
Approximating minimum-cost edge-covers of crossing biset-families∗

Zeev Nutov

The Open University of Israel

nutov@openu.ac.il

Abstract

An ordered pair Ŝ = (S, S+) of subsets of a groundset V is called a biset if S ⊆ S+;

(V \ S+, V \ S) is the co-biset of Ŝ. Two bisets X̂, Ŷ intersect if X ∩ Y 6= ∅ and cross if both

X ∩ Y 6= ∅ and X+ ∪ Y + 6= V . The intersection and the union of two bisets X̂, Ŷ are defined

by X̂ ∩ Ŷ = (X ∩ Y,X+ ∩ Y +) and X̂ ∪ Ŷ = (X ∪ Y,X+ ∪ Y +). A biset-family F is crossing

(intersecting) if X̂ ∩ Ŷ , X̂ ∪ Ŷ ∈ F for any X̂, Ŷ ∈ F that cross (intersect). A directed edge

covers a biset Ŝ if it goes from S to V \ S+. We consider the problem of covering a crossing

biset-family F by a minimum-cost set of directed edges. While for intersecting F , a standard

primal-dual algorithm computes an optimal solution, the approximability of the case of crossing

F is not yet understood, as it includes several NP-hard problems, for which a poly-logarithmic

approximation was discovered only recently or is not known. Let us say that a biset-family F
is k-regular if X̂ ∩ Ŷ , X̂ ∪ Ŷ ∈ F for any X̂, Ŷ ∈ F with |V \ (X ∪ Y)| ≥ k + 1 that intersect.

In this paper we obtain an O(log |V |)-approximation algorithm for arbitrary crossing F ; if in

addition both F and the family of co-bisets of F are k-regular, our ratios are: O
(

log |V |
|V |−k

)

if

|S+ \ S| = k for all Ŝ ∈ F , and O
(

|V |
|V |−k

log |V |
|V |−k

)

if |S+ \ S| ≤ k for all Ŝ ∈ F . Using these

generic algorithms, we derive for some network design problems the following approximation

ratios: O
(

log k · log n

n−k

)

for k-Connected Subgraph, and O(log k) ·min{ n

n−k
log n

n−k
, log k} for

Subset k-Connected Subgraph when all edges with positive cost have their endnodes in the subset.

1 Introduction

1.1 Problem definition and main results

Following [6], an ordered pair Ŝ = (S, S+) of subsets of a groundset V is called a biset if S ⊆ S+;

S is the inner part and S+ is the outer part of Ŝ, and Γ(Ŝ) = S+ \ S is the boundary of Ŝ. The

co-biset of Ŝ is the biset (V \ S+, V \ S). Any set S can be considered as a biset Ŝ = (S, S) with

Γ(Ŝ) = ∅.

∗Part of this paper appeared in the preliminary version [16].

1

Definition 1.1 Two bisets X̂, Ŷ on V intersect if X ∩ Y 6= ∅ and are disjoint otherwise; X̂, Ŷ

cross if X ∩ Y 6= ∅ and X+ ∪ Y + 6= V . The intersection and the union of bisets X̂, Ŷ are defined

by X̂ ∩ Ŷ = (X ∩ Y,X+ ∩ Y +) and X̂ ∪ Ŷ = (X ∪ Y,X+ ∪ Y +). We say that a biset-family F is:

• crossing (intersecting) if X̂ ∩ Ŷ , X̂ ∪ Ŷ ∈ F for any X̂, Ŷ ∈ F that cross (intersect).

• k-regular if X̂ ∩ Ŷ , X̂ ∪ Ŷ ∈ F for any X̂, Ŷ ∈ F with |V \ (X ∪ Y)| ≥ k + 1 that intersect.

A biset Ŝ is proper if S, V \S+ are both nonempty. All biset-families in this paper are assumed

to contain only proper bisets. A directed edge e leaves/covers a (proper) biset Ŝ if it goes from S

to V \ S+. An edge-set/graph J is an edge-cover of F if every biset in F is covered by some edge

in J . We consider the following generic algorithmic problem.

Biset-Family Edge-Cover

Instance: A directed graph G = (V,E) with edge-costs {ce : e ∈ E} and a biset-family F on V .

Objective: Find a minimum-cost edge-cover J ⊆ E of F .

Given two bisets X̂, Ŷ we write X̂ ⊆ Ŷ and say that Ŷ contains X̂ if X ⊆ Y and X+ ⊆ Y +;

similarly, X̂ ⊂ Ŷ and Ŷ properly contains X̂ if X ⊂ Y and X+ ⊆ Y +, or if X = Y and X+ ⊂ Y +.

Definition 1.2 A biset Ĉ ∈ F is a core of a biset-family F , or an F-core for short, if Ĉ contains

no biset in F \{Ĉ}, namely, if Ĉ is an inclusion-minimal member of F . Let C(F) denote the family

of F-cores and let ν(F) = |C(F)| denote the number of F-cores.

In the Biset-Family Edge-Cover problem, F may not be given explicitly, and a polynomial in

n = |V | implementation of our algorithms requires that certain queries related to F can be answered

in polynomial time. Given an edge set J on V , the residual family FJ of F consists of all members

of F that are uncovered by the edges of J . It is known that if F is crossing or intersecting, so is FJ ,

for any J ; this follows from the fact that if an edge e covers X̂ ∩ Ŷ or X̂ ∪ Ŷ then e covers X̂ or Ŷ

(see Fact 3.3(i) in Section 3). The co-family of F is the biset-family {(V \S+, V \S) : (S, S+) ∈ F}
of co-bisets of the bisets in F . It is easy to see that F is crossing if, and only if, its co-family is

crossing, and that J covers F if, and only if, the reverse edge-set of J covers the co-family of F .

We assume that for any edge set J on V and any u, v ∈ V we are able to compute in polynomial

time the cores of the biset-family F(u, v) = {Ŝ ∈ FJ : u ∈ S, v ∈ V \ S+} and also the cores of

its co-family, or to determine that F(u, v) is empty. In specific graph problems we consider, this

can be implemented in polynomial time using the Ford-Fulkerson Max-Flow Min-Cut Algorithm;

we omit the somewhat standard implementation details.

