
Approximating Minimum Power Covers of Intersecting Families

and Directed Connectivity Problems

Zeev Nutov

The Open University of Israel

nutov@openu.ac.il

Abstract

Given a (directed) graph with costs on the edges, the power of a node is the maximum

cost of an edge leaving it, and the power of the graph is the sum of the powers of its nodes.

Motivated by applications for wireless networks, we consider fundamental directed connectivity

network design problems under the power minimization criteria. Let G = (V, E) be a graph

with edge-costs {c(e) : e ∈ E} and let k be an integer. We consider finding a minimum power

subgraph G of G that satisfies some prescribed property. The Min-Power k-Outconnected

Subgraph (MPk-OS) problem requires that G contains k pairwise internally-disjoint rv-paths

for all v ∈ V − r, for a given ”root” r ∈ V . The Min-Power k-Connected Subgraph (MPk-

CS) problem requires that G contains k pairwise internally-disjoint paths between every pair

of its nodes. In the edge connectivity variant the paths are required to be only edge disjoint.

For k = 1 all these problems are at least as hard as the Set-Cover problem and thus have an

Ω(ln |V |) approximation threshold. For k = Θ(n) the edge connectivity variants are unlikely to

admit a polylogarithmic approximation algorithm [23]. We give an O(k ln |V |)-approximation

algorithms for these four problems. Our algorithms are based on a much more general O(ln |V |)-
approximation algorithm for the problem of finding a min-power directed (edge-)cover of an

intersecting set-family; a set-family F is intersecting if X ∩ Y,X ∪ Y ∈ F for any intersecting

X,Y ∈ F , and an edge set F covers F if for every X ∈ F there is an edge in F entering X.

1 Introduction and preliminaries

1.1 Problems considered, motivation, and previous work

A large research effort focused on developing algorithms for finding a ”cheap” sub-network (sub-

graph) that satisfies prescribed requirements. In wired networks, where connecting any two nodes

incurs a cost, the goal is to find a subgraph of the minimum cost. In wireless networks, a range

(power) of the transmitters determines the resulting communication network; the power typically

increases at least quadratically in the transmission range. We consider finding a power assignment to

1

the nodes of a network such that the resulting communication network satisfies prescribed connectiv-

ity properties and the total power is minimized. Node-connectivity is more central here than edge-

connectivity, as it models stations crashes. For motivation and applications to wireless networks

(which is the same as of their min-cost variant for wired networks), see, e.g., [12, 1, 2, 13, 19, 3].

Let G = (V, E) be a (possibly undirected) graph with edge costs {c(e) : e ∈ E}. For v ∈ V , the

power p(v) = pc(v) of v in G (w.r.t. c) is the maximum cost of an edge leaving v in G (or zero,

if no such edge exists). The power p(G) =
∑

v∈V p(v) of G is the sum of the powers of its nodes.

Note that p(G) differs from the ordinary cost c(G) =
∑

e∈E c(e) of G even for unit costs; for unit

costs, if G is undirected, then c(G) = |E| and p(G) = |V |. For example, if E is a perfect matching

on V then p(G) = 2c(G). If G is a clique then p(G) is roughly c(G)/
√

|E|/2. For directed graphs,

the ratio between the power and the cost can be equal to the maximum outdegree of a node in G,

e.g., for stars with unit costs. The following statement shows that these are the extremal cases for

general edge costs.

Proposition 1.1 ([13]) c(G)/
√

|E|/2 ≤ p(G) ≤ 2c(G) for any undirected graph G = (V, E), and

if G is a forest then c(G) ≤ p(G) ≤ 2c(G). For any directed graph G holds: c(G)/dmax(G) ≤
p(G) ≤ c(G), where dmax(G) is the maximum outdegree of a node in G.

A simple connectivity requirement is when there should be a path from a specified node r to

any other node. In this case, the min-cost variant is just the Min-Cost Directed Tree problem which

is solvable in polynomial time, while the Min-Power Directed Tree problem is at least as hard as

the Set-Cover problem; combined with the result of [26] this implies an Ω(ln |V |)-approximation

threshold for this problem (namely, it cannot be approximated within C ln |V | for some universal

constant 0 < C < 1, unless P=NP).

An important network property is fault-tolerance. A graph is k-outconnected from r if it has

k internally disjoint rv-paths for any v ∈ V . When the paths only need to be edge-disjoint,

the graph is k-edge-outconnected from r. A graph is k-connected (resp., k-edge-connected) if it is

k-outconnected (resp., k-edge-outconnected) from every node. We consider the following general-

ization of the problems from [2], where the case k = 1 was studied:

Min-Power k-Outconnected Subgraph (MPk-OS):

Instance: A graph G = (V, E) with edge costs {c(e) : e ∈ E}, r ∈ V , and an integer k.

Objective: Find a min-power k-outconnected from r spanning subgraph G of G.

Min-Power k-Connected Subgraph (MPk-CS):

Instance: A graph G = (V, E) with edge costs {c(e) : e ∈ E} and an integer k.

Objective: Find a min-power k-connected spanning subgraph G of G.

When G is required to be k-edge-outconnected or k-edge-connected, we get the Min-Power

k-Edge-Outconnected Subgraph (MPk-EOS) and the Min-Power k-Edge-Connected Sub-

2

graph (MPk-ECS) problems, respectively (for undirected graphs they are equivalent). The ”re-

verse” problems of MPk-OS and MPk-EOS, when G should contain k disjoint vr-paths for every

v ∈ V are the Min-Power k-Inconnected Subgraph (MPk-IS) and the Min-Power k-Edge-

Inconnected Subgraph (MPk-EIS) problems, respectively.

Min-cost versions of these problems were studied extensively for both directed and undirected

graphs, see, e.g., [5, 9, 10, 8, 17, 4, 27, 14, 20, 21], and surveys in [7, 16, 22]. For directed

graphs the min-cost versions of MPk-OS and MPk-EOS are polynomially solvable, see [5] and

[9], respectively; more efficient algorithms are given in [10, 8]. The min-cost k-edge connected

subgraph problem admits a 2-approximation algorithm for both directed and undirected graphs

[17]. For the min-cost k-(node-)connected subgraph problem the best known approximation ratios

are: O(ln2 k·min{ n
n−k ,

√
k

ln k}) for both directed and undirected graphs [20], and O(ln k) for undirected

graphs with n ≥ 2k2 [4], where n = |V |.

In the min-power case, the best known approximation ratio for undirected MPk-ECS is O(min{k,
√

n})
[13], and for undirected MPk-CS is α+O(ln n) [19], where α is the best known approximation ratio

for the min-cost case. Directed min-power connectivity problems seem harder to approximate, and

the methods used in [13, 19] do not seem to work for the directed case. For example, for k = 1

undirected MPk-CS/MPk-ECS admits an easy 2-approximation algorithm by just taking a min-

cost spanning tree (the 2-approximation follows from Proposition 1.1), while its directed variant is

”Set-Cover hard”.

