Erratum: Approximating minimum-cost connectivity problems via uncrossable bifamilies

Zeev Nutov
The Open University of Israel

There are two errors in our paper “Approximating minimum-cost connectivity problems via uncrossable bifamilies” (ACM Transactions on Algorithms (TALG), 9(1), Article No. 1, 2012). In that paper we consider the (undirected) SURVIVABLE NETWORK problem. The input consists of a graph \(G = (V, E) \) with edge-costs, a set \(T \subseteq V \) of terminals, and connectivity demands \(\{ r_{st} > 0 : st \in D \subseteq T \times T \} \). The goal is to find a minimum cost subgraph \(H \) of \(G \) that for all \(st \in D \) contains \(r_{st} \) pairwise internally-disjoint \(st \)-paths. We claimed ratios \(O(k \ln k) \) for rooted demands when the set \(D \) of demand pairs forms a star, where \(k = \max_{st \in D} r_{st} \) is the maximum demand. This ratio is correct when the requirements are \(r_{st} = k \) for all \(t \in T \setminus \{ s \} \), but for general rooted demands our paper implies only ratio \(O(k^2) \) (which however is still the currently best known ratio for the problem). We also obtained various ratios for the node-weighted version of the problem. These results are valid, but the proof needs a correction described here.

Categories and Subject Descriptors: F.2.2 [Nonnumerical Algorithms and Problems]: Computations on discrete structures; G.2.2 [Discrete Mathematics]: Graph Algorithms

General Terms: Approximation Algorithms, Graph Connectivity, Rooted Connectivity, Edge-Costs, Node-Weights

1. BACKGROUND

All graphs here are assumed to be undirected, unless stated otherwise. For a graph \(H = (V, J) \) and \(Q \subseteq V \), the \(Q \)-connectivity \(\lambda^Q_H(s, t) \) of a node pair \(s, t \) is the maximum number of \(st \)-paths in \(H \) such that no two of them have an edge or a node in \(Q \setminus \{ s, t \} \) in common. Then \(Q = \emptyset \) is the case of edge-connectivity, and \(Q = V \) is the case of node-connectivity for which we use the notation \(\kappa_G(s, t) := \lambda^V_G(s, t) \). Given positive integral connectivity demands \(r = \{ r_{st} \geq 1 : st \in D \} \) over a set \(D \subseteq V \times V \) of demand pairs we say that \(H \) satisfies \(r \) if \(\lambda^Q_H(s, t) \geq r_{st} \) for all \(st \in D \). In our paper [Nutov 2012a] we consider variants of the following problem:

SURVIVABLE NETWORK

Input: A graph \(G = (V, E) \) with edge-costs \(\{ c_e : e \in E \} \), \(Q \subseteq V \), and connectivity demands \(\{ r_{st} > 0 : st \in D \} \).

Output: A minimum cost subgraph \(H \) of \(G \) that satisfies \(r \).
A node is a terminal if it belongs to some demand pair. Let T denote the set of terminals and $k = \max_{t \in D} r_{st}$ the maximum demand. We claimed ratio $O(k \ln k)$ for rooted demands – when the set D of demand pairs forms a star with center s. A correct result is:

Theorem 1.1. Survivable Network with rooted demands admits ratio $O(k^2)$; for rooted demands $r_{st} = k$ for all $t \in T \setminus \{s\}$ the problem admits ratio $O(k \ln k)$.

An important type of demands are element-connectivity demands, when $Q \subseteq V \setminus T$. We claimed the following ratios for Node-Weighted Survivable Network problems, in which instead of edge-costs we are given node-weights $\{w_v : v \in V\}$ and seek a minimum weight subgraph that satisfies r.

Theorem 1.2. Node-Weighted Survivable Network admits ratio $O(\ln |T|)$ for element-connectivity demands and ratio $O(k^2 \ln |T|)$ for rooted demands.

Theorem 1.2 is correct, but its proof in [Nutov 2012a] relies on an erroneous analysis of an approximation algorithm for the problem of finding a minimum node-weight edge-cover of an uncrossable biset family. A related paper of the author [Nutov 2013] that claims the same ratios for the more general Activation Survivable Network problem, has the same error. Recently, [Fukunaga 2015] showed by a non-trivial analysis, that for this problem the algorithm in [Nutov 2013] has ratios k times larger than the ones given in Theorem 1.2. However, as was observed earlier by [Vakilian 2013], for node-weighted problems, a slight modification of our algorithm from [Nutov 2012a] enables to achieve the same ratios as in Theorem 1.2.

2. **Biset Families and the Errors**

To indicate the errors in our paper [Nutov 2012a] we need some definitions.