For intersecting F , Biset-Family Edge-Cover can be solved in polynomial time by a standard

primal-dual algorithm; in fact, even a more general problem of covering an intersecting supermo-

dular biset-function by a digraph can also be solved in polynomial time [6]. However, the case of

crossing F includes the min-cost k-Connectivity Augmentation problem which is NP-hard, and its

2

approximability is not yet understood. Given a biset-family F let γ(F) = max
Ŝ∈F

|Γ(Ŝ)|. It is known
that any crossing set-family F (namely, a crossing biset-family F with γ(F) = 0) is decomposable

into two intersecting families as follows. Let s ∈ V be arbitrary, and let Fout = {Ŝ ∈ F : s ∈ V \S+}
and F in = {Ŝ ∈ F : s ∈ S}. The families Fout and the co-family of F in are both intersecting, and

an edge-set J covers F if, and only if, J covers Fout and the reverse edge-set of J covers the co-family

of F in. This implies ratio 2 for Biset-Family Edge-Cover for crossing F with γ(F) = 0. In a similar

way we can decompose any crossing F into 2(γ(F) + 1) intersecting biset-families. This implies

ratio 2(γ(F) + 1) for Biset-Family Edge-Cover with crossing F . Using ideas from [18, 11, 5, 16], we

give approximation algorithms with logarithmic or constant ratios.

For an edge-set or a graph J and a biset Ŝ on V let δJ(Ŝ) denote the set of edges in J covering

Ŝ. Let τ(S) denote the optimal value of an LP-relaxation for covering a biset-family S, namely,

(P) τ(S) = min
∑

e∈E

cexe

s.t.
∑

e∈δE(Ŝ)

xe ≥ 1 ∀Ŝ ∈ S

xe ≥ 0 ∀e ∈ E

Let H(n) =
∑n

i=1(1/i) denote the nth harmonic number. Our main result is the following.

Theorem 1.1 Biset-Family Edge-Cover with crossing F admits a polynomial time algorithm that

computes a solution of cost at most ρ · τ(F) where:

(i) ρ = O(log ν(F)) = O(log n) for arbitrary crossing F .

(ii) ρ = O
(

logmin
{

n
n−k , n− k

})

if both F and the co-family of F are k-regular and if |Γ(Ŝ)| = k

for all Ŝ ∈ F .

(iii) ρ = O
(

n
n−k log

n
n−k

)

if both F and the co-family of F are k-regular and if γ(F) ≤ k.

We note that Theorem 1.1 easily extends to the undirected case, with a loss of a factor of 2 in

the approximation ratio.

1.2 Related work and applications

A directed/undirected graph is k-connected if there are k internally-disjoint paths from any of its

nodes to any other node. A fundamental problem in network design is the following:

k-Connected Subgraph

Instance: A graph G = (V,E) with edge-costs {ce : e ∈ E} and an integer k.

Objective: Find a minimum cost k-connected spanning subgraph of G.

3

See [18, 4, 11, 5, 16, 12] for a history of the problem. Let ℓ-Connectivity Augmentation be

the restriction of k-Connected Subgraph to instances in which G contains an ℓ-connected spanning

subgraph G0 of cost zero, and we seek to increase the connectivity of G0 from ℓ = k−1 to ℓ+1 = k.

Parts of the following statement were implicitly proved in [7] and [18], see also [4, 11, 12].

Proposition 1.2 ℓ-Connectivity Augmentation is a particular case of Biset-Family Edge-Cover with

crossing F , such that |Γ(Ŝ)| = ℓ for all Ŝ ∈ F , and such that both F and the co-family of F are

ℓ-regular. Furthermore, if the latter problem admits a polynomial time algorithm that computes a

solution of cost ≤ α(n, ℓ) · τ(F), then k-Connected Subgraph admits a polynomial time algorithm

that computes a solution of cost ≤ optk · ∑k
ℓ=1

α(n,ℓ)
k−ℓ+1 , where optk = min{∑e∈E cexe : x(δE(Ŝ)) ≥

k−|Γ(Ŝ)| ∀ proper biset Ŝ on V } is the optimal value of a natural LP-relaxation for the problem. In

particular, if α(n, ℓ) is increasing in ℓ then the cost of the solution computed ≤ optk ·α(n, k) ·H(k).

Fackaroenphol and Laekhamukit [5] gave an O(logn)-approximation algorithm for the ℓ-Connec-

tivity Augmentation problem. Part (i) of Theorem 1.1 extends this to an arbitrary crossing biset-

family F , by a similar proof. Part (ii) improves the result of [5] using the k-regularity property.

Corollary 1.3 ([16]) k-Connectivity Augmentation admits a polynomial time algorithm that com-

putes a solution of cost O
(

log n
n−k

)

·optk; the approximation ratio is O(1), unless k = n−o(n). The

problem also admits a polynomial time algorithm that computes a solution of cost O(log(n−k))·optk.
k-Connected Subgraph admits an O

(

log k · log n
n−k

)

-approximation algorithm; the ratio is O(log k),

unless k = n−o(n). The problem also admits a polynomial time algorithm that computes a solution

of cost O
(

∑k
ℓ=1

log(n−ℓ)
k−ℓ+1

)

· optk.

Now let us consider the following known generalization of the k-Connected Subgraph problem.

Let us say that a subset T of nodes of a directed/undirected graph is k-connected if in the graph

there are k internally-disjoint paths from every node in T to any other node in T .

Subset k-Connected Subgraph

Instance: A graph G = (V,E) with edge-costs {ce : e ∈ E}, T ⊆ V , and an integer k.

Objective: Find a minimum cost subgraph of G in which T is k-connected.

The k-Connected Subgraph problem is a particular case of Subset k-Connected Subgraph when

T = V . Let Subset ℓ-Connectivity Augmentation be the restriction of Subset k-Connected Subgraph

to instances in which G contains a subgraph G0 of cost zero such that T is ℓ-connected in G0,

and we seek to increase the connectivity of T from ℓ = k − 1 to ℓ + 1 = k. When the costs are

arbitrary, Subset k-Connected Subgraph is unlikely to admit a polylogarithmic approximation [10]

(see also [14] for a simpler proof). The currently best known ratio for this problem for |T | > k is

b(k + ρ) + |T |2

(|T |−k)2
O

(

log |T |
|T |−k

)

, where b = 1 for undirected graphs and b = 2 for directed graphs,

and ρ is the ratio for the rooted version of the problem [13, 17]; currently, ρ = min{Õ(k), |T |} for

undirected graphs [15], and ρ = |T | for directed graphs. For |T | ≤ k the best ratio is b
2 |T |(|T | − 1).

