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Abstract

Given a (directed or undirected) graph with costs on the edges, the power of a

node is the maximum cost of an edge leaving it, and the power of the graph is the

sum of the powers of its nodes. Motivated by applications for wireless networks, we

consider some fundamental network design problems under the power minimization

criteria. Let G = (V, E) be a graph with edge-costs {ce : e ∈ E} and let k be an

integer. We consider finding a min-power subgraph G of G that satisfies some prescribed

connectivity requirements. The Min-Power k Edge-Disjoint Paths (MPk-EDP)

problem requires that G contains k pairwise edge-disjoint st-paths for given s, t ∈ V ;

the Min-Power k-Edge-Outconnected Subgraph (MPk-EOS) problem requires

that G contains k pairwise edge-disjoint sv-paths for all v ∈ V − s, for given s ∈ V ;

and the Min-Power k-Edge-Connected Subgraph (MPk-ECS) problem requires

that G is spanning and k-connected. When the paths are required to be internally

disjoint, we get the problems Min-Power k Disjoint Paths (MPk-DP), Min-Power

k-Outconnected Subgraph (MPk-OS), and Min-Power k-Connected Subgraph

(MPk-CS), respectively. We survey the currently best known approximation algorithms

for these problems, mainly for directed graphs.

We then present our original results as follows. We give an evidence that the

undirected MPk-EDP and MPk-ECS and directed MPk-EOS and MPk-ECS are unlikely

to admit a polylogarithmic approximation ratio even for unit costs. On the other

hand, for both directed and undirected graphs we give a polynomial time algorithm

for finding a min-power augmenting edge set that increases the st-edge-connectivity

by 1; this implies a k-approximation algorithm for undirected MPk-EDP. We also

give a min{k + 4, O(log n)}-approximation algorithm for node-connectivity version of

undirected MPk-EOS; this improves the previously best known ratio of 2k − 1/3.
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1 Introduction and preliminaries

1.1 Problems considered, motivation, and previous work

Wireless networks are an important subject of study due to their extensive applications.

A large research effort focused on performing network tasks while minimizing the power

consumption of the radio transmitters of the network. In wired networks, one wants to find

a subgraph of the minimum cost instead of the minimum power. This is the main difference

between the optimization problems for wired versus wireless networks. In wireless networks,

a range (power) assignment to radio transmitters determines the resulting communication

network. We consider finding a power assignment to the nodes of a network such that the

resulting communication network satisfies prescribed connectivity properties, and such that

the total power is minimized. For motivation and applications to wireless networks (which

is the same as of their min-cost variant for wired networks), see, e.g., [15, 1, 3, 16, 20].

Let G = (V,E) be a (possibly undirected) graph with edge costs {ce : e ∈ E}. For v ∈ V ,

the power p(v) = pc(v) of v in G (w.r.t. c) is the maximum cost of an edge leaving v in G

(or zero, if no such edge exists). The power p(G) =
∑

v∈V p(v) of G is the sum of powers

of its nodes. Note that p(G) differs from the ordinary cost c(G) =
∑

e∈E c(e) of G even for

unit costs; for unit costs, if G is undirected then c(G) = |E| and p(G) = |V |. For example,

if E is a perfect matching on V then p(G) = 2c(G). If G is a clique then p(G) is roughly

c(G)/
√

|E|/2. For directed graphs, the ratio of cost over the power can be equal to the

maximum outdegree of a node in G, e.g., for stars with unit costs. The following statement

shows that these are the extremal cases for general costs.

Proposition 1.1 ([16]) c(G)/
√

|E|/2 ≤ p(G) ≤ 2c(G) for any undirected graph G =

(V,E), and if G is a forest then c(G) ≤ p(G) ≤ 2c(G). For any directed graph G holds:

c(G)/dmax(G) ≤ p(G) ≤ c(G), where dmax(G) is the maximum outdegree of a node in G.

The simplest connectivity requirements is when there should be an st-path for a specified

node pair s, t. Another relatively simple case is when there should be a path from s to

any other node. Min-cost variants are the (directed/undirected) Shortest st-Path problem

and the Min-Cost Spanning Tree problem. In the min-power case, the directed/undirected

Min-Power st-Path is solvable in polynomial time by a simple reduction to the min-cost

case. The Min-Power Spanning Tree problem is APX-hard for undirected graphs and admits

a 5/3-approximation algorithm [1], while the directed case is at least as hard as the Set-

Cover problem, and thus has an Ω(log n)-approximation threshold (namely, it cannot be

approximated within C lnn for some universal constant C < 1, unless P=NP). For the
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directed min-power spanning tree problem a 2H(n)-approximation algorithm is given in [3]

(H(n) =
∑n

i=1 1/i is the nth harmonic number). However, the ”reverse” directed min-power

spanning tree problem, when we require a path from every node to s, is equivalent to the

min-cost case, and thus is solvable in polynomial time.

An important network property is fault-tolerance. A graph G is k-outconnected from s

if it has k internally disjoint sv-paths for any v ∈ V ; G is k-inconnected to s if its reverse

graph is k-outconnected from s (for undirected graphs these two concepts are the same); G

is k-connected if it has k internally disjoint uv-paths for all u, v ∈ V . When the paths are

required only to be edge-disjoint, the graph is k-edge outconnected from s, k-edge inconnected

to s, and k-edge-connected, respectively (for undirected graphs these concepts are the same).

We consider the following generalizations of the problems from [1, 3], that were already

studied, e.g., [16, 20, 25]. These problems are defined for both directed and undirected

graphs.

Min-Power k Edge-Disjoint Paths (MPk-EDP)

Instance: A graph G = (V, E), edge-costs {ce : e ∈ E}, s, t ∈ V , and an integer k.

Objective: Find a min-power subgraph G of G that contains k pairwise edge-disjoint st-paths.

Min-Power k-Edge-Inconnected Subgraph (MPk-EIS):

Instance: A graph G = (V, E), edge-costs {ce : e ∈ E}, s ∈ V , and an integer k.

Objective: Find a min-power k-inconnected to s spanning subgraph G of G.

Min-Power k-Edge-Outconnected Subgraph (MPk-EOS):

Instance: A graph G = (V, E), edge-costs {ce : e ∈ E}, s ∈ V , and an integer k.

Objective: Find a min-power k-outconnected from s spanning subgraph G of G.

Min-Power k-Edge-Connected Subgraph (MPk-ECS):

Instance: A graph G = (V, E), edge-costs {ce : e ∈ E}, and an integer k.

Objective: Find a min-power k-connected spanning subgraph G of G.

When the paths are required to be internally disjoint we get the problems

Min-Power k Disjoint Paths (MPk-DP) (instead of MPk-EDP);

Min-Power k-Inconnected Subgraph (MPk-IS) (instead of MPk-EIS);

Min-Power k-Outconnected Subgraph (MPk-OS) (instead of MPk-EOS);

Min-Power k-Connected Subgraph (MPk-CS) (instead of MPk-ECS).

Min-cost versions of these problems were studied extensively for both directed and undi-

rected graphs, see, e.g., [8, 13, 14, 11, 12], and surveys in [10, 18, 23]. Min-cost version of

directed/undirected MPk-EDP/MPk-DP is polynomially solvable (this is the incapacitated

Min-Cost k-Flow problem). For directed graphs the min-cost versions of MPk-EOS/MPk-OS
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are polynomially solvable, see [8] and [13, 12], respectively; more efficient algorithms are

given in [14, 11]. This implies a 2-approximation algorithm for undirected graphs. Directed

MPk-DP is solvable in polynomial time by a straightforward reduction to the min-cost case,

and this implies a 2-approximation algorithm for undirected MPk-DP. On the other hand,

for directed MPk-EDP we have the following approximation threshold:

Theorem 1.2 ([16]) Directed MPk-EDP cannot be approximated within O(2log1−ε n) for any

fixed ε > 0, unless NP ⊆ DTIME(npolylog(n)).

1.2 Results in this Thesis

As was mentioned, for k = 1 directed/undirected MPk-EDP are easily reduced to the min-

cost case. We are not aware of any nontrivial exact/approximation algorithms for undirected

MPk-EDP for arbitrary k. We give a strong evidence that a polylogarithmic approximation

algorithm for undirected MPk-EDP/MPk-ECS may not exist even for highly restricted in-

stances. For that, we show a reduction from the following extensively studied problem to

the undirected MPk-EDP/MPk-ECS. For a graph J = (V, I) and X ⊆ V let I(X) denote

the edges in I with both ends in X.

