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Abstract

We study several network design problems with degree constraints. For the minimum-cost
Degree-Constrained 2-Node-Connected Subgraph problem, we obtain the first non-trivial bicrite-
ria approximation algorithm, with factor 6 violation for the degrees and a 4-approximation for
the cost. This improves upon the logarithmic degree violation and no cost guarantee obtained
by Feder, Motwani, and Zhu (2006). Then we consider the problem of finding an arborescence
with at least k terminals and with minimum maximum outdegree. We show that the natural
LP-relaxation has a gap of Ω(

√
k) or Ω(n1/4) with respect to the multiplicative degree bound vio-

lation. We overcome this hurdle by a combinatorial O(
√

(k log k)/∆∗)-approximation algorithm,
where ∆∗ denotes the maximum degree in the optimum solution. We also give an Ω(log n) lower
bound on approximating this problem. Then we consider the undirected version of this problem,
however, with an extra diameter constraint, and give an Ω(log n) lower bound on the approx-
imability of this version. We also consider a closely related Prize-Collecting Degree-Constrained

Edge-Connectivity Survivable Network problem, and obtain several results in this direction by re-
ducing the prize-collecting variant to the regular one. Finally, we consider a simple variant of the
Degree-Constrained Steiner Tree problem when some terminals are required to be leaves. We show
that this seemingly simple problem is equivalent to the Group Steiner Tree problem.

1 Introduction

1.1 Problems considered

In network design problems one seeks a cheap subgraph H of a given graph G that satisfies some
given properties. In the b-Matching problem H should satisfy prescribed degree constraints, while in
the Survivable Network problem H should satisfy prescribed connectivity requirements. The Degree-

Constrained Survivable Network problems is a combination of these two fundamental problems, where
H should satisfy both degree constraints and connectivity requirements. For most of these problems,
even checking whether there exists a feasible solution is NP-hard, hence one considers a bicriteria
approximation when the degree constraints are relaxed. Namely, the goal is to compute a cheap
solution that satisfies the connectivity requirements and has small degree violation.

Many recent papers considered edge-connectivity Degree-Constrained Survivable Network problems,
see a recent survey in [20]. Our first problem is the simplest node-connectivity problem. A graph H is
k-(node-)connected if it contains k internally disjoint paths between every pair of its nodes. In the k-
Connected Subgraph problem we are given a graph G = (V,E) with edge-costs and an integer k. The

∗A preliminary version of this paper is [15].
†Partially supported by NSF Award Grant number 0829959.
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goal is to find a minimum-cost k-connected spanning subgraph H of G. In the Degree-Constrained

k-Connected Subgraph problem, we are also given degree bounds {b(v) : v ∈ V }. The goal is to find
a minimum-cost k-connected spanning subgraph H of G such that in H, the degree of every node v
is at most b(v). We consider the case k = 2.

Degree-Constrained 2-Connected Subgraph

Instance: An undirected graph G = (V,E) with non-negative edge-costs {ce : e ∈ E}, and degree
bounds {b(v) : v ∈ V }.
Objective: Find a minimum cost 2-connected spanning subgraph H of G that satisfies the degree
constraints degH(v) ≤ b(v) for all v ∈ V .

In the Steiner k-Tree problem one seeks a minimum-cost tree that contains at least k-terminals
(when every node is a terminal we get the k-MST problem). Our next problem is the minimum-
degree directed version of this problem. Given a directed graph G, a set S of terminals, and an
integer k ≤ |S|, a k-arborescence is an arborescence in G that contains k terminals; in the case of
undirected graphs we have a k-tree. For a directed/undirected graph or edge-set H let ∆(H) denote
the maximum outdegree/degree of a node in H.

Minimum Degree k-Arborescence
Instance: A directed graph G = (V,E), a root s ∈ V , a subset S ⊆ V \ {s} of terminals, and an
integer k ≤ |S|.
Objective: Find in G a k-arborescence T rooted at s that minimizes ∆(T ).

The origin of this problem is in peer-to-peer networking, when one wants to bound the maximum
load (degree) of a node, while connecting the root to the maximum number of terminals. It is also
of interest to bound the height of such a tree, to limit the time for sending messages from the root.
This motivates our next problem, for which we only show a lower bound. Hence we show it for the
less general case of undirected graphs.

Degree and Diameter Bounded k-Tree
Instance: An undirected graph G = (V,E), a subset S ⊆ V of terminals, an integer k ≤ |S|, and
a diameter bound D.
Objective: Find a k-tree T with diameter bounded by D that minimizes ∆(T ).

Let λH(u, v) denote the the maximum number of edge-disjoint uv-paths in H. In the Edge-

Connectivity Survivable Network problem we are given a graph G = (V,E) with edge-costs ce ≥ 0, a
collection P = {{u1, v1}, . . . , {uk, vk}} of node pairs, and connectivity requirementsR = {r1, . . . , rk}.
The goal is to find a minimum-cost subgraph H of G that satisfies the connectivity requirements
λH(ui, vi) ≥ ri for all i.

We consider a combination of the following two generalizations of this problem. In Degree-

Constrained Edge-Connectivity Survivable Network, we are given degree bounds {b(v) : v ∈ V }. The
goal is to find a minimum-cost subgraph H of G that satisfies the connectivity requirements and the
degree constraints degH(v) ≤ b(v) for all v ∈ V . In the Prize-Collecting Edge-Connectivity Survivable

Network we are given a submodular monotone non-decreasing penalty function π : 2{1,...,k} → R+

(π is given by an evaluation oracle). The goal is to find a subgraph H of G that minimizes the
value val(H) = c(H) + π(unsat(H)) of H, where unsat(H) = {i | λS

H(ui, vi) < ri} is the set of
requirements not (completely) satisfied by H. Formally, the problem we consider is as follows.
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Prize-Collecting Degree-Constrained Edge-Connectivity Survivable Network

Instance: A graph G = (V,E) with non-negative edge-costs {ce : e ∈ E}, a collection P =
{{u1, v1}, . . . , {uk, vk}} of node pairs, connectivity requirementsR = {r1, . . . , rk}, a submodular
monotone non-decreasing penalty function π : 2{1,...,k} → R+ given by an evaluation oracle, and
degree bounds {b(v) : v ∈ V }.
Objective: Find a subgraph H of G that satisfies the degree constraints degH(v) ≤ b(v) for all
v ∈ V , and minimizes the value

val(H) = c(H) + π(unsat(H))

of H, where unsat(H) = {i | λS
H(ui, vi) < ri} is the set of requirements not satisfied by H.

The Steiner Tree problem is a particular case of this problem, when we seek a minimum-cost
subtree T of G that contains a specified subset S of terminals. In the degree constrained version of
Steiner Tree, we are also given degree bounds on nodes in S and need to satisfy the degree constraints.
We consider the case of {0, 1}-constraints, namely, we require that certain nodes in S should be leaves
of T , and do not allow to relax this condition, as was done in previous papers [19, 21, 22, 1]. Namely,
the degree bounds here are of the “hard capacity” type, and cannot be violated. Formally, our
problem can be casted as follows.