We consider the version when every edge with positive cost has both of its endnodes in T . The

4

relevant biset family F on T is the projection on T of the family of “tight sets”, namely, F =

{(X ∩ T,X+ ∩ T) : X̂ is tight}, where a biset X̂ on V is tight if X ∩ T and T \ X+ are both

non-empty and |δG0
(X̂)| + |Γ(X̂)| = ℓ (c.f. [12, 13, 17]). Then a similar statement to the one

in Proposition 1.2 applies, except that F is a biset-family on T and |Γ(Ŝ)| ≤ ℓ for all Ŝ ∈ F .

Furthermore, when |T | > k, then by applying b times an approximation algorithm for the rooted

version of the problem, we can reduce the number of cores to O(k2); such a procedure is described

in [13, 17]. The rooted version when every edge has its tail in T admits a polynomial time algorithm

[6]. Thus parts (i) and (iii) of Theorem 1.1 imply the following.

Corollary 1.4 In the case when every edge with positive cost has both of its endnodes in T , Subset

k-Connectivity Augmentation admits a polynomial time algorithm that computes a solution of cost

ρ · optk, where ρ = O
(

min
{

|T |
max{|T |−k,1} log

|T |
max{|T |−k,1} , logmin{k, |T |}

})

and optk = min{x(E) :

x(δE(S)) ≥ k−|Γ(Ŝ)| ∀ biset Ŝ on V with S∩T, T \S+ 6= ∅}. Subset k-Connected Subgraph admits

an O(ρ log k)-approximation algorithm.

Cheriyan and Laekhanukit [2] considered the following directed edge-connectivity problem, that

generalizes the Subset k-Connected Subgraph problem. Given two disjoint subsets S, T in a graph

G, we say that G is k-edge-outconnected from S to T , or that G is k-(S, T)-edge-connected, if G

has k edge-disjoint st-paths for every (s, t) ∈ S × T .

k-(S, T)-Edge-Connected Subgraph

Instance: A directed graph G = (V,E) with edge-costs {ce : e ∈ E}, disjoint subsets S, T ⊆ V ,

and an integer k.

Objective: Find a minimum cost k-edge-outconnected from S to T subgraph of G.

In the so called “standard version” of the problem we have E ⊆ S × T . Let the ℓ-(S, T)-

Edge-Connectivity Augmentation problem be the restriction of k-(S, T)-Edge-Connected Subgraph to

instances in which G contains a subgraph G0 of cost zero such that G0 is ℓ-(S, T)-connected, and

we seek to increase at minimum cost the (S, T)-connectivity from ℓ = k − 1 to ℓ+ 1 = k.

Let us say that two sets X,Y (S, T)-cross if X ∩ Y ∩ S, T \ (X ∪ Y) 6= ∅. A set-family F
is (S, T)-crossing if X ∩ Y,X ∪ Y ∈ F for any X,Y ∈ F that (S, T)-cross. Generalizing the

algorithm of Fackaroenphol and Laekhanukit [5] for the k-Connected Subgraph problem, Cheriyan

and Laekhanukit [2] gave an approximation algorithm with ratio O(log(|S||T |)) for the standard

version of the k-(S, T)-Edge-Connectivity Augmentation problem. They also implicitly proved that

it is a particular case of the Set-Family Edge-Cover problem with V = S ∪ T , E ⊆ S × T , and

(S, T)-crossing F . Our algorithm in Theorem 1.1(i) easily extends to the problem of covering an

(S, T)-crossing family by a minimum-cost edge-set. Here we preferred the biset-family setting for

simplicity of exposition, and since the concept of k-regularity is not a natural one for (S, T)-crossing

families. Furthermore, the case of an (S, T)-crossing set family F is reduced to the case of a crossing

biset-family F ′, where for every set X ∈ F there is a biset X̂ ′ = (X ∩ S, S ∪ (X ∩ T)) in F ′; it is

not hard to verify that if F is an (S, T)-crossing family then F ′ is a crossing biset-family, and that

5

an edge from S to T covers a set X if, and only if, it covers X̂ ′. Thus from Theorem 1.1(i) we have

the following generalization of the result of [2].

Corollary 1.5 Set-Family Edge-Cover with (S, T)-crossing F and E ⊆ S × T admits a polynomial

time algorithm that computes a solution of cost O(log |S ∪ T |) · τ(F).

2 Proof of Theorem 1.1

2.1 Proof of part (i)

Recall that we assume that for any edge set J on V and any u, v ∈ V we are able to compute in

polynomial time the cores of the biset-family F(u, v) = {Ŝ ∈ FJ : u ∈ S, v ∈ V \ S+} and also

the cores of its co-family, or to determine that F(u, v) is empty. Note that if F is crossing, then

F(u, v) has a unique core, and the co-family of F(u, v) also has a unique core.

Lemma 2.1 A crossing biset-family F has at most n(n − 1) cores and they can be computed in

polynomial time.

Proof: For every ordered pair of nodes (u, v) ∈ V ×V we compute the core Ĉuv of the biset-family

F(u, v) = {Ŝ ∈ FJ : u ∈ S, v ∈ V \ S+}, if F(u, v) is non-empty. Then C(F) consists of the

inclusion-minimal members (cores) of the biset-family {Ĉuv : u, v ∈ V }. 2

Definition 2.1 Given a core Ĉ ∈ C(F) of F let F(Ĉ) denote the family of the bisets in F that

contain Ĉ and contain no other core of F .

The following statement is easily verified; it is implicitly proved in [11, 2].

Claim 2.2 Let F be a biset-family and J a set of directed edges on V . If for some Ĉ ∈ C(F), J

covers F(Ĉ) and covers no core distinct from Ĉ, then C(FJ) = C(F) \ {Ĉ} and ν(FJ) = ν(F)− 1.

Lemma 2.3 Let Ĉ1, Ĉ2 ∈ C(F) be distinct cores of a crossing biset-family F and let Ŝ1 ∈ F(Ĉ1)

and Ŝ2 ∈ F(Ĉ2). Then Ŝ1, Ŝ2 do not cross. Consequently, no edge covers both Ŝ1, Ŝ2.