Densest `-Subgraph (D`-S)

Instance: A graph J = (V, I) and an integer `.

Objective: Find X ⊆ V with |X| ≤ ` and |I(X)| maximum.

The best known approximation ratio for D`-S is roughly |V |−1/3 [9] even for the case of

bipartite graphs (which up to a factor of 2 is as hard to approximate as the general case),

and in spite of numerous attempts to improve it, this ratio holds for almost 10 years. We also

consider the following ”augmentation” version of undirected MPk-EDP (the directed case is

easy, c.f., [25]), which already generalizes the case k = 1 considered in [1].

Min-Power k Edge-Disjoint Paths Augmentation (MPk-EDPA)

Instance: A graph G = (V, E) with edge-costs {ce : e ∈ E}, s, t ∈ V , an integer k, and a

subgraph G0 = (V,E0) of G that contains k − 1 pairwise edge-disjoint st-paths.

Objective: Find F ⊆ E − E0 so that G0 + F contains k pairwise edge-disjoint st-paths and

with p(G0 + F ) − p(G0) minimum.

Theorem 1.3

(i) If there exists a ρ-approximation algorithm for undirected MPk-EDP/MPk-ECS, then there

exists a 1/(2ρ2)-approximation algorithm for D`-S on bipartite graphs.

(ii) Undirected MPk-EDPA is in P; thus MPk-EDP admits a k-approximation algorithm.
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In [25] is given an O(k lnn)-approximation algorithm for directed MPk-OS, MPk-EOS,

and MPk-ECS, and a k-approximation algorithm for directed MPk-EIS; these ratios are tight

up to constant factor if k is ”small”, but may seem weak if k is large. We prove that for

these four problems a polylogarithmic approximation ratio is unlikely to exist even when the

costs are symmetric.

Theorem 1.4 Directed MPk-EDP/MPk-EOS/MPk-EIS/MPk-ECS cannot be approximated

within O(2log1−ε n) for any ε > 0 even for symmetric costs, unless NP ⊆ DTIME(npolylog(n)).

We also improve the best known ratio of 2k− 1/3 [20] for undirected MPk-OS as follows:

Theorem 1.5 Undirected MPk-OS admits a min{k+4, O(log n)}-approximation algorithm.

The following table summarizes the currently best known approximation ratios and

thresholds for the problems considered (note that directed MPk-EOS and directed MPk-EIS

are not equivalent).

Problem Edge-Connectivity Node-Connectivity

Undirected Directed Undirected Directed

MPk-DP k k [25] 2 [16] in P [16]

Ω(1/
√
σ) Ω(2log1−ε n) [16] −−

MPk-IS 2k − 1/3 [20] k [25] min{k + 4, O(lnn)} k [25]

Ω(1/
√
σ) Ω(2log1−ε n) APX for k = 1 [16] −−

MPk-OS 2k − 1/3 [20] O(k lnn) [25] min{k + 4, O(lnn)} O(k lnn) [25]

Ω(1/
√
σ) Ω(2log1−ε n) APX for k = 1 [16] Ω(lnn) for k = 1 [3]

MPk-CS 2k − 1/3 [20] O(k lnn) [25] O(α + lnn) [20] O(k(lnn+ k)) [25]

Ω(1/
√
σ) Ω(2log1−ε n) Ω(α) unless α = O(lnn) [20] Ω(lnn) for k = 1 [3]

Table 1: Currently best known approximation ratios and thresholds for min-power connec-

tivity problems. Results without references are the ones proved in this paper. σ is the best

ratio for D`-S; currently σ is roughly O(n1/3) [9]. α is the best ratio known for the Min-Cost

k-Connected subgraph problem; currently, α = d(k+1)/2e for 2 ≤ k ≤ 7 (see [2] for k = 2, 3,

[7] for k = 4, 5, and [21] for k = 6, 7); α = k for k = O(lnn) [21], α = 6H(k) for n ≥ k(2k−1)

[5], and α = O(ln k · min{
√
k, n

n−k
ln k}) for n < k(2k − 1) [22].

We note that for min-cost connectivity problems, a ρ-approximation algorithm for di-

rected graphs usually implies a 2ρ-approximation for undirected graphs, c.f., [23]. For min-

power problems we do not see such a reduction. For min-cost problems a standard reduction

to reduce the undirected variant to the directed one is: replace every undirected edge uv by
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two anti-parallel directed edges uv, vu of the same cost as e, find a solution G to the directed

variant and take the underlying graph of G. This reduction does not work for min-power

problems, since the power of the underlying graph of G can be much larger than that of G,

e.g., if G is a star. The approximation algorithm for the directed case might select only one

of the two anti-parallel edges, and this does not correspond to a solution for the undirected

case.

Theorems 1.3, 1.4, and 1.5 are proved in Sections 3, 4, and 5, respectively.

1.3 Notation

Here is some notation used in the paper. Let G = (V,E) be a directed graph. For disjoint

X,Y ⊆ V let δG(X,Y ) = δE(X,Y ) be the set of edges from X to Y in E. For brevity,

δE(X) = δE(X,V − X), dE(X) = |δE(X)|, and δ+
E(X) = δE(V − X,X). Given edge costs

{c(e) : e ∈ E}, the power of v in G is p(v) = maxe∈δE(v) c(e), and the power of G is

p(G) = pE(V ) =
∑

v∈V p(v). Throughout the paper, G = (V, E) denotes the input graph

with nonnegative costs on the edges. Let n = |V | and m = |E|. Given G, our goal is to find a

minimum power spanning subgraph G = (V,E) of G that satisfies some prescribed property.

We assume that a feasible solution exists; let opt denote the optimal solution value of an

instance at hand.

2 Approximation algorithms for directed min-power

connectivity problems

In this section we we consider only directed graphs, so, unless stated otherwise, ”graph”

means ”directed graph”. We survey the approximation algorithms from [25] for min-power

directed connectivity problems MPk-EOS,MPk-OS,MPk-ECS, and MPk-CS; [25] gives ap-

proximation algorithms for the following augmentation versions of these problems. Suppose

that G has a subgraph G0 = (V,E0) of power zero which is k0-outconnected from r, and

the goal is to augment G0 by a min-power edge-set F ⊆ E − E0 so that the resulting graph

G = G0 + F is k-outconnected from r. Formally:

Min-Power (k0, k)-Outconnectivity Augmentation (MP(k0, k)-OA):

Instance: A graph G0 = (V,E0) which is k0-outconnected from r, an edge set I on V with

costs {ce : e ∈ I}, and an integer k > k0.

Objective: Find min-power I ⊆ I so that G = G0 + I is k-outconnected from r.
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In a similar way define the augmentation versions of MPk-EOS, MPk-CS and MPk-ECS,

respectively:

Min-Power (k0, k)-Edge-Outconnectivity Augmentation (MP(k0, k)-EOA);

Min-Power (k0, k)-Connectivity Augmentation (MP(k0, k)-CA);

Min-Power (k0, k)-Edge-Connectivity Augmentation (MP(k0, k)-ECA).

In [3] are given approximation algorithms for k0 = 0 and k = 1: a 2H(n)-approximation

for the Min-Power Directed Tree problem and a (2H(n) + 1)-approximation for the Min-

Power Strongly Connected Subgraph problem (H(n) denotes the nth Harmonic number).

As each one of these problems generalizes the Set-Cover problem (c.f., [3]), the results in [3]

are essentially tight up to a constant factor. For arbitrary k0, k, [25] proves:

Theorem 2.1 There exist approximation algorithms with approximation ratios:

(i) 2(k − k0)H(n) = O(k lnn) for directed MP(k0, k)-OA and MP(k0, k)-EOA;

(ii) (k − k0)(2H(n) + 1) = O(k lnn) for directed MP(k0, k)-ECA;

(iii) (k − k0) (2H(n) + (k + k0 + 1)/2) = O(k(lnn+ k)) for directed MP(k0, k)-CA.