Leaf-Constrained Steiner Tree

Instance: A graph G = (V,E) with edge-costs ce ≥ 0 and subsets L ⊆ S ⊆ V .
Objective: Find a minimum-cost tree T in G that contains S such that every v ∈ L is a leaf of T .

It was brought to our attention by Magnus Halldorsson, in a personal communication, that this
problem has an important application in numerical computation of matrices entries with partial
knowledge. The details of the application are rather technical, and thus are omitted.

1.2 Previous and related work

Fürer and Raghavachari [7] were the first to consider degree-constrained connectivity problems. They
gave a “plus 1” approximation for the Minimum Degree Steiner Tree problem. Namely, if the lowest
maximum degree possible is ∆∗, their algorithm returns a Steiner tree with maximum degree ∆∗+1.
This result is the best possible, as computing an optimal solution is NP-hard even in Minimum Degree

Spanning Tree case.

The first result for the min-cost case is due to Ravi et al. [23]; they obtained an (O(log n) ·
b(v), O(log n))-approximation for Degree-Constrained MST, namely, the degree of every node v in the
output tree is O(logn) · b(v) while its cost is O(logn) times the optimal cost. A major breakthrough
was obtained by Goemans [9]; his algorithm computes a minimum cost spanning tree with degree at
most ∆ + 2, with ∆ the minimum possible degree.

In [16] and [27] is given an O(nδ)-approximation algorithm for the Minimum Degree k-Edge-
Connected Subgraph problem, for any fixed δ > 0.

It turned out that an extension of the iterative rounding method of Jain [14] may be the leading
technique for degree-constrained problems. Singh and Lau [29] were the first to extend this method
to achieve the best possible result for Min-Cost Minimum Degree MST; their tree has optimal cost
while the maximum degree is at most ∆+1. Lau et al. [19] obtained a (2b(v)+3, 2)-approximation for
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the edge-connectivity Degree-Constrained Survivable Network problem, which was recently improved
to (2b(v) + 2, 2) in [22]. Lau and Singh [21] further obtained a (b(v) +O(rmax), 2)-approximation,
where rmax denotes the maximum connectivity requirement.

For directed graphs, Bansal et al. [1] gave an (⌈ b(v)1−ǫ⌉ + 4, 1ǫ )-approximation scheme for the
Degree-Constrained k-Edge-Outconnected Subgraph problem; the case k = 1 is the Degree-Constrained
Arborescence problem, for which [1] gave a b(v)+2-approximation, without bounding the cost. Some
extensions and slight improvements can be found in [25].

Note that all the above results are for edge-connectivity Survivable Network problems. The only
known result for node-connectivity degree-constrained problems is by Feder, Motwani, and Zhu [6]
who gave an algorithm that computes in nO(k) time a k-connected spanning subgraph H of G such
that degH(v) = O(logn) · b(v). Their algorithm cannot handle costs.

The special case k = |S| of the Minimum Degree k-Arborescence problem was already studied in
[5], where a Õ(

√
k) additive approximation was given. Their technique does not seem to extend to

the case k < |S|. Even for the easier undirected case, if we ask for a tree containing k nodes and want
to minimize the maximum degree (this is the Degree Bounded k-MST problem), the above techniques
of [5] seem to fail.

Hajiaghayi and Nasri [11] obtained a constant ratio for a very special case of Degree-Constrained
Prize-Collecting Edge-Connectivity Survivable Network problem when the penalty function π is modular.

1.3 Our results and techniques

Recall that for the Degree-Constrained k-Connected subgraph problem, Feder, Motwani, and Zhu [6]
gave an algorithm that computes in nO(k) time a k-connected spanning subgraph H of G such that
degH(v) = O(logn) · b(v), and that their algorithm cannot handle costs. Our first result significantly
improves their result for k = 2, from logarithmic factor degree violation to constant factor violation.
Furthermore, we are also able to bound the cost.

Theorem 1.1 The Degree-Constrained 2-Connected Subgraph problem admits a bicriteria (6b(v) +
6, 4)-approximation algorithm; namely, a polynomial time algorithm that computes a 2-connected
spanning subgraph H of G in which the degree of every node v is at most 6b(v) + 6, and the cost of
H is at most 4 times the optimal cost.

To prove Theorem 1.1 we first compute a degree-constrained spanning tree J with +1 degree
violation using the algorithm of [29]. Then we compute an augmenting edge-set I such that J ∪ I
is 2-connected, using the iterative rounding method. To apply this method for degree constrained
problems, one proves that any basic LP-solution x > 0 has an edge e with hight xe value, or there
exists a node v ∈ B such that degE(v) is close to b(v). Otherwise, one shows a contradiction using
the so called “token assignment argument”. Here one shows that there exists a laminar family L
of “violated sets” and a set T of nodes, such that x is the unique solution to the equation system
defined by cut-constraints of sets in L and degree constraints of nodes in T . The contradiction is
obtained by showing that the number of entries in x is strictly larger than |L| + |T |. All previous
“token assignment arguments” associated every node with a unique set in the laminar family L.
However, even in the simplest node-connectivity problem of augmenting a tree to be 2-connected,
this is not possible, as the cut-nodes of the tree are associated with many sets in L. We will allow
for a node to be “shared” by many members of L, and still will be able to distribute the tokens to
obtained the desired contradiction.
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Our second result gives the first approximation algorithm for the Minimum Degree k-Arborescence
problem.

Theorem 1.2 The Minimum Degree k-Arborescence problem admits an approximation algorithm with
ratio O(

√

(k log k)/∆∗), where ∆∗ is the optimal solution value, namely, the minimal maximum out-
degree possible. Furthermore, the problem admits no o(logn)-approximation, unless NP=Quasi(P).

Our algorithm for the Minimum Degree k-Arborescence problem uses a new method, which might
be useful for related problems. We show that any k-arborescence with maximum degree ∆∗ admits
a “balanced partition” into roughly

√
k ·
√
∆∗ edge-disjoint arborescences, each containing at most√

k ·
√
∆∗ terminals. We find iteratively, via max-flow computations, trees that contain

√
k · ∆∗

terminals. This will create many separate trees, that should be connected to the root. Thus, we have
to show that there will be not too many such trees. We prove this by using the fact that the flow
computation problem is non decreasing and submodular and so admits a O(logn)-approximation
[30].

Integrality gap of the natural LP relaxation for Minimum Degree k-MST.

To get some indication that the problem might be hard even on undirected graphs, consider the
following natural LP-relaxation for Minimum Degree k-MST. The intended integral solution has
yv = 1 for nodes picked in the optimum tree T ∗, xe = 1 for e ∈ T ∗, and d equal to the maximum
degree of T ∗.