Proof: Suppose to the contrary that Ŝ1 and Ŝ2 cross. Then Ŝ1 ∩ Ŝ2 ∈ F . Thus Ŝ1 ∩ Ŝ2 contains

some F-core Ĉ. We cannot have Ĉ 6= Ĉ1 as Ĉ ⊆ Ĉ1 and Ĉ1 is a core, and we cannot have Ĉ = Ĉ1

as Ĉ ⊆ Ĉ2, Ĉ1 6= Ĉ2, and Ĉ2 is a core. This gives a contradiction. The second statement follows

from the observation that an edge covers two bisets X̂, Ŷ simultaneously if, and only if, it goes

from X ∩ Y to V \ (X+ ∪ Y +), and hence X̂, Ŷ cross (see Fact 3.3(iii) in Section 3). 2

Lemma 2.4 Let Ĉ ∈ C(F) be a core of a crossing biset-family F , and let X̂, Ŷ ∈ F(Ĉ). If X̂, Ŷ

cross then X̂ ∩ Ŷ , X̂ ∪ Ŷ ∈ F(Ĉ).

Proof: Since F is crossing, X̂ ∩ Ŷ , X̂ ∪ Ŷ ∈ F . Since X̂ ∩ Ŷ ⊆ X̂ ⊆ X̂ ∪ Ŷ and since X̂ ∈ F(Ĉ),

it follows that X̂ ∩ Ŷ ∈ F(Ĉ) and that Ĉ ⊆ X̂ ∪ Ŷ . It remains to prove that X̂ ∪ Ŷ contains no

6

core distinct from Ĉ. Suppose to the contrary that X̂ ∪ Ŷ contains a core Ŝ distinct from Ĉ. Since

X̂, Ŷ ∈ F(Ĉ), none of X̂, Ŷ contains Ŝ. This implies that Ŝ, X̂ cross or Ŝ, Ŷ cross, so Ŝ ∩ X̂ ∈ F
or Ŝ ∩ Ŷ ∈ F . This contradicts that Ŝ is a core. 2

Lemma 2.5 Let F be a crossing biset-family on V and let Ĉ ∈ C(F). Then the co-family R(Ĉ) =

{(V \ S+, V \ S) : Ŝ ∈ F(Ĉ)} of F(Ĉ) is intersecting, and its cores can be found in polynomial

time.

Proof: Let X̂0, Ŷ0 ∈ R(Ĉ) be the co-bisets of X̂, Ŷ ∈ F(Ĉ), respectively. Suppose that X̂0, Ŷ0

intersect. Then X̂, Ŷ cross, hence X̂ ∩ Ŷ , X̂ ∪ Ŷ ∈ F(Ĉ), by Lemma 2.4. The co-bisets of X̂ ∩ Ŷ

and X̂ ∪ Ŷ are X̂0 ∪ Ŷ0 and X̂0 ∩ Ŷ0, hence X̂0 ∪ Ŷ0, X̂0 ∩ Ŷ0 ∈ R(Ĉ). This implies that R(Ĉ) is

an intersecting biset family. Now we show how to find the cores of R(Ĉ) in polynomial time. For

an F-core Ŝ 6= Ĉ let KŜ = {uv : u ∈ S, v ∈ V \ S+} be the set of all edges from S to V \ S+. Let

K =
⋃

Ŝ∈C(F)\{Ĉ}KŜ . We claim that FK = F(Ĉ). To see this, note that for any Ŝ ∈ C(F) \ {Ĉ}:
(i) KŜ covers all bisets in F that contain Ŝ; (ii)KŜ does not cover any biset in F(Ĉ), by Lemma 2.3.

Now choose u ∈ C, and for every v ∈ V compute the core Ĉv of the co-family of FK(u, v). The

R(Ĉ)-cores are the inclusion-minimal members of the family {Ĉv : v ∈ V }. 2

Corollary 2.6 Biset-family Edge-Cover with crossing F admits a polynomial time algorithm that

given a core Ĉ ∈ C(F) computes an F(Ĉ)-cover JĈ ⊆ E of cost c
(

JĈ
)

= τ(F(Ĉ)). Moreover,
∑

Ĉ∈C τ(F(Ĉ)) ≤ τ(F), and thus there exists Ĉ ∈ C(F) such that c(JĈ) ≤ τ(F)/ν(F).

Proof: By Lemma 2.5, the co-family R(Ĉ) of F(Ĉ) is intersecting. Thus, after reversing the edges

in E, we can apply a standard primal-dual algorithm to compute an edge-cover of R(Ĉ) of cost

τ(R(Ĉ)) = τ(F(Ĉ)); JĈ is the reverse edge set of this cover. This primal-dual algorithm can be

implemented in polynomial time if the cores of R(Ĉ) can be found in polynomial time, which is

possible by Lemma 2.5. The second statement of the lemma follows from Lemma 2.3. 2

Now we finish the proof of part (i) of Theorem 1.1. The algorithm starts with J = ∅. At iteration
i, it finds Ĉi ∈ C(FJ) and Ji ⊆ E \ J with c(Ji) ≤ τ(FJ)/ν(FJ) and ν

(

FJ∪Ji
)

= ν
(

FJ
)

− 1,

and adds Ji to J ; such Ji exists and can be found in polynomial time by Lemma 2.1, Claim 2.2,

Lemma 2.3, and Corollary 2.6. At each iteration ν(FJ) decreases by 1, by Claim 2.2. Thus at the

end of iteration i we have ν(FJ) = ν(F)−i. Consequently, c(Ji) ≤ τ(FJ)/ν(FJ) ≤ τ(F)/(ν(F)−i).

Thus at the end of the algorithm, c(J) ≤ ∑

i c(Ji) ≤ τ(F)
∑

i 1/(ν(F)− i) = τ(F) ·H(ν(F)).

2.2 Proof of part (ii)

The following concepts play a central role in the proof of part (ii) of Theorem 1.1.

Definition 2.2 A biset-family F is intersection-closed if X̂ ∩ Ŷ ∈ F for any X̂, Ŷ ∈ F that

intersect. An intersection-closed biset-family S is q-semi-intersecting if |S| ≤ q for all Ŝ ∈ S and

if X̂ ∪ Ŷ ∈ S for any intersecting X̂, Ŷ ∈ S with |X ∪ Y | ≤ q.

7

Note that if F is intersection closed, so is FJ , for any edge set J ; this follows from the fact that

if an edge e covers X̂ ∩ Ŷ then e covers X̂ or Ŷ (see Fact 3.3(i) in Section 3).

The following statement is straightforward.

Lemma 2.7 Let F be an intersection-closed biset-family. If Ĉ ∈ C(F) and Ŝ ∈ F intersect, then

Ĉ ⊆ Ŝ. Thus the F-cores are pairwise disjoint.

The following statement is implicitly proved in [11].

