Small /-edge-covers in k-connected graphs

Zeev Nutov

The Open University of Israel
nutov@openu.ac.il

Abstract. Let G = (V, E) be a k-edge-connected graph with edge-costs
{c(e) : e € E} and minimum degree d. We show by a simple and short
proof, that for any integer ¢ with % <t<d (1 — %), G contains an (-edge
cover I such that: ¢(I) < £c(E) if G is bipartite, or if £|V| is even, or if
|E| > % + &; otherwise, c(I) < (% + ﬁ) c(E). The particular case
d =k = ¢+ 1 and unit costs already includes a result of Cheriyan and
Thurimella [1], that G contains a (k— 1)-edge-cover of size |E|— ||V |/2].
Using our result, we slightly improve the approximation ratios for the
k-Connected Subgraph problem (the node-connectivity version) with uni-
form and B-metric costs. We then consider the dual problem of finding a
spanning subgraph of maximum connectivity k* with a prescribed num-
ber of edges. We give an algorithm that computes a (k* — 1)-connected
subgraph, which is tight, since the problem is NP-hard.

1 Introduction

Let G = (V, E) be an undirected graph, possibly with parallel edges. Let n = |V].
For S C V let §(S) denote the set of edges in F with exactly one endnode in S.
An edge set I C E is a d-edge-cover (of V') if the graph (V,I) has minimum
degree > d. For z € R¥ and F C E let o(F) = Y, pa(e). Let P (G,d)
denote the fractional d-edge-cover polytope determined by the linear constraints

z(0(v)) > d vevV (1)
1>2,>0 ecE (2)

Clearly, for any 1 < ¢ < d — 1, if 2 € P (G,d) then % -z € P (G,0). Let
P.oy (G, £) denote the integral £-edge-cover polytope, which is the convex hull of
the characteristic vectors of of the f-edge-covers in G. It is known that if G is
bipartite then PL (G, €) = Puo,(G,¥) (see [5], (31.7) on page 340). This implies
the following.

Proposition 1. Let G = (V, E) be a bipartite graph, let 1 < { < d—1, and let
x € Pooy(G,d). Then g - € Popy (G, 0).

Corollary 1. Let G = (V, E) be a bipartite graph with edge costs {c(e) : e € E}
and minimum degree > d > 2. Then for any 1 <€ < d—1, G contains an £-edge

cover I C E of cost c(I) < Le(E).



Cheriyan an Thurimella [1] showed that if G is bipartite and has minimum
degree > d, then G contains a (d—1)-edge-cover I such that |I| < |E|—n/2. Note
that this bound follows from Corollary 1 by assuming unit costs, substituting
¢ = d—1, and observing that |E| > %”. Unfortunately, Corollary 1 does not
extend to the general (non-bipartite) case, e.g., if G is a cycle of length 3, d = 2,
and ¢ = 1. On the positive side, it is proved in [2] that if G has minimum degree
> d, then G contains a (d — 1)-edge-cover I of cost ¢(I) < %C(E). Let ¢(59)
denote the set of edges in £ with at least one endnode in S. It is known that
in the general case, P, (G,d) is determined by adding to the constraints of
Pf (G, d) the following inequalities (see [5], page 581, Theorem 34.13):

#(((9)) — o) > W21

A graph G is k-edge-connected if |6(S)| > k for all ) # S C V. Cheriyan
and Thurimella [1] showed that if G is k-edge-connected, then G contains a
(k — 1)-edge-cover I such that |I| < |E| — [n/2]. We present an analogue of
Proposition 1 and Corollary 1 for general graphs, with simple and short proof,
that also implies this bound of [1]. Let P£ (G, k) denote the fractional k-edge-
connectivity polytope, determined by

z(6(S)) > k D#ScV
1>z.,>0 ec F

S CV,F Co(S).diS| —|F|>1odd (3)

Note that PZL, (G, k) C Pf, (G, k), and that if z € PL (G, d) then z(E) > 4.
The main result of this paper is the following analogue of Proposition 1.