The problems MPk-OS and MPk-CS that we study are closely related to the undirected Node

Weighted Steiner Forest problem considered by Klein and Ravi [18]; one difference is that in our

problems the ”weight” of a node v is not fixed but depends on the chosen edges leaving v. The

Klein-Ravi algorithm [18] uses the set-cover greedy approach [15]. At each step a ”spider” (a

subtree having at most one node of degree more than 2) is chosen that minimizes the ratio of

spider’s weight over the number of terminal pairs it connects minus 1. They proved that greedily

adding spiders yields a 2H(n)-approximation algorithm (H(n) denotes the nth Harmonic number).

This was improved by Guha and Khuller [11] to (1.35 + ε)H(n) using a slight generalizations of

spiders. For directed MPk-OS with k = 1, [2] gave a 2H(n)-approximation algorithm using a similar

method. They also gave a (2H(n) + 1)-approximation algorithm for directed MPk-CS/MPk-ECS

with k = 1.

1.2 Results in this paper

Henceforth we consider mainly directed graphs, so, unless stated otherwise, ”graph” means ”di-

rected graph”. Suppose that G has a subgraph G0 = (V, E0) of power zero which is k0-outconnected

from r, and the goal is to augment G0 by a min-power edge-set F ⊆ E − E0 so that the resulting

graph G = G0 + F is k-outconnected from r. Formally:

3

Min-Power (k0, k)-Outconnectivity Augmentation (MP(k0, k)-OA):

Instance: A graph G0 = (V, E0) which is k0-outconnected from r, an edge set I on V with costs

{c(e) : e ∈ I}, and an integer k > k0.

Objective: Find a min-power edge set I ⊆ I so that G = G0 + I is k-outconnected from r.

In a similar way we define the augmentation versions of MPk-EOS, MPk-CS, and MPk-ECS, respec-

tively:

Min-Power (k0, k)-Edge-Outconnectivity Augmentation (MP(k0, k)-EOA);

Min-Power (k0, k)-Connectivity Augmentation (MP(k0, k)-CA);

Min-Power (k0, k)-Edge-Connectivity Augmentation (MP(k0, k)-ECA).

In [2], approximation algorithms are given for k0 = 0 and k = 1: a 2H(n)-approximation for the

Min-Power Directed Tree problem and a (2H(n) + 1)-approximation for the Min-Power Strongly

Connected Subgraph problem. As was mentioned, each one of these problems generalizes the Set-

Cover problem (c.f., [2]), and thus the results in [2] are essentially tight up to a constant factor.

For arbitrary k0, k we prove:

Theorem 1.2 There exist approximation algorithms with approximation ratios:

(i) 3(k − k0)H(n) = O(k ln n) for directed MP(k0, k)-OA and MP(k0, k)-EOA;

(ii) (k − k0)(3H(n) + 1) = O(k ln n) for directed MP(k0, k)-ECA;

(iii) 3(k − k0)H(n) + k = O(k ln n) for directed MP(k0, k)-CA.

Thus each of one of the problems MPk-OS, MPk-CS, MPk-EOS, MPk-ECS on directed graphs admits

an O(k ln n)-approximation algorithm.

The approximation ratio in Theorem 1.2 is O(ln n) for any fixed k, which is tight up to a

constant factor if k is ”small” (usually, k ≤ 3 in practical networks), but may seem weak if k is

large. However, it might be that a much better approximation algorithm does not exist: in [23] it

is proved that for k = Θ(n) directed MPk-EOS, MPk-EIS, and MPk-ECS, cannot be approximated

within O(2log1−ε n) for any fixed ε > 0, unless NP ⊆ DTIME(npolylog(n)). Note that these hardness

results are valid only for edge-connectivity and large values of k. For example, the edge-connectivity

problem MPk-EIS admits a k-approximation algorithm (see Section 4.2) and, in particular, is in

P for k = 1. Even more surprising is that directed MPk-IS (the node-connectivity variant of

MPk-EIS) is in P for any k, see [23]. In [23] is also proved that undirected MPk-OS admits an

O(ln n)-approximation algorithm for any k.

Table 1 summarizes the currently best known approximation ratios and thresholds for connec-

tivity problems considered. Note again that directed MPk-OS and MPk-IS are not equivalent; while

directed MPk-OS is set-cover hard, directed MPk-IS is in P.

Theorem 1.2 is just a summary of (some) applications of a general approximation algorithm for

4

Problem Edge-Connectivity Node-Connectivity

Undirected Directed Undirected Directed

MPk-IS 2k − 1/3 [19] k min{k + 4, O(ln n)} [23] in P [23]

Ω(max{1/√σ, ln n}) [23] Ω(2log1−ε n) [23] APX for k = 1 [13]

MPk-OS 2k − 1/3 [19] O(k ln n) min{k + 4, O(ln n)} [23] O(k ln n)

Ω(max{1/√σ, ln n}) [23] Ω(2log1−ε n) [23] APX for k = 1 [13] Ω(ln n) for k = 1 [2]

MPk-CS 2k − 1/3 [19] O(k ln n) O(α + ln n) [19] O(k ln n)

Ω(max{1/√σ, ln n}) [23] Ω(2log1−ε n) [23] APX for k = 1 [13] Ω(ln n) for k = 1 [2]

Table 1: Currently best known approximation ratios and thresholds for some min-power connec-

tivity problems. Results without references are proved in this paper. σ is is the best ratio for the

Densest k-Subgraph problem; currently σ is roughly n−1/3 [6]. α is the best ratio for the Min-Cost

k-Connected Subgraph problem; currently, α = O(ln k ·min{
√

k, n
n−k ln k}) for both directed and

undirected graphs [21], and α = O(ln k) for undirected graphs with n ≥ k(2k − 1) [4].

finding a min-power (edge-)cover of a certain widely studied type of set-families.

Definition 1.1 Let F ⊆ 2V be a set-family of subsets of a groundset V .

• F is an intersecting family if X ∩ Y, X ∪ Y ∈ F for any intersecting X, Y ∈ F .

• An edge set I covers F if for every X ∈ F there is an edge in I entering X, that is, there is

uv ∈ I with u ∈ V −X and v ∈ X.

Min-Power Set-Family (Edge-)Cover (MPSFC):

Instance: A set-family F on a groundset V , an edge set I on V , and edge costs {c(e) : e ∈ I}.
Objective: Find a min-power F-cover I ⊆ I.