Minimize d

Subject to
∑

v 6=r

yv ≥ k

∑

e∈δ(S)

xe ≥ yv ∀v ∈ V \ {r} ∀S ⊂ V, r ∈ S, v 6∈ S

∑

e∈δ(v)

xe ≤ d ∀v ∈ V

0 ≤ xe, yv ≤ 1 ∀e ∈ E ∀v ∈ V

(1)

We show that this LP-relaxation has integrality gap Ω(
√
k) or Ω

(

n1/4
)

where n = |V |. This
holds even for the undirected case. Consider a rooted at r complete ∆-ary tree T of height h and
let k = ⌊(∆ +∆2 + · · ·+∆h)/(∆ + 1)⌋. It is easy to see that giving xe = 1/(∆ + 1) to all the edges
e ∈ T and yv = 1/(∆ + 1) to all nodes v 6= r satisfies all the constraints with fractional objective
value d = 1. In order to cover k nodes, any integral tree however has to have a maximum degree of
at least δ where δ + δ(δ − 1) + δ(δ − 1)2 + · · ·+ δ(δ − 1)h−1 ≥ k. Such δ satisfies δ = Ω(k1/h). Thus
the optimum integral tree must have maximum degree Ω

(

k1/h
)

giving an integrality gap of Ω
(

k1/h
)

.

If we let h = 2, we get that k = ∆ and n = 1 + ∆ +∆2 and the integrality gap is Ω(
√
∆) which is

Ω(
√
k) or Ω(n1/4).

Theorem 1.3 The Degree and Diameter Bounded k-Tree problem admits no o(log n)-approximation
algorithm, unless NP=Quasi(P). This is so even for the special case in which some optimal solution
tree has diameter 4.

Let δF (A) denote the set of edges in F between A and V \ A. For i ∈ K let A ⊙ i denote
that |A ∩ {ui, vi}| = 1. Menger’s Theorem for edge-connectivity (see [18]) states that for a node
pair ui, vi of a graph H = (V,E) we have λH(ui, vi) = min

A⊙i
|δE(A)|. Hence if λH(ui, vi) ≥ ri for a

graph H = (V,E), then for any A with A ⊙ i we must have |δE(A)| ≥ ri. A standard “cut-type”
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LP-relaxation for Degree-Constrained Edge-Connectivity Survivable Network problem is as follows.

Minimize
∑

e∈E

cexe

Subject to
∑

e∈δE(A)

xe ≥ ri(A) ∀i ∀A⊙ i

∑

e∈δE(v)

xe ≤ b(v) ∀v

xe ∈ [0, 1] ∀e

(2)

Theorem 1.4 Suppose that for an instance of Prize-Collecting Degree-Constrained Edge-Connectivity

Survivable Network for any P ′ ⊆ P the following holds. For an instance of Degree-Constrained Edge-

Connectivity Survivable Network defined by P ′ there exists a polynomial-time algorithm that computes
a subgraph H ′ of cost at most ρ times the optimal value of LP (2) with requirements restricted to P ′

such that degH′(v) ≤ αb(v) + β for all v ∈ V . Then we can compute in polynomial time numbers
c∗ and π∗ with c∗ + π∗ ≤ opt, such that for any µ ∈ (0, 1), Prize-Collecting Degree-Constrained Edge-

Connectivity Survivable Network admits a polynomial time algorithm that computes a subgraph H such
that val(H) ≤ ρ

1−µc
∗ + 1

µπ
∗ and degH(v) ≤ α

1−µb(v) + β for all v ∈ V .

The above theorem can be used along with the following known results. Louis and Vishnoi [22]
obtain ρ = 2, α = 2, β = 2 for Degree-Constrained Edge-Connectivity Survivable Network. Lau and
Singh [21] obtain ρ = 2, α = 1, β = 3 for Degree-Constrained Steiner Forest and ρ = 2, α = 1, β =
6rmax + 3 for Degree-Constrained Edge-Connectivity Survivable Network where rmax is the maximum
requirement.

In the Group Steiner Tree problem we are given a collection S of node-subsets (groups), and seek
a minimum-cost subtree T of G that contains at least one node from each group. Group Steiner Tree

admits ratio O(logn log |S| logSmax) [8], where Smax = maxS∈S |S|. Group Steiner Tree with G being
a tree admits no Ω(log2−ǫ n) ratio, unless NP has quasi-polynomial Las-Vegas algorithms [12]. Our
last result shows that Leaf-Constrained Steiner Tree and Group Steiner Tree are essentially equivalent
w.r.t. approximation.

Theorem 1.5

(i) If Group Steiner Tree admits approximation ratio ρ(|V |, |S|,Smax) then Leaf-Constrained Steiner

Tree admits ratio ρ(|L||V |, |S|, |V |).

(ii) If Leaf-Constrained Steiner Tree admits ratio ρ(|V |, |S|) then Group Steiner Tree admits ratio
ρ(|V |+ |S|, |S|).

Consequently, Leaf-Constrained Steiner Tree admits ratio O(log2 n log |S|), and admits no Ω(log2−ǫ n)
ratio, unless NP has quasi-polynomial Las-Vegas algorithms.

This is the only approximation algorithm for a degree-constrained connectivity problem that
produces a solution without violating the degree bounds. It is not surprising that in our problem
the degree bounds are 1, since in the case of degree bounds 2, even checking whether the problem
admits a feasible solution is NP-hard (by a reduction to the Hamiltonian Path problem).

Theorems 1.1, 1.2, 1.3, 1.4, and 1.5, are proved in Sections 2, 3, 4, 5, and 6, respectively.
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2 Degree-Constrained 2-Connected Subgraph (Theorem 1.1)

We start by considering the problem of augmenting a connected graph J = (V,EJ) by a minimum-
cost edge-set I ⊆ E such that degI(v) ≤ b(v) for all v ∈ V and such that J ∪ I is 2-connected.

Definition 2.1 For a node v of J let µJ(v) be the number of connected components of J \ {v}; v is
a cut-node of J if µJ(v) ≥ 2.

Note that µJ(v) ≤ degJ(v) for every v ∈ V . For S ⊆ V let ΓJ(S) denote the set of neighbors of
S in J . Let s be a non-cut-node of J . A set S ⊆ V \ {s} is violated if |ΓJ(S)| = 1 and s /∈ ΓJ(S).
Let SJ denote the set of violated sets of J . Recall that δF (S) denotes the set of edges in F between
S and V \S. For S ∈ SJ let ζF (S) denote the set of edges in F with one endnode in S and the other
in V \ (S ∪ ΓJ(S)). By Menger’s Theorem, J ∪ I is 2-connected if, and only if, |ζI(S)| ≥ 1 for every
S ∈ SJ . Thus a natural LP-relaxation for our augmentation problem is τ = min{c · x : x ∈ P (J, b)},
where P (J, b) is the polytope defined by the following constraints:

x(ζE(S)) ≥ 1 for all S ∈ SJ
x(δE(v)) ≤ b(v) for all v ∈ B

0 ≤ xe ≤ 1 for all e ∈ E

Theorem 2.1 There exists a polynomial time algorithm that given an instance of Degree-Constrained

2-Connected Subgraph and a connected spanning subgraph (V, J) of G computes an edge set I ⊆ E \J
such that c(I) ≤ 3τ and such that degI(v) ≤ 2µJ(v) + 3b(v) + 3 for all v ∈ V .