Theorem 1. Let G = (V, E) be a graph, let 1 < ¢ < d—1 and d > k, and
let z € P (G,d) N PL, (G, k). Then -2 € P.oy(G,€), where p is defined as
follows.

(i) Suppose that k > max{%, ﬁ} (namely, that % <¢<d (1 — %), which in-
cludes the case k = d). Then p = {/d if {|V| is even or if z(E) > 4 (|V|+ $);

: LV]+1 Y4 1
otherwise, u = 2|$(‘E) <5+ v

(ii) Suppose that k < max{%, ﬁ}.

(a) Suppose that k < d/C and that d > 20+ 1. Then p = gﬁii if €|V is even

orif x(E) > 4 (V| + $); otherwise, p = max {€2|1V(|;-)1’ %—ii .
(b) Suppose that k < ﬁ and that d < 2¢. Then p = 2‘;&;’“ if £|V] is even

or i 2(5) 2 4 (V1-+ 4); otherwise, 5 = max { 4551, 26128}

Clearly, the cases of the theorem are exclusive, and it is not hard to verify
that they cover all relevant values of d, ¢, k. To see this, note that if k¥ < d/¢ and
d < 20, then k < ﬁ; hence this case is included in part (iib) of the theorem.
Similarly, if & < ﬁ and d > 2¢ + 1, then k < % hence this case is included in
part (iia) of the theorem.



Note that for the case k = 0 and ¢ = d — 1 considered in [2], part (iib) of
Theorem 1 gives u = %, which is slightly worse than the bound gg—:f of [2].
However, the bound of [2] uses a stronger assumption that x € P, (G, d), while
we assume only that x € PS (G, d).

Theorem 1 immediately implies the following.

Corollary 2. Let G = (V, E) be a k-edge-connected graph with edge costs {c(e) :
e€E}andlet1 <{<d—1andd>k. Then G contains an £-edge cover I C E
such that c(I) < p - c(E), where w is as in Theorem 1.

Note that the bound |I| < |E|—|n/2] of Cheriyan and Thurimella [1] follows
from Corollary 2 by assuming unit costs, substituting d = k = ¢ + 1, and obser-
ving that |E| > £, Indeed, by Corollary 2, |E| — |I| > |E|/k > n/2 if (k— 1)n
is even or if |[E| > % + 1. Otherwise, k is even, n is odd, |E| = £, and then,
by Corollary 2, |E| — |I| > 2=L|E| = 251 = |n/2].

We now discuss some applications of Corollaries 1 and 2 for both directed
and undirected graphs, for the following classic NP-hard problem. A (simple)
directed or undirected graph is k-connected if it contains k internally disjoint
paths from every node to the other.

k-Connected Subgraph
Instance: A graph G’ = (V, E') with edge costs and an integer k.
Objective: Find a minimum cost k-connected spanning subgraph G of G'.

The case of unit costs is the Minimum Size k-Connected Subgraph problem.
Cheriyan and Thurimella [1] suggested and analyzed the following algorithm for
the Minimum Size k-Connected Subgraph problem, for both directed and undi-
rected graphs; in the case of a directed graph G = (V, E), we say that [ C F is
an f-edge-cover if (V, I) has minimum outdegree and minimum indegree > £.

Algorithm 1

1. Find a minimum size (k — 1)-edge cover I C E’.

2. Find an inclusion minimal edge set F' C E’'\ I such that (V,I U F) is
k-connected.

3. Return T U F.

They showed that this algorithm has approximation ratios

o 1+ m <1+ + for directed graphs;

o1+ ngpt <1+ % for undirected graphs.

Here opt denotes the optimum solution value of a problem instance at hand.
Step 1 in the algorithm can be implemented in polynomial time, c.f. [5]. Recently,
the performance of this algorithm was also analyzed in [2] for so called S-metric
costs, when the input graph is complete and for some 1/2 < 8 < 1 the costs
satisfy the B-triangle inequality c(uv) < Ble(ua) + c(av)] for all u,a,v € V.
When 8 = 1/2, the costs are uniform, and we have the min-size version of the



problem. If we allow the case 8 = 1, then the costs satisfy the ordinary triangle
inequality and we have the metric version of the problem. In [2] it is shown
that for undirected graphs with S-metric costs the above algorithm has ratio

1-— qu + k(fifﬁ) We prove the following.