We give a 3H(|V |)-approximation algorithm for MPSFC with intersecting F , but its polynomial

implementation requires that certain queries related to F can be answered in polynomial time. We

need some definitions in order to present the assumptions we need.

Definition 1.2 A member of a set-family F is an F-core if it does not contain two disjoint mem-

bers of F ; an inclusion minimal F-core is a min-F-core and an inclusion maximal F-core is a

max-F-core. Let C(F) denote the family of min-F-cores, and let M(F) denote the family of max-

F-cores. For C ∈ C(F) let MC ∈M(F) be the max-F-core containing C.

We will often use core, min-core, and max-core instead of F-core, min-F-core, and max-F-core,

respectively, if F is understood. It is easy to see that:

Fact 1.3 Let F be an intersecting family. Then the max-F-cores are pairwise disjoint, and every

F-core is contained in a unique max-F-core and contains a unique min-F-core. Furthermore, if

X ∈ F intersects a min-core C ∈ C(F) then C ⊆ X.

5

Definition 1.3 For v ∈ V and C ∈ C(F) let F(v, C) denote the family of F-cores containing C

and not containing v. Given an edge set I on V , the residual family FI of F (w.r.t. I) consists of

all members of F that are uncovered by edges of I.

It is well known that if F is intersecting, so is FI , for any I. For any edge set I on V , make

the following two assumptions (we will show later they are valid for the problems considered, see

Section 4.1):

Assumption 1:

The families C(FI) and M(FI) can be computed in polynomial time.

Assumption 2:

Given an edge set I on V , a min-cost FI(v, C)-cover in I can be computed in polynomial time for

any C ∈ C(FI) and v ∈MC , where MC is the max-FI -core containing C.

Theorem 1.4 MPSFC with intersecting F admits a 3H(|C(F)|)-approximation algorithm under

Assumptions 1 and 2.

As shown below, Theorem 1.4 can be extended to so called ”crossing families”. A set-family F
is a crossing family if X ∩Y, X ∪Y ∈ F for any X, Y ∈ F so that X ∩Y, X−Y, Y −X, V − (X ∪Y)

are all nonempty. Let us say that an edge set I is a reverse cover of F if for every X ∈ F there is

an edge in I leaving X. It is known that (c.f., [8]):

Fact 1.5 Let F be an intersecting family. If I is an inclusion minimal reverse cover of F then

dI(v) ≤ 1 for every v ∈ V (recall that dI(v) is the outdegree of v w.r.t. I), and thus the power of

I equals it cost. In particular, I is a min-power reverse cover of F if, and only if, I is a min-cost

reverse cover of F .

Any crossing family F can be naturally represented by two intersecting families as follows: fix

r ∈ V and define F in
r = {X ∈ F : r /∈ X} and Fout

r = {V −X : X ∈ F −F+
r }. Then I covers F if,

and only if, I is a cover of F in
r and I is a reverse cover of Fout

r . Combining with Fact 1.5, we get:

Corollary 1.6 The problem of finding a min-power cover of a crossing family F on V admits a

(3H(n) + 1)-approximation algorithm, if for some r ∈ V Assumptions 1 and 2 are valid for F in
r ,

and if a min-cost reverse cover of F out
r can be computed in polynomial time.

A set-function f on 2V is intersecting supermodular if f(X) + f(Y) ≤ f(X ∩ Y) + f(X ∪ Y)

for any intersecting X, Y ⊂ V . An edge set I covers f if in the graph (V, I) the indegree of every

X ⊂ V is at least f(X). A {0, 1}-valued set-function is intersecting supermodular if, and only

if, its support is an intersecting family. A natural question is whether Theorem 1.4 extends to

intersecting supermodular set-functions. As MPk-EOS is a particular case of the problem of finding

a min-power cover of an intersecting supermodular set-function, such an extension is unlikely due

to the hardness result of [23].

6

The main tool used to prove Theorem 1.4 is a decomposition of directed edge-covers of inter-

secting families into an analogue of spiders which we call ”star-covers”. This enables us to apply the

approach of [18] that uses ”set-cover approximation techniques” based on ”density” considerations.

However, ”star-covers” are much more complicated spiders, and the proof that any cover of an

intersecting set-family can be properly decomposed into ”star-covers” is substantially harder than

the proof that every tree can be properly decomposed into spiders, see Section 2. Specifically, we

use, among others, the method of ”uncrossing” sets (c.f., [27]). Unlike [18], and other papers that

used the approach of [18], e.g., [2], a star cover is not necessarily a tree, and as we deal with covers of

set-families, we cannot use specific graph properties. Furthermore, the parts of our decomposition

are not node disjoint, but only edge disjoint. Another major difficulty is that inclusion minimal

edge-covers of intersecting families can contain cycles. This is the reason why our approximation

ratio is 3H(n), and not 2H(n) as in [18, 2], where minimal feasible solutions are trees. (However,

with some additional effort, it is possible to improve the ratio for MPSFC with intersecting F to

(2 + ε)H(n), see a Remark at the end of Section 3.) Recently, based on the ideas of this paper, a

more involved decomposition of undirected edge-covers was derived in [25] for so called ”uncross-

able” set-families, which are related to the undirected Node Weighted Steiner Network problem –

a generalization of the Node Weighted Steiner Forest problem considered in [18].

This paper is organized as follows. In the rest of this section we introduce some notation used

in the paper. Section 2 presents our decomposition of directed edge-covers of intersecting families.

Theorems 1.4 and 1.2 are proved in Sections 3 and 4, respectively.

A preliminary version of this paper is [24].

1.3 Notation

Let G = (V, E) be a directed graph. For disjoint X, Y ⊆ V let δG(X, Y) = δE(X, Y) be the

set of edges from X to Y in E. For brevity, δE(X) = δE(X, V − X) is the set of edges in E

leaving X, dE(X) = |δE(X)|, δin
E (X) = δE(V − X, X) the set of edges in E entering X, and

din
E (X) = |δin

E (V −X)| is the indegree of X. Given edge costs {c(e) : e ∈ E}, the power of a node v

in G (with respect to c) is p(v) = maxe∈δE(v) c(e), and the power of G is p(G) = pE(V) =
∑

v∈V p(v).

For an edge set I, let tails(I) = {u : uv ∈ I} denote the set of tails of the edges in I. Throughout

the paper, let G = (V, E) denote the input graph with nonnegative costs on the edges. Let n = |V |
and m = |E|. Given G, our goal is to find a minimum power spanning subgraph G = (V, E) of G
that satisfies some prescribed property. We assume that a feasible solution exists; otherwise our

algorithms can be easily modified to return an error message. Let opt denote the optimal solution

value of an instance at hand.

7

(b)(a)

s s

Figure 1: Star-covers (min-cores are shown by dark gray circles).