Theorem 2.1 will be proved later. Now we show how to deduce the promised approximation ratio
from it. Consider the following two phase algorithm.

Phase 1: With degree bounds b(v), use the (b(v) + 1, 1)-approximation algorithm of Singh and Lau
[29] for the Degree Constrained Steiner Tree problem to compute a spanning tree J in G.

Phase 2: Use the algorithm from Theorem 2.1 to compute an augmenting edge set I such that
H = J ∪ I is 2-connected.

We prove the ratio. We have c(J) ≤ opt and c(I) ≤ 3τ , hence c(H) = c(J) + c(I) ≤ 4opt. We
now prove the approximability of the degrees. Let v ∈ V . Note that µJ(v) ≤ degJ(v) ≤ b(v) + 1.
Thus we have

degI(v) ≤ 2µJ(v) + 3b(v) + 3 ≤ 2(b(v) + 1) + 3b(v) + 3 = 5b(v) + 5.

This implies
degH(v) ≤ degJ(v) + degI(v) ≤ b(v) + 1 + 5b(v) + 5 = 6b(v) + 6.

In the rest of this section we will prove the following statement, that implies Theorem 2.1.

Lemma 2.2 Let x be an extreme point of the polytope P (J, b) with 0 < xe < 1
3 for every e ∈ E.

Then there is v ∈ B such that degE(v) ≤ 2µJ(v) + 3b(v) + 3.

Lemma 2.2 implies Theorem 2.1 as follows. Given a partial solution I and a parameter α ≥ 1,
the residual degree bounds are bαI (v) = b(v) − degI(v)/α. The following algorithm starts with
I = ∅ and performs iterations. In every iteration, we work with the residual polytope P (SJ∪I , bαI ),
and remove some edges from E and/or some nodes from B, until E becomes empty. Let α = 3 and
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β(v) = 2µJ(v)+3 for all v ∈ B. It is easy to see that for any edge-set I ⊆ E we have µJ∪I(v) ≤ µJ(v)
for every v ∈ V .

Algorithm as in Theorem 2.1
Input: A connected graph (V, J), an edge-set E on V with costs {ce : e ∈ E}, degree bounds
{b(v) : v ∈ V }, and non-negative integers {β(v) : v ∈ V }.
Initialization: I ← ∅.
If P (J, b) = ∅, then return ‘UNFEASIBLE’ and STOP.
While E 6= ∅ do:

1. Find a basic solution x ∈ P (SJ∪I , bαI ).
2. Remove from E all edges with xe = 0.
3. Add to I and remove from E all edges with xe ≥ 1/α.
4. Remove from B every v ∈ B with degE(v) ≤ αbαI (v) + β(v).

EndWhile
Return I.

It is a routine to prove the following statement.

Lemma 2.3 The above algorithm computes an edge set I such that J ∪ I is 2-connected, c(I) ≤ ατ ,
and degJ(v) ≤ αb(v) + β(v) for all v ∈ B.

It remains to prove Lemma 2.2. The following statement is well known and can be proved using
standard “uncrossing” methods.

Lemma 2.4 The family SJ of violated sets is uncrossable, namely, for any X,Y ∈ SJ we have
X ∩ Y,X ∪ Y ∈ SJ or X \ Y, Y \X ∈ SJ .

Recall that a set-family L is laminar if for any distinct sets X,Y ∈ L either X ⊂ Y , or Y ⊂ X, or
X ∩ Y = ∅. Any laminar family L defines a partial order on its members by inclusion; we carry the
usual notion of children, descendants, and leaves of laminar set families. The following statement is
proved using a standard “uncrossing” argument.

Lemma 2.5 For any basic solution x ∈ P (J, b) with 0 < x(e) < 1 for all e ∈ E, there exists a
laminar family L ⊆ S and T ⊆ B, such that x is the unique solution to the linear equation system:

x(ζE(S)) = 1 for all S ∈ L
x(δE(v)) = b(v) for all v ∈ T

Thus |L|+ |T | = |E| and the characteristic vectors of {ζE(S) : S ∈ L} are linearly independent.

Let x, L, and T be as in Lemma 2.5. Let I ′ is the set of edges in E with exactly one endnode in
B, I ′′ is set of edges in E with both end nodes in B, and F = E \ (I ′ ∪ I ′′).

Lemma 2.6 Let {β(v) : v ∈ V } be integers. Then there is v ∈ B such that degE(v) ≤ αb(v) + β(v),
if the following property holds:

|L| < 1

2
(β(B)− |B|) + αx(I ′′) +

1

2
|I ′|+ 1

2
αx(I ′) + |F | (3)
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Proof: Note that
∑

v∈B

(degE(v)− αb(v)) ≤
∑

v∈B

(degE(v)− αx(δE(v)))

=
∑

v∈B

(degI′(v) + degI′′(v))− α
∑

v∈B

(x(δI′(v)) + x(δI′′(v)))

= |I ′|+ 2|I ′′| − αx(I ′)− 2αx(I ′′) .

Thus |I ′|+2|I ′′|−αx(I ′)−2αx(I ′′) < β(B)+ |B| implies that degE(v) ≤ αb(v)+β(v) for some v ∈ B.
Adding |I ′|+2|F | to both sides gives 2(|I ′|+ |I ′′|+ |F |) < β(B)+ |B|+αx(I ′)+2αx(I ′′)+ |I ′|+2|F |.
Note that |I ′| + |I ′′| + |F | = |E| = |L| + |T |. Consequently, since |T | ≤ |B|, it is sufficient to prove
that

2(|L|+ |B|) < β(B) + |B|+ αx(I ′) + 2αx(I ′′) + |I ′|+ 2|F | .
Multiplying both sides by 1

2 and rearranging terms gives (3). �

Let us say that an edge e covers S ∈ L if e has one endnode in S and the other in V \ (S∪ΓJ(S)).
Given S ∈ L and an edge set E we will use the following notation.

• C is the set of children in L of S,

• ES is the set of edges in E covering S but not a child of S,

• EC is the set of edges in E covering some child of S but not S.

To show that there is v ∈ B with degE(v) ≤ αb(v) + β(v) for α = 3 and β(v) = 2µJ(v) + 3, we
assign a certain amount of tokens to edges in E and nodes in B, such that the total amount of tokens
does not exceed the right hand side of (3). A part of tokens assigned to an edge can be placed at
some endnode or at the middle of the edge. A set S ∈ L gets the tokens placed at an endnode v of
an edge e if e ∈ ES and v ∈ S, or if e ∈ EC and v does not belong to a child of S. S gets the tokens
placed at the middle of e if e ∈ EC . It is easy to verify that no two sets get the same token part of
an edge. S gets also a token from v ∈ B by the following rule.

Definition 2.2 We say that S ∈ L owns a node v if v ∈ S but v is not in a child of S. We say that
S shares v if v ∈ ΓJ(S).