The approximation ratios in Theorem 2.1 are O(lnn) for any fixed k, which is tight (up

to a constant factor) if k is ”small” (usually, k ≤ 3 in practical networks), but may seem

weak if k is large. However, it might be that a much better approximation algorithm does

not exists: Theorem 1.4 states that (for large k) MPk-EOS cannot be approximated within

O(2log1−ε n) for any fixed ε > 0, unless NP ⊆ DTIME(npolylog(n)). The same hardness result

is valid for the ”reverse” problem MPk-EIS when there should be k edge-disjoint vs-paths for

every v ∈ V ; however, unlike MPk-EOS, this problem admits a k-approximation algorithm

[24], and, in particular, is in P for k = 1. In contrast, for undirected MPk-OS [24] gives an

O(lnn)-approximation algorithm for any k.

In fact, Theorem 2.1 is just a summary of (some) applications of a general approximation

algorithm for finding a min-power (edge-)cover of an intersecting family. A family F of

subsets of a groundset V is an intersecting family if X ∩ Y,X ∪ Y ∈ F for any intersecting

X,Y ∈ F . An edge set I covers F if for every X ∈ F there is an edge in I entering X,

that is, there is uv ∈ I with u ∈ V −X and v ∈ X. In [25] is given a 2H(n)-approximation

algorithm for the problem of finding a min-power cover of an intersecting family F , but its

polynomial implementation (in case F is not given explicitly) requires that certain queries

related to F can be answered in polynomial time. Given an edge set I on V , the residual

family FI of F (w.r.t. I) consists of all members of F that are uncovered by edges of I.

It is well known that if F is intersecting so is FI for any I. A set C ∈ F is an F-core, or

simply a core if F is understood, if C does not contain two disjoint members of F . Clearly,
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the maximal F -cores are pairwise disjoint if F is intersecting. Given a maximal core C let

F(C) = {X ∈ F : X ⊆ C}. For any edge set I on V , make the following two assumptions:

Assumption 1:

The maximal FI-cores can be computed in polynomial time.

Assumption 2:

For any maximal FI-core C, a min-cost FI(C)-cover can be computed in polynomial time.

Theorem 2.2 The problem of finding a min-power cover of an intersecting family on n

elements admits a 2H(n)-approximation algorithm under Assumptions 1 and 2.

Theorem 2.2 extends to so called ”crossing families”. Two sets X,Y ⊂ V cross if X ∩
Y,X − Y, Y − X,V − (X ∪ Y ) are all nonempty. A set family F is a crossing family if

X ∩ Y,X ∪ Y ∈ F for any crossing X,Y ∈ F . Let us say that an edge set I is a reverse

cover of F if for every X ∈ F there is an edge in I entering X. It is known that (c.f., [24]):

Fact 2.3 Let F be an intersecting family. If I is an inclusion miniaml reverse cover of F
then dI(v) ≤ 1 for every v ∈ V , and thus the power of I equals it cost. In particular, I is a

min-power reverse cover of F if, and only if, I is a min-cost reverse cover of F .

Any crossing family F can be naturally represented by two intersecting families as follows:

fix r ∈ V and define F in
r = {X ∈ F : r /∈ X} and F out

r = {V −X : X ∈ F − F+
r }. Then I

covers F if, and only if, I is a cover of F in
r and I is reverse cover of F out

r . Combining with

Fact 2.3, we get:

Corollary 2.4 The problem of finding a min-power cover of a crossing family F on V

admits a (2H(n) + 1)-approximation algorithm, if for some r ∈ V Assumptions 1 and 2 are

valid for F in
r and if the min-cost reverse cover of F out

r can be computed in polynomial time.

A set function f defined on subsets of V is intersecting supermodular if f(X) + f(Y ) ≤
f(X ∩ Y ) + f(X ∪ Y ) for any intersecting X,Y ⊂ V . An edge set I covers f if in the graph

(V, I) the indegree of every X ⊂ V is at least f(X). A {0, 1}-valued set function is intersect-

ing supermodular if, and only if, its support is an intersecting family. A natural question is

whether Theorem 2.2 extends to intersecting supermodular set functions. As MPk-EOS is a

particular case of the problem of finding a min-power cover of an intersecting supermodular

set function, such an extension is unlikely due to the hardness result in Theorem 1.4.

The proof of Theorem 2.2 combined ”set-cover approximation techniques” of [19] used

in [3] for k = 1 that are based on ”density” considerations (c.f., [17]) with the techniques

used for min-cost connectivity problems. However, unlike [19, 3], one cannot use specific

graph properties. To prove that one can find an edge set of appropriate density, [25] uses the
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method of ”uncrossing” sets (c.f., [27]). It defines an analogue of spiders called ”star-covers”:

unlike [19, 3] a star cover is not necesarilly a tree. Showing that any inclusion minimal F -

cover can be decomposed into such star-covers is harder than showing a decomposition of a

tree into spiders; recently, such a decomposition was extended for set families related to the

undirected Node Weighted Steiner Network problem – a generalization of the Node Weighted

Steiner Forest problem, see [26].

Proofs of Theorems 2.2 and 2.1 are given in Sections 2.1 and 2.2, respectively.

2.1 Covering intersecting families (Proof of Theorem 2.2)

The following result about the performance of an Approximate Greedy Algorithm for a certain

type of covering problems is widely used to prove polylogarithmic approximation ratios. This

type of problems can be defined as follows:

Covering Problem

Instance: A groundset I and integral functions ν, p on 2I given by an evaluation oracle.

Objective: Find I ⊆ I with ν(I) = ν(I) and with p(I) minimized.

We call ν the deficiency function and p the payment function; ν is assumed to be decreas-

ing and measures how far I is from being a feasible solution; p is assumed to be increasing

and subadditive, namely p(I1 ∪ I2) ≤ p(I1) + p(I2) for all I1, I2 ⊆ I. In our case p is just

the power function, and clearly, it is decreasing and subadditive. Let ρ > 1 and let opt be

the optimal solution value for the Covering Problem. The ρ-Approximate Greedy Algorithm

starts with I = ∅ and iteratively adds subsets of I − I to I one after the other using the

following rule. As long as ν(I) > ν(I) it adds to I a set F ⊆ I − I so that

σI(F ) =
ν(I) − ν(I + F )

p(F )
≥ ν(I) − ν(I)

ρ · opt
. (1)

The following known statement is proved using the same methods as in [17] where the Set-

Cover problem was considered. We give a proof sketch of a slightly weker version.

Theorem 2.5 For any covering problem so that the payment function p is increasing and

subadditive and the deficiency function ν is monotone decreasing, the ρ-Approximate Greedy

Algorithm computes a solution I with p(I) ≤ ρH(ν(∅)− ν(I)) · opt, where H(n) denotes the

nth Harmonic number.

Proof sketch: We may assume that ν(I) = 0. We prove a slightly weaker result, namely:

p(I) ≤ ρ(1+ln ν(∅))·opt. Let Ij be the partial solution at the end of iteration j, where I0 = ∅,
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and let Fj be the set added at iteration j, thus Ij = Ij−1 + Fj, j = 1, . . . , `. Let νj = ν(Ij)

and pj = p(Fj). Since ν is decresing, then by (1) we have (νj−1 − νj)/wj ≥ νj−1/(ρ · opt).

Thus

νj ≤ νj−1

(

1 − pj

ρ · opt

)

.

We have ν` = 0 while ν`−1 ≥ 1. Unraveling the last inequality we obtain:

ν`−1

ν0

≤
`−1
∏

j=1

(

1 − pj

ρ · opt

)

.

Taking natural logarithms from both sides and using the inequality ln(1+x) ≤ x we obtain:

ρ · opt · ln
(

ν0

ν`−1

)

≥
`−1
∑

j=1

pj .

Finally, using the subadditivity of p and observing that p` ≤ ρ · opt and ν`−1 ≥ 1 we get:

p(I) = p





⋃̀

j=1

Fj



 ≤ p` +
`−1
∑

j=1

pj ≤ ρ · opt + ρ · opt · ln ν0 = ρ(1 + ln ν0) · opt .

2

In the rest of this section we prove the following Lemma:

Lemma 2.6 Let ν(I) be the number of minimal cores in FI . Then an edge set F satisfying

(1) with ρ = 2 can be found in polynomial time under Assumptions 1 and 2.

For simplicity of exposition, let us revise our notation and use F instead of FI , and let

ν = ν(∅). We assume that I is a feasible solution, thus ν(I) = 0. Then we need to show

that under Assumptions 1 and 2 one can find in polynomial time an edge set F so that:

σ(F ) =
ν − ν(F )

p(F )
≥ ν

2 · opt
. (2)

Before presenting a formal proof of Lemma 2.6, we give a sketch. Let C be the set of

maximal F -cores. For C ∈ C let E(C) = {uv ∈ E : u, v ∈ C} be the edges in E with both

endpoints in C, and let F(C) = {X ∈ F : X ⊆ C}. Let E be a minimal F -cover. We prove

that (Corollary 2.8 and Lemma 2.9):

(i) dE(v) ≤ 1 for any v ∈ C and d+
E(C) = 1.