Theorem 2. (i) For the Minimum Size k-Connected Subgraph problem, Algo-
rithm 1 has approzimation ratios
o 1— % +2njopt <1+ int for directed graphs;
o 1— % +n/opt<1+ 2:pt for undirected graphs.
(ii) In the case of undirected graphs and -metric costs, Algorithm 1 has approxi-
mation ratio 1 — % + ﬁ + 16(12785)
(iii) There exists a polynomial time algorithm that given an instance of the Mini-
mum Size k-Connected Subgraph problem returns a (k—1)-connected spanning

subgraph G of G' with at most opt edges.

Note that in part (i) of Theorem 2 we do not improve the worse performance
guarantee 1+% of [1]. However, the ratio 1+% applies only if opt = kn in the case
of directed graphs and opt = kn/2 in the case of undirected graphs. Otherwise,
if opt is larger than these minimum possible values, then both our analysis and
that of [1] give better ratios. But the ratios provided by our analysis are smaller,
since 2n/opt — % < n/opt in the case of directed graphs, and n/opt — % < n/2opt
in the case of undirected graphs. For example, in the case of directed graphs, if
opt = 3kn then our ratio is 1+ 5, while that of [1] is 1+ 2.

Part (iii) of Theorem 2 can be used to obtain a tight approximation algorithm
to the Maximum Connectivity m-Edge Subgraph problem: given a graph G’ and
an integer m, find a spanning subgraph G of G’ with at most m edges and
maximum connectivity k*. We can apply the algorithm in part (iii) to find the
maximum integer k for which the algorithm returns a subgraph with at most
m edges. Then k > k* — 1, hence we obtain a polynomial time algorithm that
computes a (k* — 1)-connected spanning subgraph with at most m edges. Note
that this is tight, since the problem is NP-hard.

2 Proof of Theorem 1

Let € P{ (G,d) N PL, (G, k). We need to show that then -2 € Py, (G, ¢),
namely, that
pux(d(v)) > £ veV (4)
S| |F|—-1
u(a(c(s) () = DLV g vircas).as) - 1] 2 1 0d(s)
1> pxe >0 ecE (6)

Recall that for 1 < ¢ < d—1 and d > k, the parameter y is defined as follows.
(i) Suppose that k& > max{%, ﬁ}. Then p = ¢/d if ¢n is even or if z(E) >

d 1). ; _ An+1 ¢ 1
2 (n+ §); otherwise, pu = 2:(%) < L4+ 4




(ii) Suppose that k < max {%7 ﬁ}.

(a) Suppose that k < d/¢ and that d > 2¢ + 1. Then p = gﬁ—ii if /n is even

or if z(E) > % (n + %); otherwise, y = max { 282&1) ) %%,16}-

b) Suppose that k < <% and that d < 20. Then p = 251=F if ¢n is even
d—t H 2d—Fk

or if 2(E) > % (n + %); otherwise, ;1 = max {%, Qggijck }

It is not hard to verify that % < p <1forall 4 k,d. The following statement
is also easily verified.

Lemma 1. Let x € P/

cov

(G,d). Then for any g <wu<1, (4) and (6) hold.

We therefore focus on the inequalities in (5). Let  #£ S C V and let F' C §(S5)
such that ¢|S| — |F| > 1 is odd. In the following three lemmas 2, 3, and 4, we
prove that (5) holds for certain values of u, and then deduce Theorem 1 from
these lemmas.

Lemma 2. Let v € Pl (G,d). If S =V, then (5) holds for u = £/d if {n is

even or if x(E) > 4 (n+ $); otherwise, (5) holds for i = §Z(+El) <Lf4 L.