Clearly, if S ∈ L owns v then no other set in L owns v. Note that if S shares v, then no ancestor
or descendant of S in L shares v. This implies the following.

Lemma 2.7 For any v ∈ B, the number of sets in L sharing v is at most µJ(v).

Thus if µJ(v) + 1 tokens are assigned to v, then every set S ∈ L that owns or shares v can get 1
token from v. We will argue by induction that we can redistribute the tokens of S and its descendants
in L such that every proper descendant of S in L gets at least 1 token and S gets 2 tokens. This
differs from the usual token distribution in edge-connectivity problems, where nodes are owned but
not shared. In node-connectivity, the cut-nodes may be shared by many members of L, and in our
case, by at most µJ(v) members.

For β(v) = 2µJ(v) + 3 and α = 3, (3) becomes:

|L| < µJ(B) + |B|+ 3x(I ′′) +
1

2
|I ′|+ 3

2
x(I ′) + |J | . (4)
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Initial token assignment (total amount of tokens ≤ the r.h.s of (4)):

• µJ(v) + 1 tokens to every v ∈ B,

• xe tokens to each endnode in B of an edge e,

• 1
2 token to each endnode in V \B of an edge e.

Lemma 2.8 We can redistribute the tokens of S and its descendants in L such that every proper
descendant of S in L gets at least 1 token and S gets 2 tokens.

Proof: Since 0 < xe < 1
3 for every e ∈ E, |ζE(S)| ≥ 4 for every S ∈ L. Suppose that S is a leaf.

If S ∩ B = ∅, then S gets 1
2 token from an endnode of every edge in ζE(S), and in total at least 2

tokens. If there is v ∈ S ∩ B then S owns v and gets 1 token from v. S gets x(ζE(S)) = 1 tokens
from edges in ζE(S). Consequently, S gets in total at least 2 tokens, as claimed. Now suppose that
S is not a leaf. S gets |C| tokens from its children, hence if |C| ≥ 2 then we are done. Thus we are
left with the case that S has a unique child C, and needs 1 token not from C. If S contains or shares
some v ∈ B then we are done. Otherwise, S gets 1

2 token from the corresponding endnode of each
edge in ES ∪ EC . By the linear independence an integrality of cuts |ES ∪ EC | ≥ 2, hence S gets the
desired token from the edges in ES ∪ EC . �

The proof of Lemma 2.2, and thus also of Theorem 1.1, is now complete.

3 Minimum Degree k-Arborescence (Theorem 1.2)

We may assume that in the input graph G every node is reachable from the root s, that every terminal
has indegree 1 and outdegree 0, and that the set of terminal of every arborescence T coincides with
the set of leaves of T . Let U = V \ S. Before describing the algorithm, we need some definitions.

Definition 3.1 For W ⊆ U and an integer parameter α ≥ 1 the network Fα(W ) with source s′ and
sink t′ is obtained from G as follows.

1. Assign infinite capacity to every edge of G and capacity α to every node in U .

2. Add a new node s′ and add new edges of capacity α each from s′ to every node in W .

3. Add two new nodes t, t′, add an edge of capacity 1 from every terminal to t, and add an edge
of capacity k from t to t′.

Our algorithm runs with an integer parameter α set eventually to

α =
⌈

√

k ·∆∗ · (ln k + 1)
⌉

. (5)

Although ∆∗ is not known, ∆∗ ≤ k, and our algorithm applies exhaustive search in the range 1, . . . , k.

Recall that a set-function ν defined on subsets of a ground-set U is submodular if ν(A) + ν(B) ≥
ν(A ∪ B) + ν(A ∩ B) for all A,B ⊆ U . Consider the following well known generic problem (for our
purposes we state only the unweighted version).
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Submodular Cover

Instance: A finite set U and a non-decreasing submodular function ν : 2U 7→ Z.
Objective: A minimum-size subset W ⊆ U such that ν(W ) = ν(U).

The Submodular Cover Greedy Algorithm (for the unweighted version) starts with W = ∅ and
while ν(W ) < ν(U) repeatedly adds to W an element u ∈ U \W that maximizes ν(W ∪{u})−ν(W ).
At the end, W is output. It is proved in [30] that the Greedy Algorithm for Submodular Cover has
approximation ratio lnmax

u∈U
ν({u}) + 1.

A generalization of the following statement is proved in [2].

Lemma 3.1 ([2]) For W ⊆ U let να(W ) be the maximum st-flow value in the network Fα(W ).
Then να is non-decreasing and submodular, and να(U) ≤ k.

The algorithm is as follows.

1. Execute the Submodular Cover Greedy Algorithm with U = V \S and with ν = να; let W ⊆ U
be the node-set computed.

2. Let f be a maximum integral flow in Fα(W ) and let JW = {e ∈ E : f(e) > 0} be the set of
those edges in E that carry a positive flow in Fα(W ).
Let TW be an inclusion-minimal arborescence in G rooted at s containing W .

3. Return any k-arborescence contained in the graph (V, JW ) ∪ TW .

In the rest of this section we prove that the graph (V, JW )∪TW indeed contains a k-arborescence,
and that for any integer α ≥ 1 it has maximum outdegree at most α+ (ln k + 1) · k∆∗/α.

This implies the approximation ratio α/∆∗ + (ln k+ 1) · k/α = O(
√

(k log k)/∆∗) for α given by
(5).

Definition 3.2 A collection T of sub-arborescence of an arborescence T is an α-leaf-covering de-
composition of T if the arborescence in T are pairwise node-disjoint, every leaf of T belongs to exactly
one of them, and each of them has at most α leaves.

Lemma 3.2 Suppose that G contains a k-arborescence that admits an α-leaf-covering decomposition
T . Let R be the set of roots of the arborescence in T . Then να(R) = k, and for the set W computed
by the algorithm the following holds:

(i) να(W ) = k and thus the graph JW ∪ TW contains a k-arborescence.

(ii) The graph (V, JW ) ∪ TW has maximum outdegree at most α+ |T | · (ln k + 1).

Proof: We prove that να(R) = k. For a terminal v in T , let rv ∈ R be the root of the (unique)
arborescence Tv ∈ T that contains v, and let Pv be the path in Fα(R) that consists of: the edge s′rv,
the unique path from rv to v in Tv, and the edges vt′ and t′t. Let f be the flow obtained by sending
for every terminal v of T one flow unit along Pv. Then f has value k, since T has k terminals. We
verify that f obeys the capacity constraints in Fα(R). For every r ∈ R, the arborescence Tr ∈ T
which root is r, has at most α terminals; hence the edge s′r carries at most α flow units, which does
not exceed its capacity α. This also implies that the capacity α on all nodes in U is met. For every
terminal v of T , the edge vt carries one flow unit and has capacity 1. The edge t′t carries k flow
units and has capacity k. Other edges have infinite capacity.
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We prove (i). By Lemma 3.1, να is non-decreasing and να(U) ≤ k. As να(U) ≥ να(R) = k and
να(W ) = να(U), we conclude that ν(W ) = k. This implies that in the graph (V, JW ), k terminals
are reachable from W , and (i) follows.