2 Decomposition of covers of intersecting families

We start by briefly describing the decomposition of [18] of a (directed) tree into spiders.

Definition 2.1 A spider is a directed tree with at most one node of outdegree ≥ 2. A spider

decomposition of a directed tree T is a collection of node disjoint spiders, each of them is a subtree

of T .

Lemma 2.1 ([18]) Any directed tree T rooted at r admits a spider decomposition D so that:

(i) D has at most one spider with one leaf (and root r);

(ii) every leaf of T belongs to exactly one spider of D.

Proof: By induction on the number ` of leaves in T . If ` = 1 the statement is trivial; then T is

a path with one leaf and root r. Otherwise, T has a node s of outdegree ≥ 2 so that the subtree

S that consists of s and all its descendants is a spider with at least 2 leaves. If S contains all the

leaves of T , we are done. Otherwise, s has an ancestor s′ so that the outdegree of s′ is at least

2, but every node in the set P of the internal nodes on the ss′-path in T has outdegree 1. Let

T ′ = T − (S ∪ P). Note that s′ is not a leaf of T ′, hence the sets of leaves of T ′ and S partition

the set of leaves of T . By the induction hypothesis, T ′ admits a spider decomposition D′ as in the

Lemma. Thus D′ ∪ {S} is also a spider decomposition as in the Lemma. 2

For directed covers of intersecting set-families, we define the following analogue of spiders:

Definition 2.2 Let F be an intersecting set-family on V . An edge set S on V is a star-cover (with

center s) of C ⊆ C(F) if (see Fig 1) S can be partitioned into F(s, C)-covers {SC : C ∈ C}, such

that if C = {C} then s /∈MC , and such that for every C ∈ C:
• Edges in SC − δS(s) has their both endnodes in MC , and no two such edges share a tail.

• If s /∈MC , then SC contains a unique edge eMC
from s to MC .

We now state our definition of ”star-cover decomposition” of directed covers of intersecting

set-families.

8

Figure 2: An example showing that the bound d2|C(F)|/3e in Theorem 2.2 is tight.

Definition 2.3 Let I be an F-cover of an intersecting set-family F on V . A collection S =

{S1, . . . , Sq} of star-covers is a star-cover decomposition of I if tails(Si) ∩ tails(Sj) = ∅ for all

i 6= j = 1, . . . , q, and if every C ∈ C(F) is covered by at most one member of S.

The main result of this section is the following:

Theorem 2.2 (The Star-Cover Decomposition Theorem)

Any directed cover I of an intersecting family F admits a star-cover decomposition that covers at

least d2|C(F)|/3e min-cores.

Example: The bound d2|C(F)|/3e in Theorem 2.2 is tight even for laminar families, see Fig.2.

In this example, there are three distinct star-covers each covering two min-cores, but there is no

star-cover decomposition that covers all min-cores.

The proof of Theorem 2.2 follows. In what follows, let F be an intersecting family and let I be

an inclusion minimal F-cover. We need to establish some properties of I. By the minimality of I,

for every e ∈ I there exists We ∈ F such that δin
I (We) = {e}; we call such We a witness set for e;

note that e might have several distinct witness sets.

Lemma 2.3 Let We, Wf be intersecting witness sets of two distinct edges e, f ∈ I. Then We ∩Wf

is a witness for one of e, f and We ∪Wf is a witness for the other.

Proof: Note that there is an edge in I entering We∩Wf and there is an edge in I entering We∪Wf ;

this is since We, Wf ∈ F implies that We ∩Wf , We ∪Wf belong to F and thus each of them is

covered by some edge in I. However, if for arbitrary sets X, Y an edge covers one of X ∩ Y, X ∪ Y

then it also covers one of X, Y , and if some edge covers both X ∩ Y and X ∪ Y then it must cover

both X and Y . Thus no edge in I − {e, f} can cover We ∩Wf or We ∪Wf , so one of e, f covers

We ∩Wf , and thus the other must cover We ∪Wf . 2

Corollary 2.4 din
I (C) = 1 for any min-F-core C.

Proof: Clearly, δin
I (C) ≥ 1 for any min-F-core C, since I is an F-cover and C ∈ F . Assume

to the contrary that there are distinct e, f ∈ δin
I (C) for some min-F-core C; let We, Wf be their

9

witness sets. Then C ⊆ We, Wf , so We, Wf intersect, and e, f ∈ δin
I (We ∩Wf). This contradicts

Lemma 2.3. 2

Lemma 2.5 Let M ∈ M(F) and let I(M) = {uv ∈ I : u, v ∈ M}. Assuming I(M) 6= ∅, there

exists a unique ordering e1, . . . , eq of I(M) and a nested family X1 ⊂ X2 · · · ⊂ Xq ⊂ M of sets in

F so that: Xj+1 is a min-core of FIj
where Ij = {e1, . . . , ej} (and I0 = ∅), and ej is the unique

edge in I entering Xj. In particular, dI(M)(v) ≤ 1 for every v ∈M .

Proof: Let X1 be the minimal F-core contained in M . By Corollary 2.4 there is a unique edge in

I entering X1, say e1. If e1 covers M , then e1 covers all cores contained in M , by Fact 1.3. Since

edges in I(M) can cover only cores contained in M , this implies I(M) = ∅, by the minimality of I;

thus the statement holds in this case. Otherwise, let X2 be the minimal Fe1
-core contained in M

and let e2 be the unique edge in I entering X2, and so on, until M is covered by some edge eq+1.

In such a way we obtain sequences e1, . . . , eq of edges in I(M) (an additional edge eq+1 /∈ I(M)

since it enters M), and X1 ⊂ X2 · · · ⊂ Xq ⊂M of sets in F so that: Xj+1 is the core of FIj
, where

Ij = {e1, . . . , ej} and ej is the unique edge in I entering Xj . The statement follows. 2

Corollary 2.6 Let M ∈ M(F). Then p(I(M)) = c(I(M)), namely, the power of I(M) equals its

cost. Furthermore, let eM be the unique edge in I entering the minimal core X of FI(M) contained

in M (possibly X = M). Then I(M) + eM covers {Y ∈ F : Y ⊆M}.

An intersecting family F is simple if every member of F is an F-core. It would be sufficient

to prove Theorem 2.2 for simple families. If F is not simple, we may replace F by the family of

F-cores; it is easy to see that the latter is intersecting if F is.

Corollary 2.7 If F is simple then δin
I (M) = {eM} for any max-F-core M , where eM is as in

Corollary 2.6.

Proof: Suppose to the contrary that there is f ∈ I−{eM} entering M . Let X be as in Corollary 2.6.