Claim 2.8 Let F be an intersection-closed biset-family, let C ⊆ C(F), and let J a set of directed

edges on V that covers F(Ĉ) for every Ĉ ∈ C. Then every FJ -core that contains some Ĉ ∈ C
contains an F-core distinct from Ĉ; thus ν

(

FJ
)

≤ ν(F)− |C|/2.

The following is implicitly proved in several papers, c.f. [9, 18].

Fact 2.9 If a biset-family F is k-regular, then the subfamily S = {Ŝ ∈ F : |S| ≤ q} of F is

q-semi-intersecting (and in particular, is intersection closed) for any q ≤ (n− k)/2.

Let q = ⌊(n − k)/2⌋ and let S = {Ŝ ∈ F : |S| ≤ q}. In Lemmas 2.10 and 2.12 to follow we

show that if γ(F) ≤ k, then there exists a polynomial time algorithm that computes an S-cover J
of cost c(J) ≤ τ(F) ·min {1 +H (⌊2n/(n− k + 2)⌋) , ⌊log2 ⌊(n− k + 2)/2⌋⌋}.

Lemma 2.10 Biset-family Edge-Cover with crossing k-regular F with γ(F) ≤ k admits a polynomial

time algorithm that returns an S-cover cover J of costs c(J) ≤ τ(F) · ⌊log2⌊(n− k + 2)/2⌋⌋.

Proof: The algorithm that computes an S-cover of cost at most τ(F) · ⌊log2⌊(n− k + 2)/2⌋⌋ is as

follows. Start with J = ∅, and iteratively, until ν(SJ) = 0, find and add to J a cover
⋃

Ĉ∈C(F) JC of

cost ≤ τ(FJ) of all families F(Ĉ) of SJ -cores, as in Corollary 2.6. By Lemma 2.7 and Claim 2.2,

after step i we have 2i ≤ |C| ≤ n−k
2 for every SJ -core Ĉ. Hence the number of iterations is at most

⌊log2⌊(n− k+ 2)/2⌋⌋. As at every iteration we add to J an edge set of cost ≤ τ(F), the total cost

of the S-cover computed is at most τ(F) · ⌊log2⌊(n− k + 2)/2⌋⌋. 2

The algorithm that computes an S-cover of cost at most τ(F) (1 +H (⌊2n/(n− k + 2)⌋)) is

based on the following theorem (to be proved in Section 3), which is our main technical result, and

which we believe is of independent interest.

Theorem 2.11 Biset-Family Edge-Cover with q-semi-intersecting biset-family S admits a poly-

nomial time algorithm that computes an edge-set J ⊆ E such that ν(SJ) ≤ ⌊n/(q + 1)⌋ and

c(J) ≤ τ(S).

Note that for q = n any intersecting biset-family is q-semi-intersecting, hence q-semi-intersecting

biset-families generalize intersecting biset-families, and then the algorithm in Theorem 2.11 com-

putes an optimal S-cover of cost τ(S).

8

Lemma 2.12 Biset-family Edge-Cover with crossing k-regular F with γ(F) ≤ k admits a polynomial

time algorithm that returns an S-cover cover J of costs c(J) ≤ τ(F) · (1 +H(⌊2n/(n− k + 2)⌋)).

Proof: The proof combines Theorem 2.11 with a modification of the algorithm from part (i).

Compute an edge set J as in Theorem 2.11 with q = ⌊(n − k)/2⌋ and S = {Ŝ ∈ F : |S| ≤ q}, so
ν(SJ) ≤

⌊

n
q+1

⌋

=
⌊

n
⌊(n−k)/2⌋+1

⌋

≤
⌊

2n
n−k+2

⌋

. Then apply the algorithm from part (i) on FJ using

the cores from SJ only: iteratively, until ν
(

SJ
)

= 0, at iteration i compute for each Ĉ ∈ C(SJ)

an F(Ĉ)-cover JĈ ⊆ E as in Corollary 2.6, and add to J the cheapest set Ji among the edge sets
{

JĈ : Ĉ ∈ C
(

SJ
)}

. By Claim 2.8 ν
(

SJ∪Ji
)

= ν
(

SJ
)

− 1, thus at iteration i we have

c(Ji) ≤
τ
(

FJ
)

ν (SJ)
≤

τ
(

FJ
)

⌊2n/(n− k + 2)⌋ − i
.

Consequently, the cost of the S-cover J computed is bounded by

c(J) ≤ τ(S) +H (⌊2n/(n− k + 2)⌋) · τ(F) ≤ τ(F) · (1 +H(⌊2n/(n− k + 2)⌋)) .

2

Corollary 2.13 Biset-family Edge-Cover with crossing k-regular F with γ(F) ≤ k admits a poly-

nomial time algorithm that returns an edge set J of cost c(J) = O
(

logmin
{

n
n−k , n− k

})

· τ(F)

with the following property: the size of the inner part of every biset in FJ or in the co-family of

FJ is larger than q = n−k
2 .

Proof: Apply each of the algorithms from Lemmas 2.10 and 2.12 twice: once on F , E and once on

the ”reversed” instance with the biset-family being the co-family {(V − S+, V − S) : (S, S+) ∈ F}
of F and with the reverse edge-set {uv : vu ∈ E} of E; after a solution J ′ to the reversed instance is

computed, we return the reversed edge-set of J ′. The union J of the two computed edge sets has cost

c(J) = τ(F)·O (log(n− k)) if we use the algorithm from Lemma 2.10, and c(J) = τ(F)·O
(

log n
n−k

)

if we use the algorithm from Lemma 2.12. 2

Let J be as in Corollary 2.13. In the case |Γ(Ŝ)| = k for all Ŝ ∈ F , we must have FJ = ∅, hence
J covers F and has cost as stated in part (ii) of Theorem 1.1.

2.3 Proof of part (iii)

Corollary 2.13 implies that to prove part (iii) of Theorem 1.1 it is sufficient to prove the following.

Lemma 2.14 Biset-Family Edge-Cover with crossing F admits a polynomial time algorithm that

computes an edge-cover of F of cost at most τ(F) · (n/q) ·H (⌊n/q⌋), provided that |S| ≥ q holds

for every biset Ŝ that belongs to F or to the co-family of F .

In the rest of this section we prove Lemma 2.14. The key observation is the following.

9

Lemma 2.15 Let F be a crossing biset-family on V with |S| ≥ q for every biset Ŝ in F or in the

co-family of F . Then there exists T ⊆ V of size |T | ≤ (n/q) ·H (⌊n/q⌋) such that T ∩ S 6= ∅ for

every Ŝ ∈ F .