We prove (ii). In the graph (V, JW ), the outdegree of any node is at most α. This follows from
the capacity α on any node in U . We have |W | ≤ |R| · (ln k+1) = |T | · (ln k+1), by Lemma 3.2 and
the approximation ratio of the Submodular Cover Greedy Algorithm. Since TW is an arborescence
with leaf-set W , the maximum outdegree of TW is at most |W | ≤ |T | · (ln k + 1). The statement
follows. �

The following lemma implies that the optimal tree T ∗ admits an α-leaf-covering decomposition
T of size |T | ≤ k∆∗/α for any α ≥ 1. This together with Lemma 3.2 concludes the proof of
Theorem 1.2.

Lemma 3.3 Any arborescence T with k leaves and maximum outdegree ∆ admits an α-leaf-covering
decomposition T of size |T | ≤ ∆ · ⌊k/(α+ 1)⌋+ 1, for any integer α ≥ 1.

Proof: For a node r of an arborescence T with root s let us use the following notation: Tr is the
sub-arborescence of T with root r that contains all descendants of r in T , and Pr is the set of internal
nodes in the ar-path in T . where a is the closest to r ancestor of r that has outdegree at least 2. Let
us say that a node u ∈ U of T is α-critical if Tu has more than α leaves, but no child of u has this
property. It is easy to see that T has an α-critical node if, and only if, T has more than α leaves.

Consider the following algorithm. Start with T = ∅. While T has an α-critical node u do the
following: add Tr to T for every child r of u, and remove Tu and Pu from T (note that since we
remove Pu no new leaves are created). When the while loop ends, if T is nonempty, add the remaining
arborescence T = Ts (which now has at most α leaves) to T .

By the definition, the arborescence in T are pairwise node-disjoint, every leaf of T belongs to
exactly one of them, and each of them has at most α leaves. It remains to prove the bound on T .
In the loop, when we consider an α-critical node u, at least α+ 1 leaves are removed from T and at
most ∆ arborescence are added to T . Hence |T | ≤ ∆ · ⌊k/(α+ 1)⌋ at the end of the loop. At most
one additional arborescence is added to T after the loop. The statement follows. �

Recall that we omit the Ω(log n) lower bound for the problem, because the proof of this lower
bound is basically identical to the proof of Theorem 1.3.

4 Hardness of Degree and Diameter Bounded k-Tree (Theorem 1.3)

4.1 The Min-Rep graph

For simplicity we mostly avoid the language of one-round two provers and stick to graph terminology
which is more basic. The Min-Rep problem was introduced in [17]. This problem is a variant of the
Label-Cover problem invented in [13], and it is equivalent to the Symmetric Label-Cover problem (see
[4]).

The input to Min-rep consists of a bipartite graph G = (V1, V2, E), and partitions Ṽ1 and Ṽ2 of
V1 and V2 respectively, into q disjoint sets each, so that V1 =

⋃q
i=1Ai, and V2 =

⋃q
j=1Bj . The sets

Ai for every i and Bj for every j are called super-nodes. If there exists ai ∈ Ai and bj ∈ Bj so that
(ai, bj) ∈ E we say that AiBj is a super-edge, or a query. The super-nodes and super-edges define a
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super-graph G̃ = (Ṽ1, Ṽ2, Ẽ) with the Ai, Bj being the super-nodes and there is a super-edge AiBj

iff Ai and Bj share and edge in G(V1, V2, , E). A pair of nodes ai ∈ Ai, bj ∈ Bj is said to Min-Rep
cover the super-edge AiBj if (ai, bj) ∈ E. A subset C ⊆ V1 ∪ V2 of nodes is said to Min-Rep cover
a super-edge AiBj if there exists ai, bj ∈ C that Min-Rep covers AiBj . A subset C that Min-Rep
covers all the super-edges is called a feasible solution for the Min-Rep instance. A feasible subset
C ⊆ V1 ∪V2 that satisfies |C ∩Ai| = 1 and |C ∩Bj | = 1 for every Ai and Bj is called a perfect cover.
Note that a perfect cover has size 2q.

This size of the Min-Rep graph and all its parameters is related to a central parameter ℓ (called
the parallel repetition size) that determines the gap between a “yes” and a “no” instance in Min-Rep.
We start with a 3-SAT-5 instance with n variables and m clauses (see [13]). In 3-SAT-5 every clause
has 3 literals and every variable (literal) appears in exactly 5 clauses. The instance I of 3-SAT-5 is
reduced to a Min-Rep instance so that the following holds.

Theorem 4.1 (The Parallel Repetition Theorem [28]) For every ℓ there exists a reduction
from 3-SAT-5 instance of size n to a instance of Min-Rep of size M = O(nµ·ℓ) for a universal
constant µ, such that:

1. A Min-Rep instance that corresponds to a “yes” instance of I has a perfect cover.

2. Every feasible solution C that corresponds to a “no” instance I contains at least (2q)2cℓ sets
(answer nodes) for some universal constant c.

Note that, as there is 2q super-nodes, on average the number of answer nodes that need to be
taken from every super-node is exponential in ℓ.

In this paper we set ℓ = ⌈log log n⌉. (All logs are to the base 2 unless it explicitly said otherwise).

4.2 Partition systems

Let M ′ =
√
M . For every super-edge AiBj we define a ground set Mij of size M ′ (all pairwise

disjoint). In addition we define an anti-universal set of partitions [24] of every Mij . The anti-
universal partition system is denoted by C(Mij , 7

ℓ) and has the following properties [24].

Let each partition be denoted by Zp
ij , Mij \ Zp

ij so that |Zp
ij | = M ′/2 and p goes from p = 1 to

p = 7ℓ. Let C be the collection of all sets in all partitions, Mi,j (both Zp
i,j and M − Zp

i,j belong to
C for every p.) Consider picking a collection of sets that belong to C under the following rule. For
every 1 ≤ p ≤ k we may pick at most one of Zk

ij or Mij − Zk
ij (but not both). We call the above a

legal choice of subsets of Mij . We are concerned with the union of elements of these sets. Consider

a particular legal choice
⋃k

p=1X
p
ij with Xij = Zp

ij or Xp
ij = Mij − Zp

ij . We call this particular choice

of subsets of C a set-cover of Mij if
⋃7ℓ

p=1X
p
ij = Mij

Theorem 4.2 ([24]) There exists a C(Mij , 7
ℓ) structure so that for every legal choice of subsets

in C the smallest number of sets in a legal choice that set-covers Mi,j is at least α logM ′ for some
universal constant α.

The above states that for a legal choice of subsets, you need about logM ′ sets, Xp
ij to cover Mi,j .

The partition system behaves very much as if every Xp
i,j set is a random half of Mi,j . Indeed in such

a random partition, about log2M
′ Xp

i,j sets are required to set-cover Mi,j .
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4.3 A property of the Min-Rep graph for 3-SAT-5

We say that the Min-Rep instance obeys the projection property (or the star property) if for every
super-edge Ai ∪ Bj , the graph induced by Ai + Bj is a set of edge disjoint stars with heads in A.
The head of the star S is denoted h(S). The bj answer nodes in S are called the leaves of the star.
The following is known to hold.