Proof. It S =V then ((S) = E and F = (). Then (5) reduces to a void condition
if £|V| is even, and to the condition pz(E) > #2E otherwise, which holds by the

definition of p. The inequality 2@:(4}-51) < £+ L is since z(E) > 4. O

Henceforth assume that S is a proper subset of V. Note that then

d|S| <) x(6(v)) = 22(E(S)) + 2(8(5)) = 22(C(5)) —2(5(5)) -

veS

Thus z(¢(S)) > @ + M. Also note that x(F) < |F|. Substituting in (5)
and rearranging terms, we obtain that it is sufficient to prove the following

NECRELCIRNP R L

2 2 2 2
Finally, multiplying both sides by 2 and rearranging terms we obtain
|S[(nd =€) + (|F| — pa(F)) + p(2(6(5)) —=(F)) = 1. (7)

Lemma 3. For u = £/d, (7) holds if k > % and d > 20, or if k > ﬁ and

d < 2¢. Consequently, (7) holds for p=2¢/d if k > max{%, ﬁ}.

Proof. Substituting in (7) p = ¢/d, multiplying both sides by d, and observing
that z(F) < |F|, we obtain that it is sufficient to prove that

[F|(d = 6) + £(x(6(5)) — 2(F)) = d . (8)



If |[F| > 4% then (8) holds since x(6(S)) — z(F) > 0. Henceforth assume
that |F| < ﬁ, and let us consider the cases of the lemma. If d > 2/ and k& > %
then

|F|(d—£€) +£(x(6(S)) —x(F)) > |F|(d—2¢) + kL > d

In the case d < 2¢ and k > -4, since we assume that |F| < ﬁ, we have

a—e°
|F|(d—2€)+k€>L(d—%)%—k‘ﬁ—d—g—d—k%—d—f—ﬁ k—i >d
—d-/ N d—1¢ N d—¢) ="
The proof of the lemma is complete. ad

Part (i) of Theorem 1 follows from Lemmas 1, 2, and 3, after observing that
z(E) < 4 (n+ %) implies 26;1&1) > £

Now we will use Lemmas 1, 2, and the Lemma 4 to follow, to prove part (ii)
of Theorem 1. Before that we observe that in the polyhedral description of
P.o»(G,d), we may skip the inequalities in (3) with |S| = 1, since they are
implied by the inequalities in (1); the same applies for inequalities in (5). Say,
S = {v}. Then (3) reduces to z(6(v)) > z(F) + 4 — \L;I + 1 for F C 4(v),
d —|F| > 1 odd. In particular, |F| < d — 1. However, z(F) < |F|, hence by (1)
we have

d |F| 1 |F|+d+1
e el I it B e
x(F)+2 2-1-27 5

Lemma 4. If |S| > 2, then (7) holds in each one of the following cases:

<d<z(0(v)) .

(a) p=34 andk>2(20+1—d).

(b) p=2EE and k <2(20+1—d).

Proof. Since |S| > 2 and z(F') < |F|, then to prove that (7) holds, it is sufficient
to prove that

2(pud = £) + [FI(1 = p) + p(2(5(5)) —2(F)) = 1. (9)

If |F| > k then the L.h.s. of (9) is at least 2(ud—£)+k(1—p) = p(2d—k)+k—2¢.
Hence if |F| > k, then (9) holds if y¢ > 26512k,
Suppose that |F| < k. Then the Lh.s. of (9) is at least

2pud — €) + |FI(1 = ) + ulk — |F|) = u(2d + k — 2/F|) + |F| - 2¢ .

Hence (9) holds if pu > ;fikli__;ﬂl. Observe that for any a,b, f with f > 0 and

b—2f > 0, we have % > ¢ if 2a > b, and ba:QJ; < ¢ if 2a < b. Consequently,

we obtain that if |F| < k, then (9) holds if one of the following holds:

(a) p> 254 and 2(20+1) <2d+k.

(b) p > 2ELE and 2(20+ 1) > 2d + k.