Proof: Consider the hypergraph H = {C : Ĉ ∈ C(F)} of the inner parts of the cores of F . We

combine the following two observations.

(i) The function t on V defined by t(v) = 1
q for all v ∈ V is a fractional hitting-set of H (namely

∑

v∈S t(v) ≥ 1 for all C ∈ H) of value
∑

v∈V t(v) = n/q.

(ii) The maximum degree in the hypergraph H is at most ⌊n/q⌋.

Given observations (i) and (ii), the greedy algorithm computes a subset T ⊆ V as stated. Observa-

tion (i) follows from the assumption that |S| ≥ q for all Ŝ ∈ F . We prove (ii). Since F is crossing,

the members of C(F) are pairwise non-crossing. Thus if C ⊆ C(F) is a set of cores which inner

parts contain the same element v ∈ V , then the sets in {V \ C+ : Ĉ ∈ C} are pairwise disjoint. As

each of these sets is an inner part of a biset in the co-family of F , the number of such sets is at

most ⌊n/q⌋. Observation (ii) follows. 2

Lemma 2.14 easily follows from Lemma 2.15. Note that if F is crossing, then for every s ∈ V

the co-family of the biset-family Fs = {Ŝ ∈ F : v ∈ S} is intersecting. Thus given an instance

of Biset-Family Edge-Cover and s ∈ V , we can compute in polynomial time an edge-cover Js of Fs

of cost c(Js) ≤ τ(Fs) ≤ τ(F). Now let T be as in Lemma 2.15. For every s ∈ T we compute an

edge-cover Js of Fs as above, and return J = ∪s∈TJs. This concludes the proof of Lemma 2.14 and

thus also the proof of part (iii) of Theorem 1.1 is now complete.

3 Proof of Theorem 2.11

Definition 3.1 For biset-families S and U on V let

S [U] = {Ŝ ∈ S : Ŝ ⊆ Û for some Û ∈ U} .

A biset-family S is weakly-intersecting if S
[

{Û}
]

is an intersecting biset-family for every Û ∈ S.

Clearly, any q-semi-intersecting biset-family is weakly-intersecting. Note that if U ⊆ S and if

the members of U are pairwise disjoint, then S[U] is an intersecting biset-family, if S is weakly-

intersecting. We will prove the following refinement of Theorem 2.11.

Lemma 3.1 Biset-Family Edge-Cover with weakly-intersecting biset-family S admits a polynomial

time algorithm that computes a sub-family U ⊆ S of pairwise disjoint bisets and an edge-set J ⊆ E

such that the following two properties hold.

10

Property 1: For any SJ -core Ĉ the following holds:

(i) If Û ∈ U and Ĉ intersect then Û intersects no SJ -core distinct from Ĉ.

(ii) The union B̂C of Ĉ and the bisets in U intersecting with Ĉ is not in S.

Property 2: J is an optimal cover of S[U], thus c(J) = τ(S[U]) ≤ τ(S).

To see that Lemma 3.1 implies Theorem 2.11, it is sufficient to show that if S is q-semi-

intersecting, then Property 1 implies ν(SJ) ≤ ⌊n/(q + 1)⌋. Let BC be the inner part of B̂C . Note

that the sets BC are pairwise disjoint; this is since the members of U are pairwise disjoint, the SJ -

cores are pairwise disjoint, and since by Property 1(i) every Û ∈ U intersects at most one SJ -core.

Now observe that if S is q-semi-intersecting then |BC | ≥ q + 1, since B̂C /∈ S, by Property 1(ii).

Consequently, ν(SJ) ≤ ⌊n/(q + 1)⌋, and Lemma 3.1 implies Theorem 2.11.

In the rest of this section we prove Lemma 3.1. The algorithm is a variation of a standard

primal-dual algorithm for covering an intersecting biset-family, and it only needs that the SJ -cores

can be computed in polynomial time. The dual LP of the LP-relaxation (P) from the Introduction

is:
(D) max

∑

Ŝ∈S

yŜ

s.t.
∑

Ŝ∈S:e∈δ(Ŝ)

yŜ ≤ ce ∀e ∈ E

yŜ ≥ 0 ∀Ŝ ∈ S
Given a partial solution y to (D), an edge e ∈ E is tight if the inequality in (D) that corresponds

to e holds with equality. The algorithm produces an edge set J ⊆ E, a sub-family U ⊆ S of S, and
a dual solution y to (D), such that the following holds: J covers S[U], y is a feasible solution to

(D), and (the characteristic vector of) J and y satisfy the complementary slackness conditions:

Primal Complementary Slackness Conditions: e ∈ J =⇒ e is tight;

Dual Complementary Slackness Conditions: yŜ > 0 =⇒ |δJ(Ŝ)| = 1.

Phase 1 starts with J = ∅ and U = ∅ and applies a sequence of iterations. At each iteration

we choose some SJ -core Ĉ and do the following:

1. Add Ĉ to U and exclude from U the bisets contained in Ĉ.

2. Raise (possibly by zero) the dual variable corresponding to Ĉ, until some edge e ∈ E \ J

covering Ĉ becomes tight, and add e to J .

Phase 1 terminates when ν(SJ) = 0, namely, when J covers S.

Phase 2 applies on J “reverse delete” like the family S[U] is the one we want to cover, which

means the following. Let J = {e1, . . . , ej}, where ei+1 was added after ei. For i = j downto 1, we

11

delete ei from J if J − {ei} still covers the family S[U]. This can be implemented in polynomial

time as follows. When an edge e ∈ J is checked for deletion, S[U] is covered by J \ {e} if, and only

if, no Û ∈ U contains an SJ\{e}-core. At the end of the algorithm, J is output.

Summarizing, the algorithm is a variation of a standard primal-dual algorithm for intersecting

biset-families, with the following changes.

1. Unlike a standard primal-dual algorithm in which all the dual variables corresponding to cores

are raised uniformly, we raise the dual variable of only one core.

2. The algorithm maintains a biset-family U ⊆ S. In each iteration, we add to U the corre-

sponding tight FJ -core Ĉ, and exclude from U all the bisets contained in Ĉ, if any.

3. While at Phase 1 the algorithm intends to cover the entire biset-family S, Phase 2 (reverse-

delete) is applied like the family S[U] is the one that we want to cover.

Using Lemma 2.1, it is easy to see that the algorithm can be implemented in polynomial time,

under the oracles assumed. Using Lemma 2.7 it is also easy to see the following.