Theorem 4.3 [28] The parallel repetition theorem starting with 3-SAT-5 gives a Min-Rep instance
obeying the projection property.

The size of every Ai (which is the number of stars of in the graph induced by Ai ∪Bj) is |Ai| = 7ℓ.
See [13].

4.4 A variation on the [13] construction

The set-cover instance of [13] has
⋃

Ai∪
⋃

Bj as sets. Each super-edge AiBj has a ground set Mi,j of
size
√
M of elements (this is a slight change compared to [13]). Only Ai ∪Bj sets can be connected

(or contain) the element of the ground sets Mij .

We explain how are the sets in Ai ∪ Bj connected to Mij . Since the number of partitions in
C(Mij , 7

ℓ) exactly equals the number of stars in the graph induced by Ai + Bj we may assume
a bijection between stars in Ai + Bj and anti-universal partitions. Every star S corresponds to a
unique partition. A head a = h(S) of a star is connected to Zp

i,J in Mij and every leaf in the star of

a is connected to the complement set Mi,j \ Zp
i,j . Here (Zp

i,j ,Mij − Zp
ij) is the unique partition that

corresponds to a.

4.5 The size of the parameters

Assume that we start the reduction toMin-Rep from the usual 3-SAT-5 instance I, |I| = n. Therefore,
every boolean literal appears in exactly 5 clauses and every clause has exactly 3 literals. The following
holds for the parameters of the construction (see more details in [13]).

It can be seen that the size of the graph is nµ·ℓ for a universal constant µ, and that each Ai, Bj

contains O(log n) sets (answer nodes). Therefore, q = Ω(nµ·ℓ/ log n) for some universal constant µ.

4.6 The reduction and degrees

Now focus on the degree of the nodes. Elements in the ground sets have degree at most |Ai ∪ Bj |,
which is O(logn).

As the set-cover for a yes instance has size 2q, its size is at least M/O(logn). It can be seen by
[28] that every a, b participates in at most polylog(n) super-edges, and for every super-edge related
to a or b, it is connected to

√
M/2 of the nodes of the ground set. Hence has maximum degree of

⋃

iAi ∪
⋃

j Bj in the set-cover graph is O
(√

M · poly(logn)
)

.

The reduction to Degree and Diameter Bounded k-Tree is immediate. Add a node s connected to
⋃

iAi ∪
⋃

j Bj . Make
⋃

ij Mij the terminals and select the diameter bound to be 4. The node s is
the root.

14



4.7 The gap

By the diameter bound of 4, the
⋃

iAi ∪
⋃

j Bj sets that are connected to s must set-cover the
elements

⋃

i,j Mi,j . The size of a set cover which is at least 2q = Ω(M/O(log n)). This is much larger
than the maximum degree of elements in ground sets. And it is much larger than the degree of any
Ai ∪Bj . node that was established to be bounded by O(

√
M · polylog(n)) = o(q).

This implies that approximating the minimum degree is equivalent to approximation the size of
the set-cover. The gap is α logM ′ = α logM/2, namely logarithmic in the size |I|ℓ of the instance.

5 Prize-Collecting Degree-Constrained Survivable Network (Theorem 1.4)

Our LP-relaxation for Prize-Collecting Degree-Constrained Edge-Connectivity Survivable Network is:

Minimize
∑

e∈E

cexe +
∑

I⊆K

π(I)zI

Subject to
∑

e∈δ(T )

fi,e ≥ (1− ∑

I:i∈I

zI)ri(T ) ∀i ∀T ⊙ i

fi,e ≤ 1− ∑

I:i∈I

zI ∀i ∀e

xe ≥ fi,e ∀i ∀e
∑

I⊆K

zI = 1

∑

e∈δ(v)

xe ≤ b(v) ∀v

xe, fi,e, zI ∈ [0, 1] ∀i ∀e ∀I

(6)

Without the degree constraints, this LP-relaxation was used in [10] for Prize-Collecting Edge-

connectivity Survivable Network. In the intended integral solution H, the variables are supposed to
take the following values: xe = 1 if e ∈ H, fi,e = 1 if i 6∈ unsat(H) and e appears on a chosen set of
ri edge-disjoint {ui, vi}-paths in H and zI = 1 if I = unsat(H). We prove the following refinement
of Theorem 1.4.

Theorem 5.1 Suppose that for an instance of Prize-Collecting Degree-Constrained Edge-Connectivity

Survivable Network for any P ′ ⊆ P the following holds. For an instance of Degree-Constrained Edge-

Connectivity Survivable Network defined by P ′ there exists a polynomial-time algorithm that computes a
subgraph H ′ of cost at most ρ times the optimal value of LP (2) with requirements restricted to P ′ such
that degH′(v) ≤ αb(v)+β for all v ∈ V . Then for any µ ∈ (0, 1), Prize-Collecting Degree-Constrained

Edge-Connectivity Survivable Network admits a polynomial time algorithm that computes a subgraph
H such that c(H) ≤ ρ

1−µ

∑

e∈E cex
∗
e, π(unsat(H)) ≤ 1

µ

∑

I⊆K π(I)z(I) and degH(v) ≤ α
1−µb(v) + β.

We prove Theorem 5.1. Let {x∗e, f∗
i,e, z

∗
I} be a feasible solution to LP (6) and let µ ∈ (0, 1). We

partition the requirements into two classes: we call a requirement ri good if
∑

I:i∈I z
∗
I ≤ µ and bad

otherwise. Let Rg denote the set of good requirements. The following statement shows how to satisfy
the good requirements.

Lemma 5.2 There exists a polynomial-time algorithm that computes a subgraph H of G of cost
c(H) ≤ ρ

1−µ ·
∑

e cex
∗
e that satisfies all good requirements such that degH(v) ≤ α

1−µb(v) + β for all
v ∈ V .
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Proof: Consider the LP-relaxation (2) of the Degree-Constrained Edge-Connectivity Survivable Net-

work problem with good requirements only, with K replaced by Kg; namely, we seek a minimum cost
subgraph H of G that satisfies the set Kg of good requirements and the degree constraints. We claim

that x∗∗e = min {1, x∗e/(1− µ)} for each e ∈ E is a feasible solution to LP (2) with degree bounds b(v)
1−µ .

Thus the optimum value of LP (2) is at most
∑

e∈E cex
∗∗
e . Consequently, using the algorithm that

computes an integral solution to LP (2) of cost at most ρ times the optimal value of LP (2) and with
degrees at most αb(v) + β, we can construct a subgraph H that satisfies all good requirements and
has cost at most c(H) ≤ ρ

∑

e∈E cex
∗∗
e ≤ ρ

1−µ

∑

e cex
∗
e, and degrees at most degH(v) ≤ α

1−µb(v) + β,
as desired.