(ii) E(C) plus the unique edge eC in E that enters C cover F(C).

An edge set F is a star-cover with root s (an analogue of [19, 3] spiders) if for every e ∈
δF (s) there exists C ∈ C with δF (C) = {e} such that e + F (C) is a minimal F(C)-cover

12



(Definition 2.1). We prove that adding a star cover F decreases the number of cores by at

least ∆(F ), where ∆(F ) = dF (s)− 1 if dF (s) ≥ 2 and ∆(F ) = 1 if dF (s) = 1 (Lemma 2.11).

By (ii), the set E ′ of edges in E which head lies in some core is decomposed into star-covers

F1, . . . , Ft, and adding all these star-covers decreases ν by at least
∑t

i=1 ∆(Fi) ≥ ν/2. As

p(E ′) ≤ opt, we use an averaging argument as in [19, 3] to conclude that there exists a

star-cover F for which (2) holds (Lemma 2.12). By (i), the power of a star-cover equals

the power of s plus the cost of its edges that are not incident to s (Corollary 2.10). This,

together with Assumptions 1 and 2 enables us to find in polynomial time a star-cover F that

maximizes ∆(F )/p(F ) (Lemma 2.13).

A formal proof of Lemma 2.6 follows. We need to establish some properties of minimal

F -covers of an intersecting family F . Let E be a minimal F -cover. By the minimality of E,

for every e ∈ E there exists We ∈ F such that δin
E (We) = {e}; we call such We a witness set

for e; note that e might have several distinct witness sets.

e

f

Wf

WeW

f

e

W

e

f

Figure 1: Two possible cases of intersecting witness sets We,Wf .

Lemma 2.7 Let F be an intersecting family and let E be a minimal F-cover. Let We,Wf

be intersecting witness sets of two distinct edges e, f ∈ E. Then We ∩Wf is a witness for

one of e, f and We ∪Wf is a witness for the other. (See Fig. 1.)

Proof: Note that there is an edge in E entering We ∩Wf and there is an edge in E entering

We∪Wf ; this is since We,Wf ∈ F implies that We∩Wf ,We∪Wf belong to F and thus each

of them is covered by some edge in E. However, if for arbitrary sets X,Y an edge covers one

of X ∩ Y,X ∪ Y then it also covers one of X,Y , and if some edge covers both X ∩ Y and

X ∪ Y then it must cover both X and Y . Thus no edge in E − {e, f} can cover We ∩Wf or

We ∪Wf , so one of e, f covers We ∩Wf , and thus the other must cover We ∪Wf . 2

Corollary 2.8 Let X be a minimal core of an intersecting family F and let E be a minimal

F-cover. Then din
E (X) = 1.

Proof: Clearly din
E (X) ≥ 1, since E is an F -cover and X ∈ F . Assume that there are

13



distinct e, f ∈ δin
E (X), and let We,Wf be their witness sets. Then X ⊆ We ∩ Wf (in

particular, We,Wf intersect), and thus e, f ∈ δin
E (We ∩Wf ). This contradicts Lemma 2.7. 2

Lemma 2.9 Let C be a maximal core of an intersecting family F and let E be a minimal

F-cover. Let E(C) be the set of edges in E with both endpoints in C, let X be the minimal

core of FE(C) contained in C (possibly X = C), and let eC be the unique edge in E that

enters X. Then E(C) + eC covers F(C) = {X ∈ F : X ⊆ C}, and dE(C)(v) ≤ 1 for every

v ∈ C; thus p(E(C)) = c(E(C)), namely, the power of E(C) equals its cost.

Proof: Let X1 be the minimal F -core contained in C. By Corollary 2.8 there is a unique

edge in E entering X1, say e1. If e1 covers C, then E(C) = ∅, and it is easy to see that the

statement holds. Otherwise, let X2 be the minimal Fe1
-core contained in C and let e2 be

the unique edge in E entering X2, and so on, until C is covered by some edge eq. In such a

way we obtain sequences e1, . . . , eq−1 of edges in E(C) together with an additional edge eq

that enters C, and X1 ⊂ X2 · · · ⊂ Xq ⊆ C of sets in F(C) so that Xi+1 is the core of FEi

where Ei = {e1, . . . , ei} and ei is the unique edge in E entering Xi. The statement follows,

since we must have Eq−1 = E(C), X = Xq, and eq = eC . In particular, E(C) + eC = Eq

covers F(C) and no two edges in E(C) share a tail. 2

FFν−ν(  ) > ∆=2 ν−ν(  ) > ∆=1F

maximal core

ν−ν(  ) > ∆=1

C
Ce

Figure 2: Star-covers.

Definition 2.1 An edge set F is a star-cover (with root s) if for every e ∈ δF (s) there exists

C ∈ C with δF (C) = {e} such that e+ F (C) is a minimal F(C)-cover (see Fig. 2).

As the family F(C) is intersecting for any maximal F -core C, by Lemma 2.9 we get:

Corollary 2.10 Let F be a star-cover with root s. Then δF (v) ≤ 1 for any v 6= s, and thus

p(F ) = pF (s) + c(F − δF (s)).
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Lemma 2.11 For a star-cover F with root s let ∆(F ) = d(s)−1 if dF (s) ≥ 2 and ∆(F ) = 1

if dF (s) = 1. Then ν − ν(F ) ≥ ∆(F ).

Proof: Let F ′ be the residual family of the sets that are uncovered by F . The minimal

F -cores not covered by F are also minimal F ′-cores, while any other minimal F ′-core X ′

must contain at least one F -core covered by F . We claim that s ∈ X ′ must hold for any

such X ′, and thus: if d(s) = 1 no such X ′ exists, and if d(s) ≥ 2 there is at most one such

X ′, since the minimal F ′-cores are disjoint. To see that s ∈ X ′, let X be a minimal F -core

contained in X ′ and let C be the maximal F -core containing X. Let Y = X ∩ C. Then

Y ∈ F(C), thus there is an edge uv ∈ F entering Y . Since uv does not cover X ′, we must

have u ∈ X ′ − C. But then uv covers C, implying u = s. 2

Lemma 2.12 There exists a star-cover F for which (2) holds.

Proof: Let E be an inclusion minimal optimal F -cover. For every maximal core C of F
let EC and eC be as in Lemma 2.9. Let E ′ be the union taken over all maximal cores

C ∈ C of the edge sets FC = EC + eC . Then E ′ is decomposed into node disjoint star-covers

F1, . . . , Ft. Now the statement follows by a simple averaging argument. Let pi = p(Fi) and

let ∆i = ∆(Fi). We have
∑t

i=1 pi = p(E ′) ≤ p(E) = opt and
∑t

i=1 ∆i ≥ ν/2. Thus:

∑t
i=1 ∆i

∑t
i=1 pi

≥ ν/2

p(E ′)
.

From number theory we know that there must be index i so that ∆i/pi ≥ ν/(2p(E ′)). Let

F = Fi. Then ν − ν(F ) ≥ ∆i, by Lemma 2.11. Consequently

σ(F ) =
ν − ν(F )

p(F )
≥ ν

2 · p(E ′)
≥ ν

2 · p(E)
=

ν

2 · opt
.

2

Lemma 2.13 A star-cover F that maximizes ∆(F )/p(F ) can be found in polynomial time

under Assumptions 1 and 2.

Proof: We first compute the maximal cores; this can be done in polynomial time by As-

sumption 1. Second, for every node v that belongs to a maximal core C we define the weight

w(v) of v to be the minimum cost of an Fe(C)-cover, where e = uv is an arbitrary edge that

has head v and enters C. This can be done in polynomial time by Assumption 2. Let us say

that a star F is proper if every its edge enters some maximal F -core. Given a proper star F

with root s, let w(F ) = p(s)+w(LF ) where LF is the set of leaves of F . We now see that our

goal is to compute a proper star F that maximizes max{|LF |− 1, 1}/w(F ). We may assume

that we know the root s and its power p = pF (s) in F ; there are O(n2) distinct choices.
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Delete all the edges, except that for every core C ∈ C among the edges sv with v ∈ C and

p(sv) ≤ p(s), if any, choose one with w(v) minimal. This defines an auxiliary star T . Let

v1, . . . , vq be the leaves of T sorted by increasing weight, so w(v1) ≤ w(v2) ≤ . . . ≤ w(vq).