Then X is a witness set for eM . Let Wf be a witness set for f . Since F is simple, Wf ⊆ M . But

then both eM and f enter X ∪Wf , contradicting Lemma 2.3. 2

Remark: Corollary 2.7 is not true if F is not simple. A counterexample is: V = {x, y, u, v},
F = {{x}, {x, v}, {x, v, y}}, and I = {uv, xy, yx}. Then M = {x, v} is a max-core, eM = yx, but

uv also enters M . Note that {x, v, y} is a witness set for uv.

For every M ∈ M(F) let eM be the (unique, by Corollary 2.7) edge in I entering M . Let us

shrink every max-core into a single node, obtaining a graph J . Since F is simple and since I is a

minimal F-cover, the edge-set of J is exactly {eM : M ∈ M}. In J , the indegree of every node

is at most 1, by Corollary 2.7; furthermore, every node of indegree 1 corresponds to a shrunken

max-core. Thus J is a collection of node-disjoint cycles and directed trees. From every cycle of

length ≥ 3, delete one edge. For every deleted edge eM :

- Remove from F all the members of F(M) = {X ∈ F : X ⊆M}.

10

j

i

1

e

e

e

(b)(a)

u’
M M’

e
R

s
s s

Figure 3: Illustration to the proof of Lemma 2.8. (a) J is a 2-cycle. (b) J is a directed tree.

- Remove from I the set I(M) of edges with both end-nodes in M .

Note that at most b|C(F)|/3c max-cores were removed in this way, hence at least d2|C(F)|/3e max-

cores remain. It is easy to see that after these changes we obtain a new intersecting family F , and

a new F-cover I. Hence the following statement implies Theorem 2.2:

Lemma 2.8 If J has no cycles of length ≥ 3, then I admits a star-cover decomposition that covers

all min-cores.

Proof: Since J consists of node-disjoint 2-cycles and directed trees, it is sufficient to consider two

cases: the case when J is a 2-cycle, and the case when J is a directed tree.

Suppose that J is a 2-cycle connecting two max-cores M and M ′ (see Fig. 3(a)). Let e = su′

be the edge of this cycle from M to M ′, and let C and C ′ be the min-cores contained in M and

M ′, respectively. A star-cover that covers both C and C ′ is obtained by adding to {e}∪ I(M ′) any

F(s, C)-cover contained in I(M).

Let us now consider the case when J is a directed tree with root r. Every node of J distinct

from r is a shrunken max-core; we thus identify such a node with the corresponding max-core. We

prove the statement by induction on the number of max-cores in J . The induction base is when

J contains a unique max-core M . Then S = I(M) ∪ {eM} is a star-cover with center s = r, of

the type depicted in Fig. 1(b). Otherwise, J has a node/max-core R (a father of the farthest node

from r) so that all its children are leaves (see Fig. 3(b)). Let Y = tails(δ(R)) be the set of tails of

the edges in J leaving R, and let Z = tails(I(R)) be the set of tails of edges in I(R). Consider two

cases: Y − Z 6= ∅ and Y ⊆ Z.

If there is s ∈ Y −Z, then we form the star-cover S =
⋃{{eM} ∪ I(M) : eM ∈ δJ(s)} by taking

every edge eM ∈ δ(s) leaving s together with the edges with both endpoints in M . By Corollary 2.6,

S covers the set F(M) = {X ∈ F : X ⊆ M} for every M ∈ M(F) so that eM ∈ δ(s). Now, set

11

I ′ ← I − S and F ′ ← F −⋃eM∈δ(s)F(M). The residual instance F ′, I ′ satisfies the assumptions of

the lemma, and thus, by the induction hypothesis, admits a star-cover decomposition S ′. Since no

edge in S has a tail in common with an edge in I ′ = I − S, S ′ ∪ {S} is a star-cover decomposition

of I as required.

Now suppose that Y ⊆ Z. Let e1, . . . , eq be an ordering of the edges in I(R) as in Lemma 2.5,

and let j be the least index so that s = tail(ej) ∈ Y (see Fig 3(b)). Let C be the min-core contained

in R, and let SC = {ej , . . . , e1}. By Lemma 2.5, SC is an (s, C)-cover. We now proceed as in the

case s ∈ Y − Z, except that we set

S =
⋃

{{eM} ∪ I(M) : eM ∈ δ(s)}
⋃

SC

so now S also covers C. We then set I ′ ← I − (S ∪ I(R)) and F ′ ← F − ⋃eM∈δ(s)F(M)
⋃F(R),

and apply the induction hypothesis in the same way as in the case s ∈ Y − Z. 2

The proof of Theorem 2.2 is now complete.

3 Covering intersecting families (Proof of Theorem 1.4)

We use a well known result about the performance of a greedy algorithm for the following type of

”covering problems”:

Covering Problem

Instance: Set-functions ν, p on groundset I given by an evaluation oracle, so that ν is integral and

ν(I) = 0.

Objective: Find I ⊆ I with ν(I) = 0 and with p(I) minimized.

Definition 3.1 A set-function f on 2I is:

• decreasing (resp, increasing) if f(I2) ≤ f(I1) (resp., if f(I2) ≥ f(I1)) for any I1 ⊂ I2 ⊆ E.

• subadditive if f(I1 ∪ I2) ≤ f(I1) + f(I2) for all I1, I2 ⊆ E.

In the Covering Problem, ν is the deficiency function (it is assumed to be decreasing and

measures how far is I from being a feasible solution) and p the payment function (assumed to be

increasing and subadditive). In our case, p is just the power function, and ν(I) is the number of

minimal cores in FI . Let ρ > 1 and let opt be the optimal solution value for the Covering Problem.

The ρ-Greedy Algorithm starts with I = ∅ and iteratively adds subsets of I − I to I one after the

other using the following rule. As long as ν(I) ≥ 1 it adds to I a set S ⊆ I − I so that

σI(S) =
p(S)

ν(I)− ν(I + S)
≤ ρ · opt

ν(I)
. (1)

σI(S) is called the density of S. The following statement is known, c.f., [15, 18].

12

Theorem 3.1 For any Covering Problem with ν decreasing and p increasing and subadditive, the

ρ-Approximate Greedy Algorithm computes a solution I with p(I) ≤ ρH(ν(∅)) · opt.

In the rest of this section we prove the following statement:

Lemma 3.2 Let ν(I) be the number of minimal cores in FI . Then an edge set S satisfying (1)

with ρ = 3 can be found in polynomial time under Assumptions 1 and 2.

For simplicity of exposition, let us revise our notation and use F instead of FI , and let ν = ν(∅).
Then we need to show that under Assumptions 1 and 2 one can find in polynomial time an edge

set S so that:

σ(S) =
p(S)

ν − ν(S)
≤ 3 · opt

ν
. (2)

Lemma 3.3 For a star-cover S that covers d min-cores let ∆(S) = d − 1 if d ≥ 2 and ∆(S) = 1

if d = 1. Then ν − ν(S) ≥ ∆(S).