We now show that {x∗∗e } is a feasible solution to LP (2), namely, that
∑

e∈δ(A) x
∗∗
e ≥ ri(A) for

any i ∈ Kg and any A ⊙ i. Let i ∈ Kg and let ζi = 1 −∑

I:i∈I z
∗
I . Note that ζi ≥ 1 − µ, by the

definition of Kg. By the second and the third sets of constraints in LP (6), for every e ∈ E we have

min{ζi, x∗e} ≥ f∗
i,e. Thus we obtain: x∗∗e = min

{

1, x∗
e

1−µ

}

= 1
ζi
min

{

ζi,
ζi

1−µx
∗
e

}

≥ 1
ζi
min{ζi, x∗e} ≥

f∗
i,e

ζi
=

f∗
i,e

1−
∑

I:i∈I z
∗
I
. Consequently, combining with the first set of constraints in LP (6), for any A⊙ i

we obtain that
∑

e∈δ(A) x
∗∗
e ≥

∑
e∈δ(A) f

∗
i,e

1−
∑

I:i∈I z
∗
I
≥ ri(A). �

Let H be as in Lemma 5.2, and recall that unsat(H) denotes the set of requirements not satisfied
by H. Clearly each requirement i ∈ unsat(H) is bad. The following lemma bounds the total penalty
we pay for unsat(H).

Lemma 5.3 π(unsat(H)) ≤ 1
µ ·

∑

I π(I)z
∗
I .

Proof: This lemma was proved in [10] for the case when there are no degree bounds, and the proof
of the case with degree bounds is identical. �

The proof of Theorem 5.1 and thus also of Theorem 1.4 is now complete.

6 Leaf-Constrained Steiner Tree (Theorem 1.5)

We start by proving Part (i) of Theorem 1.5, namely, that if Group Steiner Tree admits approximation
ratio ρ(|V |, |S|,Smax) then Leaf-Constrained Steiner Tree admits ratio ρ(|L| · |V |, |S|, |V |). Given an
instance G = (V,E), c, S, L of Leaf-Constrained Steiner Tree construct an instance G′ = (V ′, E′), c′,S ′
of Group Steiner Tree as follows.

• The pair G′, c′ is obtained from G, c as follows. For every v ∈ L do the following. For every
u ∈ ΓG(v) \ L add a new node vu, and replace the edge e = uv by the new edge e′ = uvu, of
the same cost as e. Then remove v and all the edges incident to it from the graph.

• The set of groups is as follows. Every v ∈ L defines the group S(v) = {vu : u ∈ ΓG(v) \ L}.
The collection of groups is S ′ = {{S(v)} : v ∈ L} ∪ {{s} : s ∈ S \ L}.

By the construction, |V ′| ≤ |V | · |L|, |S| = |S|, and Smax ≤ |V |. Note that to every edge-set
F ′ ⊆ E′ corresponds the edge-set F ⊆ E, where to every edge e′ = uvu corresponds the edge uv,
and the other edges appear in both F and F ′. Note that if F corresponds to F ′, then F, F ′ have the
same cost, namely, c(F ) = c′(F ′), and that if F ′ is a tree then so is F . Now we prove the following.
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Lemma 6.1 If T ′ is an inclusion-minimal solution to the obtained Group Steiner Tree instance then
the edge set T that corresponds to T ′ is a feasible solution to the Leaf-Constrained Steiner Tree instance.
Furthermore, to every inclusion-minimal solution T to the Leaf-Constrained Steiner Tree instance there
exists a feasible solution T ′ to the Group Steiner Tree instance, such that T corresponds to T ′.

Proof: Let T ′ be an inclusion-minimal solution to the obtained Group Steiner Tree instance. Let
T ⊆ E the edge set that corresponds to T ′. From the construction it is clear that T satisfies the
connectivity requirements. We show that T satisfies the degree constraints. Since T ′ is an inclusion
minimal solution, for every v ∈ L there is a unique node vu ∈ S(v) included in the tree T ′. This
implies degT (v) = 1.

Let T be an inclusion-minimal solution to the Leaf-Constrained Steiner Tree instance. If |S| = 2
then the statement is easily verified, so assume that |S| ≥ 3. There is no edge in T between two
nodes in L. Hence every v ∈ L has its unique neighbor in V \ L. The tree T ′ is obtained from T
by replacing for every v ∈ L the unique edge uv incident to v in T by the edge uvu. Clearly, T
corresponds to T ′, and it is easy to see that T ′ is a feasible solution to the obtained Group Steiner

Tree instance. �

Now we prove Part (ii) of Theorem 1.5, namely that if Leaf-Constrained Steiner Tree admits ratio
ρ(|V |, |S|) then Group Steiner Tree admits ratio ρ(|V |+ |S|, |S|). Given an instance G = (V,E), c,S
of Group Steiner Tree construct an instance G′ = (V ′, E′), c′, S′, L′ of Leaf-Constrained Steiner Tree as
follows.

• The pair G′, c′ is obtained from G, c by adding for every group Si a new node vi and connecting
vi to every node in Si by an edge of cost zero.

• The node sets S′, L′ are defined by S′ = L′ = {v1, . . . , v|S|}.

By the construction, |V ′| = |V |+ |S| and |S′| = |L′| = |S|. Now it is easy to see the following.

Lemma 6.2 If T ′ is a feasible solution to the obtained Leaf-Constrained Steiner Tree instance then
the tree T = T ′ \L is a feasible solution to the original Group Steiner Tree instance and c(T ) = c′(T ′).
Furthermore, to every feasible solution T to the Group Steiner Tree instance there exists a feasible
solution T ′ to the Group Steiner Tree instance, such that T = T ′ \ L. �

The proof of Theorem 1.5 is complete.

7 Discussion and open problems

In this paper we gave the first constant degree and cost approximation for the Degree-Constrained

2-Connected Subgraph problem. Recently, in [26], the method here was generalized to obtain constant
ratios for several other node-connectivity degree-constrained problems. For the Degree-constrained

k-Connected Subgraph problem the algorithm in [26] has ratio O(2k) for the degrees and O(log k) for
the cost. The main open problem here is to improve the O(2k) ratio for the degrees.

Now let us focus on the undirected Minimum Degree k-MST problem. We do not know a lower
bound for this problem beyond the standard APX-hardness result. However, it may be a bad sign that
the natural LP already has a large integrality gap. Hence a polylogarithmic approximation for this
problem may be hard or not possible to obtain. An easier task might be to get an nǫ-approximation
scheme, similar to the one that exists for the Directed Steiner Tree problem (see [3]).
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Finally, we note that for the Minimum Degree k-MST problem (the undirected variant) it is not
hard to design an “iterative merging” algorithm with ratio O(n/k) (c.f., [23]). Combined with our
result in Theorem 1.2 this implies ratio O(n1/3), which in terms of n might be better than the one
in Theorem 1.2. We do not know if this holds also for directed graphs. The main open problem here
is either to achieve a polylogarithmic ratio, or to give a strong evidence that a polylogarithmic ratio
is unlikely.
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