Let Wj =
∑j

i=1w(vi), and let σ1 = 1/(p+W1) and σj = (j − 1)/(p+Wj), j = 1, . . . , q. We

find the index j for which σj is maximum, which will determine the required star-cover. 2

2.2 Directed min-power connectivity (Proof of Theorem 2.1)

2.2.1 Part (i): Algorithm for directed MPk-OS/MPk-EOS

We give a 2H(n)-approximation algorithm for MP(`, `+1)-OA (rep., MP(`, `+1)-EOA). We

apply this algorithm sequentially for ` = k0, . . . , k − 1 to produce edge sets Fk0
, . . . , Fk−1 so

that G0+(Fk0
+· · ·+F`) is (`+1)-outconnected (resp., (`+1)-edge-outconnected) from r, and

p(F`) ≤ 2H(n) · opt, ` = k0, · · · , k− 1. Consequently, F = Fk0
+ · · ·+Fk−1 is k-outconnected

from r, and

p(F ) ≤
k−1
∑

`=k0

p(F`) ≤
k−1
∑

`=k0

2H(n) · opt = 2(k − k0)H(n) · opt .

A graph G = (V,E) is `-edge-outconnected from r to T if it has ` pairwise edge-disjoint

rt-paths for every t ∈ T . Using Theorem 2.2, we give a 2H(n)-approximation algorithm for

the following problem, that includes both MP(`, `+ 1)-OA and MP(`, `+ 1)-EOA.

Instance: A graph G0 = (V,E0) which is `-edge-outconnected from r to T and an edge set I
on V with costs {ce : e ∈ I} so that every edge in I has its head in T .

Objective: Find a min-power edge-set I ⊆ I so that G = G0 + I is (`+1)-edge-outconnected

from r to T .

MP(`, `+1)-EOA is a special case of this problem when T = V . For MP(`, `+1)-OA apply the

following approximation ratio preserving reduction. Given an instance G0 = (V,E0), `, r, I
of MP(`, ` + 1)-OA obtain an instance G′

0 = (V ′, E ′
0), T

′, `, r, I ′, c′ of the above problem as

follows. Replace every node v ∈ V by the two nodes vt, vh connected by the edge vtvh of

cost zero, and replace every edge uv ∈ E0 ∪ I by the edge uhvt having the same cost as uv

(which is zero if uv ∈ E0). Let r′ = rh, T
′ = {vt : v ∈ V }, and

E ′
0 = {uhvt : uv ∈ E0} + {vtvh : v ∈ V }, I ′ = {uhvt : uv ∈ I} .

This establishes a bijective correspondence between edges in I and the edges in I ′. It is

not hard to verify (see [11] for details) that G′
0 = (V ′, E ′

0) is `-edge-connected from r′ to T ′.

Furthermore, if I ′ ⊆ I corresponds to I ⊆ I then:
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(i) I is a feasible solution if, and only if, I ′ is a feasible solution.

(ii) dI(v) = dI′(vh) and dI′(vt) = 0 for every v ∈ V ; thus p(I) = p(I ′).

We now show that above problem can be reduced to the min-power intersecting family

cover problem, so that Assumptions 1 and 2 are valid. We say that X ⊆ V − s is tight in G0

if X ∩ T 6= ∅ and din(X) = `. From Menger’s Theorem we have:

Fact 2.14 Let G0 = (V,E0) be `-edge-outconnected from r to T . Then G = G0 + I is

(`+ 1)-edge-outconnected from r to T if, and only if, I covers all the tight sets in G0.

We now see that the augmentation problem is equivalent to the problem of finding a

cover of the family of tight sets. However, since only edges with head in T can be added,

this is equivalent to covering the family:

F = {X ∩ T : X is tight in G0} . (3)

It is well known (c.f. [11]) that:

Fact 2.15 The family F defined in (3) is intersecting.

It remains to show that Assumptions 1 and 2 are valid for F defined by (3). For Assump-

tion 1 we need to show that given a graph, the maximal F -cores can be found in polynomial

time (if some edges were added at previous steps, we consider the graph after these edges

were added). We first show how to find the minimal F -cores. Then, for Assumption 1, we

will show that finding maximal F -cores can be done using n max-flow computations; for

Assumption 2 we will show that finding a min-cost F(C)-cover for a given maximal core C

can be done using one min-cost (`+ 1)-flow computation.

The minimal cores can be found using |T | max-flow computations as follows. For every

t ∈ T , compute a maximum rt-flow. If its value is `, then in the corresponding residual

network the set of nodes {v ∈ T : t is reachable from v} is the minimal core containing t;

otherwise, no minimal core containing t exists. After the minimal F -cores are found, to find

the maximal cores, for every minimal core X do the following. Add an edge from r to every

minimal core distinct from X. Then choose t ∈ X and compute a maximum rt-flow; in the

corresponding residual network the set of nodes T − {v ∈ T : v is reachable from r} is the

maximal core containing X. Now we show how to find a min-cost F(C)-cover for a maximal

core C that contains a minimal core X. The construction is similar to the previous one:

construct a network H = G0 + I, assigning zero costs to edges in E0. Then add an edge

from r to every minimal core distinct from X, and compute a min-cost (` + 1)-flow f from

r to some t ∈ X. The edge set {e ∈ I : f(e) = 1} is the desired F(C)-cover.
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2.2.2 Part (ii): Algorithm for directed MPk-ECS

We give a (2H(n)+1)-approximation algorithm for MP(`, `+1)-ECA. We apply this algorithm

sequentially for ` = k0, . . . , k−1 to produce edge sets Fk0
, . . . , Fk−1 so that G0+(Fk0

+· · ·+F`)

is (`+1)-edge-connected, and p(F`) ≤ (2H(n)+ 1) · opt, ` = k0, . . . , k− 1. Consequently, for

F = Fk0
+ · · · + Fk−1, we get that G0 + F is k-edge-connected, and

p(F ) ≤
k−1
∑

`=k0

p(F`) ≤
k−1
∑

`=k0

(2H(n) + 1) · opt = (k − k0)(2H(n) + 1) · opt .

Let us say that a graph is `-edge-inconnected to r (resp., `-inconnected to r) if its reverse

graph is `-edge-outconnected from r (resp., `-outconnected from r). The problem of finding

a min-cost augmenting edge set that increases the inconnectivity (or edge-inconnectivity) of

a given directed graph from ` to ` + 1 can be solved in polynomial time, c.f., [11]. Using

Fact 2.3 and methods as in the previos section, one can easily deduce (see [24] for details):

Proposition 2.16 Finding a min-power augmenting edge set to increase the edge-inconnectivity

(or the inconnectivity) of a given directed graph by 1 can be done in polynomial time.

Now a (2H(n) + 1)-approximation algorithm for MP(`, `+ 1)-ECA can be deduced from

Corollary 2.4, and explicitly is as follows. Let r be an arbitrary node of G.

1. Using the algorithm as in part (i) of Theorem 2.1 compute an edge set F ′ so that

G0 + F ′ is (`+ 1)-edge-outconnected from r.

2. Compute a min-power edge set F ′′ so that G0 + F ′′ is (`+ 1)-edge-inconnected to r.

3. Output F = F ′ + F ′′.

Note that G = G0 + F is both (` + 1)-edge-outconnected from r and (` + 1)-edge-

inconnected to r. This implies that G is (`+ 1)-edge connected, so F is a feasible solution.

To bound its power, let OPT be an optimal solution for MP(`, `+ 1)-ECA. Since G0 +OPT

is (`+ 1)-edge-outconnected from r we have p(F ′) ≤ 2H(n)p(OPT ) ≤ opt. Since G0 +OPT

is (`+ 1)-edge-inconnected to r we have p(F ′′) ≤ p(OPT ) ≤ opt. Consequently,

p(F ) = p(F ′ + F ′′) ≤ p(F ′) + p(F ′′) ≤ 2H(n) · opt + opt = (2H(n) + 1) · opt.