Proof: Clearly, min-F-cores not covered by S remain min-cores of FS . Suppose that there exists

a min-FS-core X that is not a min-F-core. Let C be any min-F-core contained in X. Clearly,

C /∈ FS . Thus C is covered by S. This implies that S covers every member of F(s, C), where s is

the center of S, and s /∈MC if d = 1. We claim that s ∈ X and thus:

- If d = 1 then no such X exists. Otherwise, since s /∈ MC , S covers every F-core containing C;

hence X must contain a min-F-core C ′ 6= C. But then C ′, and not X, is a min-FS-core.

- If d ≥ 2 then there is at most one such X. This is since the min-FS-cores are disjoint.

Suppose to the contrary that s /∈ X. Then X contains another min-F-core C ′ 6= C; otherwise,

X ∈ F(s, C), but S covers F(s, C), contradicting that X ∈ FS . Consequently, s /∈MC or s /∈MC′ ,

say s /∈ MC . Let Y = X ∩MC . Then Y ∈ F and Y ⊆ MC , thus S covers Y , since S covers all

F-cores contained in MC . Consequently, there is an edge uv ∈ S entering Y . Since uv does not

cover X, we must have u ∈ X −M . But then uv covers MC , implying, by the definition of a star

cover, that u = s. 2

Lemma 3.4 There exists a star-cover S for which (2) holds.

Proof: Let I be an optimal F-cover, so p(I) = opt. By Theorem 2.2, I admits a star-cover

decomposition S1, . . . , St that cover at least 2|C(F)|/3 = 2ν/3 min-cores. The statement now follows

by a simple averaging argument. Let pi = p(Si) and let ∆i = ∆(Si). We have
∑t

i=1 pi ≤ p(I) = opt

and
∑t

i=1 ∆i ≥ (2/3) · ν/2 ≥ ν/3. Thus
∑t

i=1 pi
∑t

i=1 ∆i
≤ 3 · p(I)

ν
.

Consequently, there must be an index i so that pi/∆i ≤ 3p(I)/ν. Let S = Si. Then ν− ν(S) ≥ ∆i,

by Lemma 3.3. Thus we have:

σ(S) =
p(S)

ν − ν(S)
≤ 3 · p(I)

ν
= 3 · opt

ν
.

13

2

Lemma 3.5 A star-cover S that minimizes p(S)/∆(S) can be found in polynomial time under

Assumptions 1 and 2.

Proof: First compute the families C(F) and M(F); this can be done in polynomial time, by

Assumption 1. Second, for every v ∈MC for some C ∈ C(F) define the weight w(v) of v to be the

minimum cost of an F(v, C)-cover among the edges with both endpoints in MC , if such exists, and

w(v) =∞ otherwise; this can be done in polynomial time, by Assumption 2. Assume that we know

the center s and its power p(s) = pS(s) in S; there are O(n2) distinct choices. Among the edges

leaving s, delete all edges of cost > p(s), and zero the costs of the others. Construct an auxiliary

weighted star T with center s as follows. For every core C ∈ C(F) add a node vC and the edge

svC . The weight w(vC) of vC is defined by:

- If s /∈ MC , then w(vC) = min{w(v) : v ∈ MC , sv ∈ E , c(sv) ≤ p(s)} is the minimum weight of a

neighbor in MC of s, if such exists, and w(vC) =∞ otherwise.

- If s ∈ MC , then let s0 = vC , and w(s0) is the minimum cost of an F(s, C)-cover, if such exists,

and w(s0) =∞ otherwise.

We now see that our goal is to compute a sub-star S of T , S 6= {ss0}, that minimizes

W (S)/ max{|LS | − 1, 1}, where W (S) = p(s) + w(LS) and LS is the set of leaves of S. Sort

the leaves of T distinct from s0 by increasing weight, say w(v1) ≤ w(v2) ≤ . . . ≤ w(vq). Let

Wj =
∑j

i=1 w(vi). Assuming that ss0 /∈ S, let σ1 = p(s) + W1 and σj = (p(s) + Wj)/(j − 1),

j = 2, . . . , q. Assuming that ss0 ∈ S, let σj = (p(s) + w(s0) + Wj)/j, j = 1, . . . , q. In both cases,

we can find the index j for which σj is minimum, which determines the required star-cover. 2

The proof of Lemma 3.2, and thus also of Theorem 1.4 is complete.

Remark: The approximation ratio in Theorem 1.4 can be improved to (2 + ε)H(n) if, in addition

to star-covers, we will also consider ”`-cycle-covers”; `-cycle-cover Q is obtained by taking a cycle

of length ≤ ` on max-cores, and adding an F(v, C)-cover contained in MC for every cycle edge

uv entering a max-core MC . An analogue of Theorem 2.2 would state that any cover of an inter-

secting family F admits a decomposition into star-covers and `-cycle-covers that covers at least

(` + 1)|C(F)|/(` + 2) min-cores. An analogue of lemma 3.3 would state that ν − ν(Q) ≥ `− 1, if Q

is obtained from a cycle of length `; hence σ(Q) ≤ p(Q)/(`− 1) for such Q. For any `, we can find

an `-cycle-cover Q minimizing σ(Q) in time nq(`), where q(`) is polynomial in ` (details omitted).

Setting ` = b1/εc, we obtain a (2 + ε)H(n)-approximation scheme.

14

4 Proof of Theorem 1.2

4.1 Part (i)

We give a 3H(n)-approximation algorithm for MP(`, `+1)-OA (resp., MP(`, `+1)-EOA), that is, for

the problems of finding a min-power augmenting edge set that increases the outconnectivity (resp.,

edge-outconnectivity) from r by 1. We apply this algorithm sequentially for ` = k0, . . . , k − 1

to produce edge sets Ik0
, . . . , Ik−1 so that G0 + (Ik0

+ · · · + I`) is (` + 1)-outconnected (resp.,

(` + 1)-edge-outconnected) from r, and p(I`) ≤ 3H(n) · opt, ` = k0, · · · , k − 1. Consequently,

G = G0 + (Ik0
+ · · ·+ Ik−1) is k-outconnected from r, and

p(Ik0
+ · · ·+ Ik−1) ≤

k−1
∑

`=k0

p(I`) ≤
k−1
∑

`=k0

3H(n) · opt = 3(k − k0)H(n) · opt .

A graph G = (V, E) is `-edge-outconnected from r to T if it has ` pairwise edge-disjoint rt-paths

for every t ∈ T . Using Theorem 1.4, we give a 3H(n)-approximation algorithm for the following

problem, that includes both MP(`, ` + 1)-OA and MP(`, ` + 1)-EOA.