Claim 3.2 During the algorithm the following holds: the members of U are pairwise disjoint, every

edge in J has its tail in the inner part of some Û ∈ U , and |δJ(Û)| = 1 for every Û ∈ U .

Retrospectively, it turns out that our algorithm coincides with some run of an almost standard

primal-dual algorithm that intends to cover the intersecting biset-family S[U]. The difference is

in item 1 above, as we raise the dual variable of only one core; it is also possible to raise all the

dual variables corresponding to cores, but this makes the analysis more complicated. We will show

that this modified algorithm still computes an optimal solution. This will ensure Property 2 in

Lemma 3.1; we give a formal proof of Property 2 after proving that Property 1 holds for J,U at

the end of the algorithm.

The following statement is easily verified, see Figure 1.

Fact 3.3 Let X̂, Ŷ be bisets and let e be an edge.

(i) If e covers X̂ ∩ Ŷ or X̂ ∪ Ŷ then e covers X̂ or Ŷ .

(ii) If e covers X̂ ∪ Ŷ and has tail in X then e covers X̂.

(iii) e covers both X̂ ∩ Ŷ and X̂ ∪ Ŷ if and only if e covers both X̂ and Ŷ ; furthermore, X̂, Ŷ cross

in this case.

Let F be the set of edges stored in J at the end of Phase 1. Then F covers S. Note that every

edge in F has its tail in the inner part of some Û ∈ U , and that |δF (Û)| = 1 for every Û ∈ U .
Thus the following statement implies that Property 1 holds for J after Phase 2, even if S is only

intersection-closed.

12

����
����
����
����
����
����

����
����
����
����
����
����

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���

���
���
���
��� ����

����
����
����
����
����

����
����
����
����
����
����

(b)(a) +

V \ X

X

e

V \ Y

+ C

U

Y

U

Figure 1: (a) All types of edges that can cover one of X̂, Ŷ , X̂ ∩ Ŷ , X̂ ∪ Ŷ . (b) An SJ -core C and

the members of U intersecting C.

Lemma 3.4 Let F be an edge-cover of an intersection-closed biset-family S and let U ⊆ S be a

sub-family of S of pairwise disjoint bisets such that every edge in F has its tail in the inner part of

some Û ∈ U and such that δF (Û) = {eU} for every Û ∈ U . Let J ⊆ F be a cover of S[U] and let

Ĉ be an SJ -core. Then the following holds (see Figure 1(b)):

(i) If Û ∈ U and Ĉ intersect then δJ(Ĉ ∩ Û) = {eU}; thus Û intersects no SJ -core distinct from

Ĉ.

(ii) δF (B̂C) = ∅, where B̂C is the union of Ĉ and the bisets in U intersecting with Ĉ; thus B̂C /∈ S.

Proof: We prove (i). Let Û ∈ U and Ĉ intersect. Note that Ĉ ∩ Û ∈ S[U], since S is intersection-

closed. Hence δJ(Ĉ ∩ Û) 6= ∅. Let e ∈ δJ(Ĉ ∩ Û). Then e covers Ĉ or Û , by Fact 3.3(i). But e does

not cover Ĉ, since e ∈ J , and since J does not cover Ĉ. Hence e covers Û . Consequently, e = eU

for any e ∈ δJ(Ĉ ∩ Û), hence δJ(Ĉ ∩ Û) = {eU}. This implies that the tail of eU is in C, and it

cannot be in the inner part of any other SJ -core, since the SJ -cores are pairwise disjoint. Thus U

intersects no SJ -core distinct from C.

We prove (ii). Suppose to the contrary that there is e ∈ δF (B̂C). Let Û ∈ U be the biset whose

inner part contains the tail of e. Note that U ∩ C 6= ∅. Let X̂ = Ĉ ∪ Û and let Ŷ be the union of

Ĉ and the bisets in U \ {Û} that intersect Ĉ. Note that B̂C = X̂ ∪ Ŷ . Hence the tail of e lies in

X and e covers X̂ ∪ Ŷ . Thus e covers Ĉ ∪ Û , by Fact 3.3(ii). Applying the same argument on the

bisets Û , Ŷ we obtain that e covers Û . Hence e = eU , as eU is the only edge in F that covers Û .

By (i), eU covers Ĉ ∩ Û . Consequently, eU covers both Ĉ ∪ Û and Ĉ ∩ Û , and hence eU covers both

Ĉ and Û , by Fact 3.3(iii). However eU ∈ J , contradicting that Ĉ ∈ SJ . 2

For Property 2 it is sufficient to prove the following.

Lemma 3.5 If S is weakly-intersecting, then at the end of the algorithm the following holds: J co-

vers the biset-family S[U], y is a feasible solution to (D) for S[U], and J, y satisfy the complementary

slackness conditions; hence J and y are optimal solutions.

13

Proof: It is clear that J covers S[U], and that during the algorithm y remains a feasible solution to

(D). Since only tight edges enter J , after Phase 1 the Primal Complementary Slackness Conditions

hold for J . So, the only part that requires proof is that after Phase 2, the Dual Complementary

Slackness Conditions hold for J and y.

Claim: Consider an arbitrary Ŝ ∈ S with yŜ > 0 and an edge e ∈ δJ(Ŝ). Then there exists

Ŵ ∈ S[U] such that δJ(Ŵ) = {e} and Ŝ ⊆ Ŵ ⊆ Û for some Û ∈ U .

Proof: Such Ŵ can be chosen as any member of S[U] which becomes uncovered if we delete (instead

of keeping) e at the reverse delete step when e was considered for deletion; note that the algorithm

decided to keep e, hence such Ŵ exists. Moreover, since the edges were deleted in the reverse order,

Ŵ ∈ S[U]J\{e}. Obviously, δJ(Ŵ) = {e} and Ŝ and Ŵ intersect. Finally, to see that Ŝ ⊆ Ŵ note

that: (i) at any iteration before e was added, Ŵ was uncovered; (ii) since yŜ > 0, there was an

iteration before e was added at which Ŝ was an SJ -core. Hence Ŝ ⊆ Ŵ , by Lemma 2.7. 2

Now assume to the contrary that there is Ŝ ∈ S[U] with yŜ > 0 such that there are e′, e′′ ∈ δJ(Ŝ),

e′ 6= e′′. Let Û ∈ U such that Ŝ ⊆ Û . Let Ŵ ′, Ŵ ′′ be bisets for e′, e′′ as in the Claim above. so

δJ(Ŵ
′) = {e′}, δJ(Ŵ

′′) = {e′′} and Ŝ ⊆ Ŵ ′ ∩ Ŵ ′′ ⊆ Û . In particular, Ŵ ′, Ŵ ′′ intersect and

Ŵ ′, Ŵ ′′ ⊆ Û . Thus Ŵ ′∪Ŵ ′′ ∈ S[U], since Û ∈ S and since S is weakly intersecting. Consequently,

there is an edge e ∈ δJ(Ŵ
′ ∪ Ŵ ′′). This implies that e ∈ δJ(Ŵ

′) or e ∈ δJ(Ŵ
′′), by Fact 3.3(i).