The proof of part (ii) of Theorem 2.1 is complete.
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2.2.3 Part (iii): Algorithm for directed MPk-CS

We give a (2H(n) + ` + 1)-approximation algorithm for MP(`, ` + 1)-CA. We apply this

algorithm sequentially for ` = k0, . . . , k − 1 to produce edge sets Fk0
, . . . , Fk−1 so that G0 +

(Fk0
+ · · · + F`) is (` + 1)-connected, and p(F`) ≤ (2H(n) + ` + 1) · opt, ` = k0, . . . , k − 1.

Consequently, for F = Fk0
+ · · · + Fk−1, we get that G0 + F is k-connected, and

p(F ) ≤
k−1
∑

`=k0

p(F`) ≤
k−1
∑

`=k0

(2H(n) + `+ 1) · opt = (k − k0)(2H(n) + (k + k0 + 1)/2) · opt .

The algorithm for MP(`, ` + 1)-CA is the ”augmentation power variant” of the (k + 1)-

approximation algorithm of [21] for the Min-Cost k-Connected Subgraph problem, and is as

follows. Let S ⊆ V be a subset of `+ 1 nodes (so |S| = `+ 1).

1. Construct a graph Gr by adding to G a new node r, and edges {rs : s ∈ S} of cost 0.

Using the algorithm as in Theorem 2.1 (i) compute an augmenting edge set Fr so that

G0 + s+ Fr is (`+ 1)-outconnected from r, and delete from Fr the edges leaving r.

2. For every s ∈ S compute an optimal min-power augmenting edge set Fs so that G0+Fs

is (`+ 1)-inconnected to s.

3. Output Fr +
⋃

s∈S Fs.

The fact that the algorithm computes a feasible solution was proved in [21] (this fact

is independent from the cost/power of the edge sets computed). For every s ∈ S we have

p(Fs) ≤ opt, by a similar argument as in the proof of part (ii). We also have p(Fr) ≤
2H(n) · opt. Consequently,

p

(

Fr +
⋃

s∈S

Fs

)

≤ (2H(n) + |S|) · opt = (2H(n) + `+ 1) · opt .

The proof of part (ii) of Theorem 2.1 is complete.

3 Undirected MPk-EDP (Proof of Theorem 1.3)

In this section we give a proof of Theorem 1.3: a hardness result showing that MPk-EDP is

unlikely to admit a polylogarithmic approximation, and a polynomial time algorithm for the

partical case of augmentation version MPk-EDPA of MPk-EDP.
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3.1 Part (i): Approximation hardness of undirected MPk-EDP

To prove part (i) of Theorem 1.3 we need the following known statement:

Lemma 3.1 There exists a polynomial time algorithm that given a graph G = (V,E) and

an integer 1 ≤ ` ≤ n = |V | finds a subgraph G′ = (V ′, E ′) of G with |V ′| = ` and |E ′| ≥
|E| · `(`−1)

n(n−1)
.

Proof: While G has more than ` nodes, repeatedly delete the minimum degree node from

G. At the beginning of iteration i+ 1, G has ni = n− i nodes and mi edges, where n0 = n

and m0 = m. The average degree is 2mi/ni, thus after iteration i + 1 the number mi+1 of

edges in G is at least:

mi+1 ≥ mi −
2mi

ni

= mi ·
n− i− 2

n− i
.

The statement follows since the above recursive formula implies that after i = n−` iterations:

mi

m
≥ (n− 2) · · · (n− i+ 1)(n− i)(n− i− 1)

n(n− 1)(n− 2) · · · (n− i+ 1)
=

(n− i)(n− i− 1)

n(n− 1)
=

`(`− 1)

n(n− 1)
.

2

Given an instance J = (A + B, I) and ` of bipartite D`-S, define an instance of (undi-

rected) unit-cost MPk-EDP/MPk-ECS by adding new nodes {s, t}, a set of edges E0 = {aa′ :

a ∈ A + s} ∪ {bb′ : b ∈ B + t} of capacity |A| + |B| and cost 0 each, and setting c(e) = 1

for all e ∈ I. It is easy to see that any E ⊆ I determines |E| edge-disjoint st-paths, and

that (A+ B + {s, t}, E0 + |E|) is k-connected if, and only if, |E| ≥ k. Thus for any integer

k ∈ {1, . . . , |I|}, if we have a ρ-approximation algorithm for undirected MPk-EDP/MPk-ECS,

then we have a ρ-approximation algorithm for

min{|X| : X ⊆ A+B, |I(X)| ≥ k} .

We show that this implies a 1/(2ρ2)-approximation algorithm for the original instance of

bipartite D`-S, which is max{|I(X)| : X ⊆ A+B, |X| ≤ `}).

For every k = 1, . . . , |I|, use the ρ-approximation algorithm for MPk-EDP/MPk-ECS

to compute a subset Xk ⊆ A + B so that |I(Xk)| ≥ k, or to determine that no such Xk

exists. Set X = Xk where k is the largest integer so that |Xk| ≤ min{bρ · `c, |A| + |B|} and

|I(Xk)| ≥ k. Let X∗ be an optimal solution for D`-S. Note that |I(X)| ≥ |I(X∗)| and that
`(`−1)

|X|(|X|−1)
≥ 1/(2ρ2). By Lemma 3.1 we can find in polynomial time X ′ ⊆ X so that |X ′| = `

and |I(X ′)| ≥ |I(X)| · `(`−1)
|X|(|X|−1)

≥ |I(X∗)| · 1/(2ρ2). Thus X ′ is a 1/(2ρ2)-approximation for

the original bipartite D`-S instance.
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3.2 Part (ii): Polynomial algorithm for MPk-EDPA

We now prove part (ii) of Theorem 1.3. It would be convenient to describe the algorithm

using ”mixed” graphs that contain both directed and undirected edges. Given such mixed

graph with weights on the nodes, a minimum weight path between two given nodes can be

found in polynomial time using Dikjstra’s algorithm and elementary constructions (namely,

replacing every undirected edge by two opposite directed edges, and converting node weights

to edge weights). The algorithm for undirected MPk-EDPA is as follows (see Fig. 3).
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Figure 3: (a) The input graph G and its subgraph G0; k = 2, edges of G0 are shown by dashed

lines, the number in each node v is p0(v). (b) The graph G ′; the number above each node is

its weight w(v). (c) The graph D′; the optimal augmenting path is P = (s, s′, x, b, a, y, t′, t)

has weight 2, the power of each one of x, y is increased by 1. (d) An optimal solution E0 +F

is shown by dashed lines, F = {xv, yu}, the two edge-disjoint paths are (s, x, v, t), (s, u, y, t).

1. Construct a graph G ′ from G as follows (see Fig. 3a,b). Let p0(v) be the power of v

in G0. For every v ∈ V do the following. Let p0(v) ≤ c1 < c2 < · · · be the costs of

the edges in δE(v) of cost at least p0(v) sorted in increasing order. For every cj add a
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node vj of the weight w(vj) = cj − p0(v). Then for every uj′ , vj′′ add an edge uj′vj′′ if

w(uj′), w(vj′′) ≥ c(uv). Finally, add two nodes s, t and an edge from s to every sj and

from every tj to t.

2. Construct a mixed graph D from G ′ as follows (see Fig. 3c). Let I be an inclusion

minimal edge set in G0 that contains k − 1 pairwise edge-disjoint st-paths. Direct

those paths from t to s, and direct accordingly every edge of G ′ that corresponds to an

edge in I.

3. In D, compute a minimum weight st-path P (see Fig. 3c,d). Return the set of edges

of G that correspond to P that are not in E0.

We now explain why the algorithm is correct. It is known that the following ”augmenting

path” algorithm solves the Min-Cost k Edge-Disjoint Paths Augmentation problem

(the min-cost version of MPk-EDPA, where the edges in G0 have cost 0) in undirected graphs

(c.f., [6]).

1. Let I be an inclusion minimal edge set in G0 that contains k− 1 pairwise edge-disjoint

st-paths. Construct a mixed graph D from G by directing these paths from t to s.

2. Find a min-cost path P in D. Return P − E0.

Our algorithm for MPk-EDPA does the same but on the graph G ′. The key point is that

in G ′ the weight of a node is the increase of its power caused by taking an edge incident to

this node. For example, in Fig. 3a, if we choose the edge xy, then the corresponding edge in

G ′ and in D in Fig. 3b,c connects two nodes of the weight 2. It can be shown that for any

feasible solution F corresponds a unique path P in D so that p(G0 +F )−p(G0) = w(P ), and

vice versa. As we choose the minimum weight path in D, the returned solution is optimal.