Instance: A graph G0 = (V, E0) which is `-edge-outconnected from r to T and an edge set I on V

with costs {ce : e ∈ I} so that every edge in I has its head in T .

Objective: Find a min-power edge-set I ⊆ I so that G = G0 + I is (` + 1)-edge-outconnected from

r to T .

MP(`, ` + 1)-EOA is a special case of this problem when T = V . For MP(`, ` + 1)-OA apply the

following approximation ratio preserving reduction. Given an instance G0 = (V, E0), `, r, I, c of

MP(`, ` + 1)-OA obtain an instance G′
0 = (V ′, E′

0), T
′, `′, r′, I ′, c′ of the above problem as follows.

Replace every node v ∈ V by the two nodes vt, vh connected by the edge vtvh of cost zero, and

replace every edge uv ∈ E0 ∪ I by the edge uhvt having the same cost as uv (which is zero if

uv ∈ E0). Let r′ = rh, T ′ = {vt : v ∈ V }, and

E′
0 = {uhvt : uv ∈ E0}+ {vtvh : v ∈ V }, I ′ = {uhvt : uv ∈ I} .

Note that c′(e) = 0 for every e ∈ E ′
0. This establishes a bijective correspondence between edges

in I and the edges in I ′. It is not hard to verify (see [8] for details) that G′
0 = (V ′, E′

0) is `-edge-

connected from r′ to T ′. Furthermore, if I ′ ⊆ I corresponds to I ⊆ I then:

(i) I is a feasible solution if, and only if, I ′ is a feasible solution.

(ii) dI(v) = dI′(vh) and dI′(vt) = 0 for every v ∈ V ; thus p(I) = p(I ′).

We now show that above problem can be reduced to the min-power intersecting family cover

problem, so that Assumptions 1 and 2 are valid. We say that X ⊆ V − r is tight in G0 if X ∩T 6= ∅
and din(X) = `. From Menger’s Theorem we have:

15

Fact 4.1 Let G0 = (V, E0) be `-edge-outconnected from r to T . Then G = G0 + I is (` + 1)-edge-

outconnected from r to T if, and only if, I covers all the tight sets in G0.

We now see that our augmentation problem is equivalent to the problem of finding a min-power

cover of the family of tight sets. However, since only edges with head in T can be added, this is

equivalent to covering the family:

F = {X ∩ T : X is tight in G0} . (3)

It is well known (c.f. [8]) that:

Fact 4.2 The family F defined in (3) is intersecting.

It remains to show that given G0 = (V, E0), T, `, r, I, c, Assumptions 1 and 2 are valid for F
defined by (3). For Assumption 1 we need to show that the families C(F) andM(F) can be found

in polynomial time; we will show that this can be done using O(|T |) max-flow computations. For

Assumption 2 we will show that finding a min-cost F(v, C)-cover for given v ∈ V and C ∈ C(F)

can be done using one min-cost (` + 1)-flow computation.

The min-F-cores can be found using |T | max-flow computations as follows. For every t ∈ T ,

compute a maximum rt-flow. If its value is `, then in the corresponding residual network compute

the set Ct = {v ∈ T : t is reachable from v}. Then, among the sets Ct computed, output the

inclusion minimal ones.

After the min-F-cores are found, to find the max-F-cores, for every min-core C ∈ C(F) do the

following. Construct a graph G′
0 by adding to G0 an edge from r to every min-core distinct from

C. It is easy to see that these added edges do not cover any F-core containing C, but they cover

any other member of F . Thus MC is the largest node subset of V of indegree ` in G′
0. Hence MC

can be computed using the following known procedure. Choose t ∈ C and compute a maximum

rt-flow (the max-flow value is `, by the Max-Flow-Min-Cut Theorem); in the corresponding residual

network the set of nodes {v ∈ T : r is reachable from v} is the max-core MC containing C.

Now we show how to find a min-cost F(v, C)-cover for any v ∈ V and C ∈ C(F). The

construction is similar to the previous one: construct a network H = G0 + I, assigning zero costs

to edges in E0. Then add an edge from r to every min-core distinct from C, and compute a min-cost

(` + 1)-flow f from r to some t ∈ C. The edge set {e ∈ I : f(e) = 1} is the desired F(v, C)-cover.

4.2 Part (ii)

We give a (3H(n) + 1)-approximation algorithm for MP(`, ` + 1)-ECA. We apply this algorithm

sequentially for ` = k0, . . . , k − 1 to produce edge sets Ik0
, . . . , Ik−1 so that G0 + (Ik0

+ · · · + I`)

is (` + 1)-edge-connected, and p(I`) ≤ (3H(n) + 1) · opt, ` = k0, . . . , k − 1. Consequently, G =

16

G0 + (Ik0
+ · · ·+ Ik−1) is k-edge-connected, and

p(Ik0
+ · · ·+ Ik−1) ≤

k−1
∑

`=k0

p(I`) ≤
k−1
∑

`=k0

(3H(n) + 1) · opt = (k − k0)(3H(n) + 1) · opt .

Let us say that a graph is `-edge-inconnected to r (resp., `-inconnected to r) if its reverse graph

is `-edge-outconnected from r (resp., `-outconnected from r). The problem of finding a min-cost

augmenting edge set that increases the inconnectivity (or edge-inconnectivity) of a given directed

graph from ` to ` + 1 can be solved in polynomial time, c.f., [8]. Using Fact 1.5 and methods as in

the previous section, one can easily deduce:

Proposition 4.3 A min-power augmenting edge set that increases the edge-inconnectivity (or the

inconnectivity) of a given directed graph by 1 can be computed in polynomial time.

Now a (3H(n) + 1)-approximation algorithm for MP(`, ` + 1)-ECA can be deduced from Corol-

lary 1.6, and explicitly is as follows. Let r be an arbitrary node of G.

1. Using the algorithm as in part (i) of Theorem 1.2 compute an edge set I ′ so that G0 + I ′ is

(` + 1)-edge-outconnected from r.

2. Compute a min-power edge set I ′′ so that G0 + I ′′ is (` + 1)-edge-inconnected to r.

3. Output I = I ′ + I ′′.

Note that G = G0 + I is both (`+1)-edge-outconnected from r and (`+1)-edge-inconnected to

r. This implies that G is (`+1)-edge connected, so I is a feasible solution. To bound its power, let

OPT be an optimal solution for MP(`, ` + 1)-ECA. Since G0 + OPT is (` + 1)-edge-outconnected

from r we have p(I ′) ≤ 3H(n) ·p(OPT) = 3H(n) ·opt. Since G0 +OPT is (`+1)-edge-inconnected

to r we have p(I ′′) ≤ p(OPT) ≤ opt. Consequently,

p(I) = p(I ′ + I ′′) ≤ p(I ′) + p(I ′′) ≤ 3H(n) · opt + opt = (3H(n) + 1) · opt.