The lemma now follows by observing that %—ii > 2€§£;k ifk>2(20+1-d). O



Now we prove part (ii) of Theorem 1. In what follows, note that for d = 2¢
and k = 2, the values of p in parts (a) and (b) of Lemma 4 coincide, and that
z(E) > % (n+ 1) implies £ > 242&1).

Suppose that k < d/f and that d > 2¢+1. Then the condition k > 2(2(+1—d)
in part (a) of Lemma 4 reduces to the void condition k& > 0. The result in this

case follows by combining part (a) of Lemma 4 with Lemmas 1 and 2, after

observing that if k < ¢ then 25 > 2%:;1/@ =L
Now suppose that k < ﬁ f + 1 and that d < 2¢. If the condition

kE < 2(20+1—d) in part (b) of Lemma 4 holds, then the result follows by
combining part (a) of Lemma 4 with Lemmas 1 and 2, after observing that if
k < 7% then % > d Else, £ > 2(2¢0+ 1 —d). Denoting p=d—{¢ > 1, we
obtaln the following inequalities:

k<£+1 p<l k>20l+1-p)
p

This implies é + 1> 2(¢+1—p), which gives £ < 5=2—~. Thus we obtain that
k< f;—i-l < 2p oy +1 = 2—4—— < 3. Since k > 2(€+1—p) we obtain

E—pgg—l.Slnceé pZ0,Wemusthavek—Qandp—f,namely,k::2

and d = 2¢. Then y = 222%11@ = % = % This case is included in case (a) of
Lemma 4, and then the result follows by combining part (a) of Lemma 4 with
Lemmas 1 and 2. This finishes the proof of part (ii) of Theorem 1.

The proof of Theorem 1 is complete.

3 Proof of Theorem 2

Let I and F denote the set of edges computed by Algorithm 1 at steps 1 and
2, respectively. We prove part (i), starting with the case of directed graphs.
For a directed graph G, the corresponding bipartite graph G’ = (V UV’ E’) is
obtained by adding a copy V' of V and replacing every directed edge uv € E
by the undirected edge uv’, where v’ € V' is the copy of v. It is not hard to
verify that I is an f-edge-cover in G if, and only if, the set I’ of edges that
corresponds to I is an (-edge-cover in G'. Thus |I| < £-2opt, by Corollary 1.
On the other hand, by the directed Critical Cycle Theorem of Mader [4] (see [1]
for details), the set of edges of G’ that corresponds to F’ forms a forest in G/,
hence |F| < 2n — 1. Consequently, ‘I‘;LFl <1-—4+2

Let us consider undirected graphs. If (k—1)n is even or if opt > k” + 550 k 0=
%" + 1, then |[I] < %opt7 by Corollary 2. By the undirected Crltlcal Cycle
Theorem of Mader [3] (see [ ] for details) F is a forest, hence |F| < n — 1.
|I|+|F‘ <1- If (k — 1)n is odd and opt < £ 4 1, then
an optimal solutlon is k- regular and hence |I| < w < (1 — 1) (opt + 1).

Combining we get % <1-1+ 1;;{’“ +ool < 1_ PR
Now let us consider part (ii), the case of S-metric costs. In [2] it is proved

that ¢(F) < k(fifﬁ)opt. If (k= 1)n is even, or if there exists an optimal solution

opt .

Consequently, opt




with at least %” + ﬁ < %” + 1 edges, then Corollary 2 gives the bound

c(I) < (1 — %) opt. Else, Corollary 2 gives the bound ¢(I) < (1 — ¢ + 7 ) opt,
and the result follows.

We prove part (iii). We apply Algorithm 1 with & replaced by k — 1, namely,
I C FE is a minimum size (k — 2)-edge cover and FF C E \ I is an inclusion
minimal edge set such that (V,T U F) is (kK — 1)-connected. Now we use the
bounds in Corollary 2. In the case of directed graphs we have |I| < %opt,
|F| <2n—-1< %opt, and the result follows. In the case of undirected graphs
we have |I] < (52 4+ L )opt and [F| < n—1< (2 — 2)opt, and the result
follows.

The proof of Theorem 2 is complete.
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