The proof of theorem 1.3 is complete.

4 Hardness of directed min-power edge-connectivity

problems (Proof of Theorem 1.4)

In this section we give the proof of Theorem 1.4 which establishes that many directed min-

power edge-connectivity problems are unlikely to admit a polylogarithmic approximation

ratio.
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4.1 Arbitrary costs

For simplicity of exposition, we first prove the statement for arbitrary costs, not necessarily

symmetric. For that, we use the hardness result for MPk-EDP given in Theorem 1.2, to show

a similar hardness for the other three problems MPk-EOS, MPk-EIS, and MPk-ECS. Loosely

speaking, we show that each of directed MPk-EOS/MPk-EIS is at least as hard as MPk-EDP,

and that MPk-ECS is at least as hard as MPk-EOS.

We start by describing how to reduce directed MPk-EDP to directed MPk-EOS (see

Fig 4(a)). Given an instance G = (V, E), c, (s, t), k of MPk-EDP construct an instance of

G ′ = (V ′, E ′), c′, s, k of directed MPk-EOS as follows. Add to G a set U = {u1, . . . , uk} of k

new nodes, and then add an edge set E0 of cost zero: from t to every node in U , and from

every node in U to every node v ∈ V − {s, t}. That is

V ′ = V + U = V + {u1, . . . , uk},

E ′ = E + E0 = E + {tu : u ∈ U} + {uv : u ∈ U, v ∈ V ′ − {s, t}},

c′(e) = c(e) if e ∈ E and c′(e) = 0 otherwise .

clique

’

uk1u

t

ss

’

kku u1u

t

1

s

u

’

(a) (b) (c)

Figure 4: Reductions for asymmetric costs: (a) directed MPk-EDP to directed MPk-EOS;

(b) directed MPk-EDP to directed MPk-EIS; (c) directed MPk-EOS to directed MPk-ECS.

Claim 4.1 G = (V,E) is a solution to the MPk-EDP instance if, and only if, G′ = (V,E ′ =

E + E0) is a solution to the constructed MPk-EOS instance.

Proof: Let E be a solution to the MPk-EDP instance and let Π = {P1, . . . , Pk} be a set of

k pairwise edge disjoint st-paths in E. Then in G′ = (V ′, E +E0) for every v ∈ V ′ − s there

is a set Π′ = {P ′
1, . . . , P

′
k} of k pairwise edge-disjoint sv-paths as follows. If v = t then set

Π′ = Π. If v 6= s then set P ′
j = Pj + tuj + ujv for every j = 1, . . . , k.
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Now let E ′ = E + E0 be a solution to constructed MPk-EOS instance. In particular,

(V ′, E ′) contains a set Π of k-edge disjoint st-paths, none of which has t as an internal node.

Consequently, no path in Π passes through U , as t is the tail of every edge entering U . Thus

Π is a set k-edge disjoint st-paths in G, namely, G = (V,E) is a solution to the original

MPk-EDP instance. 2

Since in the construction |V ′| = |V |+k ≤ |V |+ |V |2 ≤ 2|V |2, Theorem 1.3 together with

Claim 4.1 implies the first part of Theorem 1.4 for MPk-EOS.

Asymmetric MPk-EIS: The reduction of asymmetric MPk-EIS to MPk-EDP is similar to

the one of MPk-EOS described above, except that here set E0 = {us : u ∈ U} + {vu : v ∈
V −{s, t}, u ∈ U} (see Fig 4(b)); namely, connect every u ∈ U to s, and every v ∈ V −{s, t}
to every u ∈ U . Then in the obtained MPk-EIS instance, require k internally edge-disjoint

vt-paths for every v ∈ V , namely, we seek a graph that is k-edge-inconnected to t. The other

parts of the proof for MPk-EIS are identical to those for MPk-EOS described above.

Asymmetric MPk-ECS: Reduce the directed MPk-EOS to the directed MPk-ECS as follows

(see Fig 4(c)). Let G = (V, E), c, s, k be an instance of MPk-EOS. Construct an instance of

G ′ = (V ′, E ′), c′, s, k of MPk-EOS as follows. Add to G a set U = {u1, . . . , uk} of k new nodes,

and then add an edge set E0 = {uu′ : u, u′ ∈ U}+ {vu : v ∈ V − s, u ∈ U}+ {us : u ∈ U} of

cost 0; namely, E0 is obtained by taking a complete graph on U and adding all edges from

V − s to U and all edges from U to s. It is not hard to verify that if E ⊆ E , then G = (V,E)

is k-edge-outconnected from s if, and only if, G′ = (V ′, E0 + E) is k-edge-connected.

4.2 Symmetric costs

We now show that these directed problems MPk-EDP, MPk-EOS, MPk-EIS, MPk-ECS is

hard to approximate even for symmetric costs. We start with directed symmetric MPk-EDP.

We use a refinement of Theorem 1.2 of [16]. In [16] it is shown that the hardness result

in Theorem 1.2 for directed MPk-EDP holds for simple graphs with costs in {0, n3}, where

n = |V |. If we change the cost of every edge of cost 0 to 1, it will add no more then n2/n3

to the total cost of any solution that uses at least one edge of cost n3. Thus we have the

following refinement of Theorem 1.2:

Corollary 4.2 ([16]) Directed MPk-EDP on simple graphs with costs in {1, n3} cannot be

approximated within O(2log1−ε n) for any fixed ε > 0, unless NP ⊆ DTIME(npolylog(n)).
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We show that a ρ-approximation algorithm for directed symmetric MPk-EDP implies a

ρ-approximation algorithm for directed MPk-EDP with costs in {1, n3}, for any ρ < n1/7.

Let G = (V, E), c, (s, t), k be an instance of MPk-EDP with costs in {1, n3}. Let opt be an

optimal solution value for this instance. Note that opt ≤ n4. Let N = n5. Define an

instance G ′ = (V ′, E ′), c′, (s, t), k′ = kN for directed symmetric MPk-EDP as follows. To

obtain G ′, c′ from G, c do the following. First, obtain G+ = (V ′, E+), c+ by replacing every

edge e = uv ∈ E by N internally-disjoint uv-paths of the length 2 each, where the cost of

the first edge in each paths is c(e) and the cost of the second edge is 0 (see Fig. 5). Second,

to obtain a symmetric instance G ′, c′, for every edge ab ∈ E+ add the opposite edge ba of the

same cost as ab.

vu vu Ne
c(e)

c(e)

c(e)

c(e)

0

0

0

Figure 5: Reductions for symmetric costs: transforming an edge into N paths.

For a path P+ in E+, let ψ(P+) denote the unique path in E corresponding to P+. For

any path P in E , the paths in the set ψ−1(P ) of the paths in E+ that corresponds to P

are edge-disjoint. Hence, any set Π of paths in E is mapped by ψ−1 to a set Π+ = ψ−1(Π)

of exactly N |Π| edge-disjoint paths in E+ of the same power, namely |Π+| = N |Π| and

pc(Π) = pc+(Π+). Conversely, any set Π+ of paths in E+ is mapped by ψ to a set Π = ψ(Π+)

of at least d|Π+|/Ne edge-disjoint paths in E of the same power, namely, |Π| = d|Π|/Ne and

pc(Π) = pc+(Π+). In particular:

Corollary 4.3 opt′ ≤ opt ≤ n4, where opt′ is an optimal solution value for the obtained

instance.

Note that |V ′| = n′ ≤ n7, hence to prove Theorem 1.4 for directed symmetric MPk-

EDP it is sufficient to prove that a ρ(n′)-approximation algorithm for G ′, c′, (s, t), k′ with

ρ(n′) < n′1/7 implies a ρ(n)-approximation algorithm for the original instance. Suppose that

we have a ρ(n′)-approximation algorithm that computes an edge set E ′ ⊆ E ′ that contains a

set Π′ of kN edge-disjoint paths in G ′ of power pc′(E
′) ≤ ρ ·opt′, where ρ = ρ(n′) < n′1/7 ≤ n.

Then |E ′ − E+| ≤ ρ · opt′ ≤ ρ · n4, since every edge in |E ′ − E+| adds at least one to pc′(E
′).

Consequently, there is a set Π+ ⊆ Π′ of at least kN − ρ · n4 paths in Π that are contained

in E+ = E ′ ∩ E+. Hence, since ρ = ρ(n′) > n′1/7 ≥ n, the number of paths in Π = ψ(Π+) is
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at least

|Π| ≥
⌈

kN − ρ · n4

N

⌉

≥
⌈

k − ρ · n4

N

⌉

=
⌈

k − ρ

n

⌉

≥ k .