The proof of part (ii) of Theorem 1.2 is complete.

4.3 Part (iii)

We give a (3(k − k0)H(n) + k)-approximation algorithm for MP(k0, k)-CA. The algorithm is a

modification of the (k+1)-approximation algorithm of [20] for the Min-Cost k-Connected Subgraph

problem, and is as follows. Let S ⊆ V be a subset of k nodes, so |S| = k. Recall that in [23] is given

a polynomial time algorithm for MPk-IS – the problem of finding a min-power subgraph which is

k-inconnected to a given node s.

17

1. Construct a graph Gr by adding to G a new node r, and edges {rs : s ∈ S} of cost 0. Using

the algorithm as in Theorem 1.2 (i) compute an augmenting edge set Ir so that Gr + Ir is

k-outconnected from r, and delete from Ir the edges leaving r.

2. For every s ∈ S compute an optimal min-power augmenting edge set Is so that G0 + Is is

k-inconnected to s using the algorithm of [23].

3. Output Ir +
⋃

s∈S Is.

The fact that the algorithm computes a feasible solution was proved in [20] (this fact is inde-

pendent from the cost/power of the edge sets computed). For every s ∈ S we have p(Is) ≤ opt, by

[23]. We also have p(Ir) ≤ 3(k − k0)H(n) · opt. Consequently,

p

(

Ir +
⋃

s∈S

Is

)

≤ (3(k − k0)H(n) + |S|) · opt = (3(k − k0)H(n) + k) · opt = O(k ln n) .

The proof of part (iii) of Theorem 1.2 is complete.

Acknowledgment: I thank two anonymous referees for many useful comments.

References

[1] E. Althaus, G. Calinescu, I. Mandoiu, S. Prasad, N. Tchervenski, and A. Zelikovsky. Power effi-

cient range assignment for symmetric connectivity in static ad-hoc wireless networks. Wireless

Networks, 12(3):287–299, 2006.

[2] G. Calinescu, S. Kapoor, A. Olshevsky, and A. Zelikovsky. Network lifetime and power as-

signment in ad hoc wireless networks. In Proc. European Symposium on Algorithms (ESA),

LNCS 2832, pages 114–126, 2003.

[3] I. Caragiannis, C. Kaklamanis, and P. Kanellopoulos. Energy-efficient wireless network design.

Theory of Computing Systems, 39(5):593–617, 2006.

[4] J. Cheriyan, S. Vempala, and A. Vetta. An approximation algorithm for the minimum-cost

k-vertex connected subgraph. SIAM Journal on Computing, 32(4):1050–1055, 2003.

[5] J. Edmonds. Matroid intersection. Annals of discrete Math., pages 185–204, 1979.

[6] U. Feige, G. Kortsarz, and D. Peleg. The dense k-subgraph problem. Algorithmica, 29(3):410–

421, 2001.

[7] A. Frank. Connectivity and network flows, in Handbook of Combinatorics, eds. R. Graham,

M. Grötschel, and L. Lovász, pages 111–177. Elsvier Science, 1995.

18

[8] A. Frank. Increasing the rooted-connectivity of a digraph by one. Mathematical Programming,

84(3):565–576, 1999.

[9] A. Frank and E. Tardos. An application of submodular flows. Linear Algebra and its Applica-

tions, 114/115:329–348, 1989.

[10] H. N. Gabow. A representation for crossing set families with application to submodular flow

problems. In Proc. Symposium on Discrete Algorithms (SODA), pages 202–211, 1993.

[11] S. Guha and S. Khuller. Improved methods for approximating node weighted steiner trees and

connected dominating sets. Inf. Comput., 150(1):57–74, 1999.

[12] M. T. Hajiaghayi, N. Immorlica, and V. S. Mirrokni. Power optimization in fault-tolerant

topology control algorithms for wireless multi-hop networks. In Proc. Mobile Computing and

Networking (MOBICOM), pages 300–312, 2003.

[13] M. T. Hajiaghayi, G. Kortsarz, V. S. Mirrokni, and Z. Nutov. Power optimization for connec-

tivity problems. Math. Programming, 110(1):195–208, 2007.

[14] K. Jain. A factor 2 approximation algorithm for the generalized Steiner network problem.

Combinatorica, 21(1):39–60, 2001.

[15] D. S. Johnson. Approximation algorithms for combinatorial problems. Joural of Computing

and System Sciences, 9(3):256–278, 1974.

[16] S. Khuller. Approximation algorithms for for finding highly connected subgraphs, Chapter 6 in

Approximation Algorithms for NP-hard problems, D. S. Hochbaum Ed., pages 236-265. PWS,

1995.

[17] S. Khuller and U. Vishkin. Biconnectivity approximations and graph carvings. Journal of the

Association for Computing Machinery, 41(2):214– 235, 1994.

[18] C. Klein and R. Ravi. A nearly best-possible approximation algorithm for node-weighted

steiner trees. Journal of Algorithms, 19(1):104–115, 1995.

[19] G. Kortsarz, V. S. Mirrokni, Z. Nutov, and E. Tsanko. Approximation algorithms for minimum

power degree and connectivity problems. Manuscript, 2006.

[20] G. Kortsarz and Z. Nutov. Approximating node-connectivity problems via set covers. Algo-

rithmica, 37:75–92, 2003.

[21] G. Kortsarz and Z. Nutov. Approximating k-node connected subgraphs via critical graphs.

SIAM J. on Computing, 35(1):247–257, 2005.

19

[22] G. Kortsarz and Z. Nutov. Approximating minimum cost connectivity problems, in Approx-

imation Algorithms and Metaheuristics, T. F. Gonzalez ed., Ch. 58. Chapman & Hall/CRC,

2007.

[23] Y. Lando and Z. Nutov. On minimum power connectivity problems. To appear in ESA 2007.

[24] Z. Nutov. Approximating minimum power covers of intersecting families and directed connec-

tivity problems. In Proc. Workshop on Approximation algorithms (APPROX), LNCS 4110,

pages 236–247, 2006.

[25] Z. Nutov. Approximating Steiner networks with node weights. manuscript, 2007.

[26] R. Raz and S. Safra. A sub-constant error-probability low-degree test and a sub-constant error-

probability PCP characterization of NP. In Proc. Symposium on the Theory of Computing

(STOC), pages 475–484, 1997.

[27] D. P. Williamson, M. X. Goemans, M. Mihail, and V. V. Vazirani. A primal-dual approxima-

tion algorithm for generalized steiner network problems. Combinatorica, 15:435–454, 1995.

20