Definition 2.1. An ordered pair $A = (A, A^+)$ of subsets of V with $A \subseteq A^+$ is called a biset; A is the inner part and A^+ is the outer part of A, and $\partial A = A^+ \setminus A$ is the boundary of A. We will also use the notation $A^* = V \setminus A^+$.

Definition 2.2. An edge covers a biset A if it goes from A^* to A. For an edge-set/graph J let $\delta_J(A)$ denote the set of edges in J covering A. We say that J covers a biset family F, or that J is an F-cover, if $\delta_J(A) \neq \emptyset$ for all $A \in F$. The residual family of F w.r.t. J is defined by $F^J = \{A \in F : \delta_J(A) = \emptyset\}$.

In [Nutov 2012a] we considered the following generic problem:

Biset-Family Edge-Cover

Input: A graph $G = (V, E)$ with edge costs $\{c_e : e \in E\}$ and a biset family F.

Output: A minimum cost edge-set $J \subseteq E$ that covers F.

A standard LP-relaxation for the problems is:

Biset-LP

\[
\min \left\{ \sum_{e \in E} c_e x_e : \sum_{e \in \delta_G(A)} x_e \geq 1 \ \forall A \in F, \ x_e \geq 0 \ \forall e \in E \right\}.
\]
Theorem 1.1. For simplicity of exposition we consider the node-connectivity case. We provide a short proof in Section 3. Here let us show that Theorem 2.1 implies

Definition 2.3. The intersection and the union of two bisets \(A, B\) are defined by \(A \cap B = (A \cap B^+, A^+ \cap B^+)\) and \(A \cup B = (A \cup B, A^+ \cup B^+)\). The biset \(A \setminus B\) is defined by \(A \setminus B = (A \setminus B^+, A^+ \setminus B)\).

Definition 2.4. A biset-family \(F\) is uncrossable if \(A \cap B, A \cap B \in F\) or if \(A \setminus B, B \setminus A \in F\) for all \(A, B \in F\). We say that bisets \(A, B\): T-intersect if \(A \cap B \cap T \neq \emptyset\), and T-co-cross if \(A \cap B^* \cap T \neq \emptyset\) and \(B \cap A^* \cap T \neq \emptyset\). A biset family \(F\) is T-uncrossable if \(A \cap T \neq \emptyset\) for all \(A \in F\) and if for any \(A, B \in F\) holds: \(A \cap B, A \cup B \in F\) if \(A, B\) T-intersect, and \(A \setminus B, B \setminus A \in F\) if \(A, B\) T-co-cross.

Definition 2.5. We say that \(B\) contains \(A\) and write \(A \subseteq B\) if \(A \subseteq B\) and \(A^+ \subseteq B^+\). Inclusionwise minimal members of a biset family \(F\) are called \(F\)-cores, or simply cores, if \(F\) is clear from the context. Let \(C(F)\) denote the family of \(F\)-cores. For an \(F\)-core \(C \in C(F)\), the halo-family \(F(C)\) of \(C\) is the family of those members of \(F\) that contain \(C\) and contain no \(F\)-core distinct from \(C\). \(F\) is a simple biset family if it is a union of its halo-families.

It is known that if \(F\) is uncrossable or T-uncrossable, then so is the residual family \(F^J\) of \(F\), for any edge-set \(J\). Let us say that an instance of the Biset-Family Edge-Cover problem admits LP-ratio \(\rho\) if there exists a polynomial time algorithm that computes an \(F\)-cover of cost at most \(\rho\) times the optimal value of the Biset-LP. Let \(\alpha\) and \(\beta\) denote the best known LP-ratios for Biset-Family Edge-Cover with simple uncrossable \(F\) and with uncrossable \(F\), respectively; currently \(\alpha = 4/3\) [Fukunaga 2016] and \(\beta = 2\) [Fleischer et al. 2006] (see also a simple combinatorial algorithm in [Nutov 2009]). A main results in [Nuto 2012a] is:

Theorem 2.1. There exists a polynomial time algorithm that given a T-uncrossable biset family \(F\) sequentially finds \(\gamma + \frac{4\gamma^2}{\gamma + 1}\) simple uncrossable subfamilies and one uncrossable subfamily of \(F\), such that the union of covers of these subfamilies covers \(F\), where \(\gamma = \max_{A, B \in F} |\partial A \cap B \cap T|\) and \(\ell\) is the least integer such that \(2^\ell \geq \gamma + 1\).

The proof of Theorem 2.1 in [Nuto 2012a] is correct, but to remove any doubts we provide a short proof in Section 3. Here let us show that Theorem 2.1 implies Theorem 1.1. For simplicity of exposition we consider the node-connectivity case.