Consequently, the set E of edges of Π is a feasible solution for G, c, (s, t), k of power at most

pc(E) ≤ pc′(E
′) ≤ ρopt′ ≤ ρopt .

Since in the construction |V ′| ≤ |V |7, Corollary 4.2 implies Theorem 1.4 for directed sym-

metric MPk-EDP.

The proof for the other problems MPk-EOS, MPk-EIS, and MPk-ECS, is similar, with

the help of reductions described for the asymmetric case. E.g., for MPk-EOS, we start with

an instance of MPk-EDP with costs in {0, n3}, and reduce it to an instance of (asymmetric)

MPk-EOS with costs in {0, n3}. Then we change the cost of every edge of cost 0 to 1, ”blow-

up” every edge e into sufficiently large number of paths of length 2, set the costs of the first

edge to c(e) and of the second to 0 in each path, add ”symmetric completion”, and continue

in the same way as for the symmetric MPk-EDP.

The proof of theorem 1.3 is complete.

5 Approximation algorithm for MPk-OS (Proof of The-

orem 1.5)

In this section we consider undirected graphs only. An edge set F on V is an `-cover (of V )

if degF (v) ≥ ` for every v ∈ V , where degF (v) is the degree of v w.r.t. F . We prove the

following general statement, which is of independent interest, as it shows that undirected

MPk-OS and Min-Power (k − 1)-Edge Cover are almost equivalent w.r.t. approximation.

Theorem 5.1

(i) If there exist a ρ-approximation algorithm for the Min-Power (k−1)-Edge-Cover problem,

then there exists a (ρ+ 4)-approximation algorithm for undirected MPk-OS.

(ii) If there exists a ρ-approximation algorithm for undirected MPk-OS/MPk-CS then there

exists a ρ-approximation algorithm for the Min-Power (k − 1)-Edge Cover problem.

Theorem 1.5 follows from Part (i) of Theorem 5.1 and the fact that Min-Power (k − 1)-

Edge-Cover admits a min{k,O(log n)}-approximation algorithm [16, 20].

In the rest of this section we prove Theorem 5.1. Given a graph G which is k-outconnected

from s, let us say that an edge e of G is critical if G − e is not k-outconnected from s. We

need the following fundamental statement:

26



Theorem 5.2 ([4]) In a k-outconnected from s undirected graph G, any cycle in which

every edge is critical contains a node v 6= s whose degree in G is exactly k.

The following corollary (e.g., see [4]) is used to get a relation between (k−1)-edge covers

and k-outconnected subgraphs.

Corollary 5.3 If degJ(v) ≥ k− 1 for every node v of an undirected graph J , and if F is an

inclusion minimal edge set such that J ∪ F is k-outconnected from s, then F is a forest.

Proof: If not, then F contains a cycle C of critical edges, but every node of this cycle is

incident to 2 edges of C and to at least k − 1 edges of J , contradicting Theorem 5.2. 2

Proof of Theorem 5.1: We start by proving Part (i). By the assumption, we can find

a subgraph J with degJ(v) ≥ k − 1 of power at most p(J) ≤ ρopt. We reset the costs of

edges in J to zero, and apply a 2-approximation algorithm for the Min-Cost k-Outconnected

Subgraph problem (c.f., [13]) to compute an (inclusion) minimal edge set F so that J + F

is k-outconnected from s. By Corollary 5.3, F is a forest. Thus p(F ) ≤ 2c(F ) ≤ 4opt, by

Proposition 1.1. Combining, we get Part (i).

We now prove Part (ii). The reduction for MPk-CS is a s follows. Let G = (V, E), c be

an instance of Min-Power (k − 1)-Edge Cover with |V | ≥ k. Construct an instance G ′, c′ for

MPk-CS as follows. Add a copy V ′ of V and the edges {vv′ : v ∈ V } of cost 0 (v′ ∈ V ′ is

the copy of v ∈ V ), and then add a clique of cost 0 on V ′. Let E ′ be the edges of G ′ − E .

We claim that E ⊆ E is a (k − 1)-Edge Cover in G if, and only if, G′ = (V + V ′, E + E ′) is

k-connected.

Suppose that G′ is k-connected. Then degE+E ′(v) ≥ k and degE′(v) = 1 for all v ∈ V .

Hence degE(v) ≥ k − 1 for all v ∈ V , and thus E is a (k − 1)-edge-cover in G.

Suppose that E ⊆ E is a (k − 1)-edge cover in G. We will show that G′ has k internally

disjoint vu-paths for any u, v ∈ V + V ′. It is clear that G′ − E, and thus also G, has k

internally disjoint vu-paths for any u, v ∈ V ′. Let v ∈ V . Consider two cases: u ∈ V ′ and

u ∈ V . Assume that u ∈ V ′. Every neighbor vi of v in (V,E) defines the vu path (v, vi, v
′
i, u)

(possibly v′i = u), which gives degE(v) ≥ k − 1 internally disjoint vu-paths. An additional

path is (v, v′, u). Now assume that u ∈ V . Every common neighbor a of u and v defines the

vu-path (v, a, u), and suppose that there are q such common neighbors. Each of v and u has

at least k − 1− t more neighbors in G, say {v1, . . . , vk−1−q} and u1, . . . , uk−1−t, respectively.

This gives k − 1 − q internally disjoint vu-paths (v, vi, v
′
i, u

′
i, u), i = 1, . . . , k − 1 − q. An

additional path is (v, v′, u′, u). It is easy to see that these k vu-paths are internally disjoint.

The proof for MPk-CS is complete.
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The reduction for MPk-OS is the same, except that in the construction of G ′ we also add

a node s and edges {sv′ : v′ ∈ V ′} of cost 0. 2

The proof of theorem 1.5 is complete.

6 Conclusions

In this paper we considered four fundamental min-power edge connectivity problems: MPk-

EDP, MPk-EOS/MPk-EIS, and MPk-ECS. For both directed and undirected graphs, we have

shown that none of these problems is unlikely to admit a polylogarithmic approximation

ratio, and for directed graphs this is so even if the costs are symmetric. In the undirected

case, we showed that a polylogarithmic approximation ratio for one of these problems implies

a polylogarithmic approximation for the `-Densest Subgraph problem. For directed graphs,

we showed that a polylogarithmic approximation is unlikely unless NP-hard problems can

be solved in quasi-polynomial time. In contrast, we showed that for undirected graphs the

augmentation version MPk-EDPA of MPk-EDP, where the goal is only to increase the st-

connectivity by 1, can be reduced to the shortest path problem. The same result holds for

directed graphs, see [25].

We now list some open problems, that follow from Table 1. Most of them concern node-

connectivity problems. One of the main open problem seems to determine whether the

undirected MPk-DP is in P or is NP-hard (as was mentioned, the directed MPk-DP is in

P, c.f., [16]). In fact, we do not even know whether the augmentation version MPk-DPA

of undirected MPk-DP is in P, but we conjecture this is so. We note that a polynomial

algorithm for undirected MPk-DPA can be used to improve the currently best known ratios

for the undirected Min-Power k-Connected Subgraph problem: from 9 (follows from [21]) to

81
3

for k = 4, and from 11 (follows from [7]) to 10 1
3

for k = 5. This is achieved as follows.

In [7] it is shown that any graph G that is k-outconnected from a node r of degree k is

(dk/2e+1)-connected; furthermore, for k = 4, 5, G contains two nodes s, t so that increasing

the connectivity between them by one results in a k-connected graph. Hence for k = 4, 5, we

can get approximation ratio α+ β, where α is the best known ratio for undirected MPk-OS,

and β is the best known ratio for undirected MPk-DPA. As MPk-OS can be approximated

within 2(k−1/3) [20], then if MPk-DP augmentation is in P, we can get approximation ratio

2(k − 1/3) + 1 for MPk-CS with k = 4, 5, which is 8 1
3

for k = 4 and 101
3

for k = 5.

Another interesting question is the approximability of the directed MPk-IS. Currently, we

are not aware of any hardness result, while the best known approximation ratio is k. Except
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directed MPk-DP, there is still a large gap between upper and lower bounds of approximation

for all the other min-power node connectivity problems, for both directed and undirected

graphs.
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