Consequently, e = e′ or e = e′′. Since the tail of each one of e′, e′′ is in S ⊆ W ′ ∩ W ′′, so is

the tail of e. The head of e is in V \ (W ′+ ∪ W ′′+), since e covers Ŵ ′ ∪ Ŵ ′′. We conclude that

e ∈ δJ(Ŵ
′) ∩ δJ(Ŵ

′′). This is a contradiction since δJ(Ŵ
′) = {e′}, δJ(Ŵ ′′) = {e′′}, and e′ 6= e′′. 2

The proof of Lemma 3.1, and thus also of Theorem 2.11 is complete.

4 Concluding remarks and open problems

The main open question is whether the k-Connectivity Augmentation problem admits a constant

ratio approximation algorithm also for large values of k, say k = n − √
n. In this context we

mention four papers. In [14] is is shown that for values of k close to n, the approximability of

the k-Connectivity Augmentation problem is the same for directed and undirected graphs, up to

a factor of 2. Therefore, one should not expect to obtain a constant ratio for undirected graphs

only. On the positive side, Frank and Jordan [7] showed that for directed graphs, k-Connected

Subgraph can be solved in polynomial time when the input graph is complete and the costs are in

{0, 1}. For arbitrary costs however, there are two negative results. In [19] Ravi and Williamson

gave an example showing that the approximation ratio of a standard primal-dual algorithm that

intends to edge-cover the biset-family S as in Fact 2.9 has approximation ratio Ω(k). This does not

exclude that some other variation of the primal-dual algorithm, that relies on concepts from [7] has

a constant ratio for crossing biset-families. However recently, Aazami, Cheriyan, and Laekhanukit

14

[1] showed that the standard iterative rounding method that is based on a standard LP-relaxation

for k-Connectivity Augmentation (thus intends to edge-cover a crossing k-regular biset-family) has

approximation ratio Ω(
√
k).

Another open question is whether for the k-Connected Subgraph problem, the factor O(log k)

invoked by considering the augmentation version can be avoided. In particular, can we achieve

ratio O
(

log n
n−k

)

? In this context we mention a recent paper of Cheriyan and Végh [3]. They show

that in the case of undirected graphs with n > k3(k − 1) + k the problem can be decomposed into

2 problems of covering an intersecting suprmodular biset function and an additional problem of

covering a skew-supermodular biset function. Each of these problems admits ratio 2, which results

in an overall ratio of 6. Their bound n > k3(k − 1) + k was recently improved to n > k(k − 1)2

in [8], where also the degree bounded version of the problem is considered. Their method does not

apply to digraphs. Furthermore, for the k-Connectivity Augmentation on undirected graphs with

n > k(k − 1)2, it can be shown that our algorithm has a slightly better approximation ratio of 5.

References

[1] A. Aazami, J. Cheriyan, and B. Laekhanukit. A bad example for the iterative rounding method

for mincost k-connected spanning subgraphs. Discrete Optimization, 10(1):25–41, 2013.

[2] J. Cheriyan and B. Laekhanukit. Approximation algorithms for minimum-cost k-(S, T) con-

nected digraphs. Manuscript, 2010.

[3] J. Cheriyan and L. Végh. Approximating minimum-cost k-node connected subgraphs via

independence-free graphs. Manuscript, 2013.

[4] J. Cheriyan, S. Vempala, and A. Vetta. An approximation algorithm for the minimum-cost

k-vertex connected subgraph. SIAM J. Computing, (4):1050–1055, 2003.

[5] J. Fackharoenphol and B. Laekhanukit. An O(log2 k)-approximation algorithm for the k-vertex

connected subgraph problem. In STOC, pages 153–158, 2008.

[6] A. Frank. Rooted k-connections in digraphs. Discrete Applied Math., 157(6):1242–1254, 2009.

[7] A. Frank and T. Jordán. Minimal edge-coverings of pairs of sets. J. of Comb. Theory B,

65:73–110, 1995.

[8] T. Fukunaga, Z. Nutov, and R. Ravi. Iterative rounding approximation algorithms for degree

bounded node-connectivity problems. Manuscript, 2013.

[9] T. Jordán. On the optimal vertex-connectivity augmentation. J. on Comb. Theory B, 63:8–20,

1995.

15

[10] G. Kortsarz, R. Krauthgamer, and J. R. Lee. Hardness of approximation for vertex-

connectivity network design problems. SIAM Journal on Computing, 33(3):704–720, 2004.

[11] G. Kortsarz and Z. Nutov. Approximating k-node connected subgraphs via critical graphs.

SIAM Journal on Computing, 35(1):247–257, 2005.

[12] G. Kortsarz and Z. Nutov. Approximating minimum-cost connectivity problems. In T. F.

Gonzalez, editor, Chapter 58 in Approximation Algorithms and Metaheuristics. Chapman &

Hall/CRC, 2007.

[13] B. Laekhanukit. An improved approximation algorithm for minimum-cost subset k-

connectivity. In ICALP, pages 13–24, 2011.

[14] Y. Lando and Z. Nutov. Inapproximability of survivable networks. Theortical Computer

Science, 410(21-23):2122–2125, 2009.

[15] Z. Nutov. Approximating minimum cost connectivity problems via uncrossable bifamilies.

Manuscript 2010. Preliminary version in FOCS 2009, pages 417-426.

[16] Z. Nutov. An almost O(log k)-approximation for k-connected subgraphs. In SODA, pages

922–931, 2009.

[17] Z. Nutov. Approximating subset k-connectivity problems. In WAOA, pages 9–20, 2011.

[18] R. Ravi and D. P. Williamson. An approximation algorithm for minimum-cost vertex-

connectivity problems. Algorithmica, 18:21–43, 1997.

[19] R. Ravi and D. P. Williamson. Erratum: an approximation algorithm for minimum-cost vertex-

connectivity problems. Algorithmica, 34(1):98–107, 2002.

16

