ be a neighbor of e in J . By Corollary 2, ℎ(e′) ≤ ℎ(e)− 1. Hence by the

induction hypothesis, ∣Ae′ ∣ ≤ 3ℎ(e
′)−1. By Lemma 8, no three distinct neighbors



of e have the same height. Thus we get:

∣Ae∣ ≤ 1 + 2 ⋅

ℎ(e)−1
∑

i=1

3i−1 = 1 + 2 ⋅
1− 3ℎ(e)−1

1− 3
= 1 + 3ℎ(e)−1 − 1 = 3ℎ(e)−1 .

⊓⊔

This finishes the proof of Lemma 6, and thus also the proof of the Theorem
is now complete.

2.4 A tight example for the Decomposition Lemma

Here we show for any integer ℎ ≥ 1, there exists a tree T rooted at s and F, F ∗

as in Lemma 5, such any partition of F ∗ that overlaps F has a part of size at
least 3ℎ(s)−1.

2s

XX

H2

H1

s0 s0 s0 s0

s1

e

1

e2

e3

s0s0

H3 s2

s3

s2

s1 s1

f2

f3

f2

f1

f1

s1

1

s

XX

X

X

Fig. 2. Construction of a tight example for Lemma 5 with ℎ(s) = 1, 2, 3. T -edges are
shown by bold lines, F ∗-edges are shown by dashed lines, and F -edges are shown by
thin lines.

In our example we will show that any partition S of F ∗ that overlaps F must
consist of one part S = {F ∗}. Define a sequence graphs Hi, each with spanning
tree Ti rooted at si, and two edge subsets Fi, F

∗
i as follows.

H1 is depicted in Figure 2.



To obtain H2 do the following (see Figure 2). Take a path P2 = s2 − s1 − s0
of T -edges, add the F -link f1 = s0s1, and attach a copy of H1 via the root to s1.
This copy has an F -link from a leaf to s1, and we replace the endnode s1 of this
link by s2, to obtain the link f2. Take another copy of the obtained graph and
identify the node s2 of both copies. Finally, add the F ∗-link e2 that connects
the two copies of s0 on copies of P3, as depicted in Figure 2. The edges of T2

are the T1 edges in the H1 copies plus the edges in the P2 copies. The F ∗-links
are the union of the F ∗-links in the copies of H1 and the link e2; alternatively,
these are the links in H2 that connect two leaves of T2. The remaining links are
the F -links, and these are the up-links in H2.

In general, the construction is recursive as follows. Given H1, . . . , Hi−1, to
obtainHi do the following (see Figure 2 for the case i = 3). Take a path Pi = si−
si−1−⋅ ⋅ ⋅−s0 of T -edges, add the F -link f1 = s0s1, and for every j = 1, . . . , i−1
attach a copy of Hj via the root to sj. Each copy Hj has an F -link from a leaf
to sj , and we replace the endnode sj of this link by sj+1, to obtain the link
fj+1. Take another copy of the obtained graph and identify the node si of both
copies. Finally, add the F ∗-link ei that connects the two copies of s0 on copies
of Pi, as depicted in Figure 2. The edges of Ti are the Tj-edges in the copies Hj

plus the edges in the Pi copies. The F
∗-links are the union of the F ∗-links in the

Hj-copies and the link ei; alternatively, these are the links in Hi that connect
two leaves of Ti. The remaining links are the F -links, and these are the up-links
in Hi.

It is not hard to verify that ∣F ∗
i ∣ = 3i−1 and that ∣Fi∣ = 2∣F ∗

i ∣ = 2 ⋅ 3i−1.
Now let S be a partition of F ∗

i that overlaps F , and let S ∈ S be the part that
contains ei. We claim that S = F ∗. For every j = 2, . . . , i, the tree edge sj−1sj
is covered by the link fj , and ei is the only link in F ∗ that covers this edge.
This implies that we must have fj ∈ RF (S). Using a similar argument, we can
conclude that in any Hj-copy, the link ej must be in S. Thus using induction
we can show that in each Hj-copy, all the F ∗ links belong to S. Consequently,
all the F ∗-links in Hi belong to F ∗, as claimed.

References

1. J. Cheriyan, T. Jordán, and R. Ravi. On 2-coverings and 2-packing of laminar
families. In ESA, pages 510–520, 1999.

2. J. Cheriyan, H. Karloff, R. Khandekar, and J. Könemann. On the integrality ratio
for tree augmentation. Operations Research Letters, 36(4):399–401, 2008.

3. G. Even, G. Kortsarz, and Z. Nutov. A 1.5 approximation algorithm for aug-
menting edge-connectivity of a graph from 1 to 2. Information Processing Letters,
111(6):296–300, 2011.

4. G. N. Fredrickson and J. Jájá. On the relationship between the biconnectivity
augmentation and traveling salesman problem. Theorethical Computer Science,
19(2):189–201, 1982.

5. M. Goemans and D. Williamson. The primal dual method for approximation al-

gorithms and its applications to network design problems, Ch. 4 in Approximation

Algorithms for NP-hard problems, D. S. Hochbaum Ed., pages 144-191. PWS,
1995.



6. K. Jain. A factor 2 approximation algorithm for the generalized Steiner network
problem. Combinatorica, 21(1):39–60, 2001.

7. S. Khuller. Approximation algorithms for for finding highly connected subgraphs,

Ch. 6 in Approximation Algorithms for NP-hard problems, D. S. Hochbaum Ed.,
pages 236-265. PWS, 1995.

8. G. Kortsarz and Z. Nutov. Approximating minimum cost connectivity problems,

Ch. 58 in Approximation Algorithms and Metahueristics, T. F. Gonzales ed.,. CRC,
2007.

9. Y. Maduel and Z. Nutov. Covering a laminar family by leaf to leaf links. Discrete

Applied Mathematics, 158(13):1424–1432, 2010.
10. H. Nagamochi. An approximation for finding a smallest 2-edge connected subgraph

containing a specified spanning tree. Discrete Applied Mathematics, 126:83–113,
2003.

11. A. Schrijver. Combinatorial Optimization, Polyhedra and Efficiency. Springer-
Verlag Berlin, Heidelberg New York, 2004.

12. A. Zelikovsky. Better approximation bounds for the network and euclidean steiner
tree problems. Technical report, 1995.