Let us say that a graph \(H\) is \((k, t, s)\)-connected if \(\kappa_H(t, s) \geq k\) for all \(t \in T\). In the \((k, t, s)\)-Connectivity Augmentation problem the goal is to augment a \((k, t, s)\)-connected graph \(H\) by a minimum cost edge-set \(J\) such that \(H \cup J\) is \((k + 1)\)-\((t, s)\)-connected. We say that a biset \(A\) is a \((T, s)\)-biset if \(A \cap T \neq \emptyset\) and \(s \in A^+\), and call \(A\) tight if \(\psi_H(\delta A) := |\partial A| + |\delta_H(\delta A)| = k\). From Menger’s Theorem we get that \(H\) is \((k, t, s)\)-connected if and only if \(\psi_H(\delta A) \geq k\) for every \((T, s)\)-biset \(A\). Thus \(J\) is a feasible solution to the \((k, t, s)\)-Connectivity Augmentation problem if and only if \(J\) covers the family of tight bisets.

Lemma 2.2. The family of tight bisets of a \((k, t, s)\)-connected graph is T-uncrossable.

Proof. Note that for any two bisets \(A\) and \(B\) in any graph \(H\) we have

\[
\psi_H(\delta A) + \psi_H(\delta B) \geq \psi_H(\partial A) + \psi_H(\partial B) \quad \text{and} \quad \psi_H(\delta A) + \psi_H(\delta B) \geq \psi_H(\partial A) + \psi_H(\partial B).
\]

Now let \(A, B\) be tight bisets in a \((k, t, s)\)-connected graph \(H\). If \(A, B\) T-intersect then \(A \cap B, A \cup B\) are both \((T, s)\)-bisets, and since \(H\) is \((k, t, s)\)-connected we have...
$\psi_H(\mathcal{A} \cap \mathcal{B}) \geq k$ and $\psi_H(\mathcal{A} \cup \mathcal{B}) \geq k$. This implies $k + k = \psi_H(\mathcal{A}) + \psi_H(\mathcal{B}) \geq \psi_H(\mathcal{A} \cap \mathcal{B}) + \psi_H(\mathcal{A} \cup \mathcal{B}) \geq k + k$. Hence equality holds everywhere, and thus $\mathcal{A} \cap \mathcal{B}, \mathcal{A} \cup \mathcal{B}$ are both tight. The proof of the case when \mathcal{A}, \mathcal{B} T-co-cross is similar. \hfill \square

Observing that $|\partial \mathcal{A}| \leq k$ for any tight biset \mathcal{A} we get from Theorem 2.1 and Lemma 2.2 that the k-(T, s)-CONNECTIVITY AUGMENTATION problem admits LP-ratio $O(k)$. We compute a solution to SURVIVABLE NETWORK with rooted demands in k iterations, where at iteration $i = 1, \ldots, k$ we increase the (T, s)-connectivity from $i - 1$ to i. For general rooted demands we get ratio $\sum_{i=1}^{k} O(i) = O(k^2)$. For rooted uniform demands $r_{st} = k$ for all $t \in T$, this is equivalent to the so called “backward augmentation method” [Goemans et al. 1994]. It can be shown that in this case the cost of the solution computed at iteration i is $O \left(\frac{i}{k^{i+1}} \right)$ times the optimal solution value for the SURVIVABLE NETWORK with rooted uniform demands instance, so we get ratio $O(k \ln k)$ in this case.

In [Nutov 2012a] we considered a more general augmentation problem, when $\kappa_{H,U}(t,s) \geq \kappa_H(t,s) + 1$ should hold for all $t \in T$. A (t,s)-biset was called tight if $\psi_H(\mathcal{A}) = \kappa_H(s,t)$. It was claimed that this family of tight bisets is T-uncrossable. If this was so, then we could apply the backward augmentation method and get ratio $O(k \ln k)$ for arbitrary rooted demands. This family has some “uncrossing” properties, cf. [Nutov 2012b; 2016], but it is not T-uncrossable. To see this, consider the following example. Let H have node-set $\{s,a,b,t\}$, edge-set $\{sa, sb, ab\}$, and let $T = \{a, b, t\}$. Then $\kappa_H(a, s) = \kappa_H(b, s) = 2$ and $\kappa_H(t, s) = 0$. Consider the bisets \mathcal{A}, \mathcal{B} where $A = \{a, t\}$, $\partial A = \{b\}$, $B = \{b, t\}$, and $\partial B = \{a\}$. Note that:

(i) $\psi_H(\mathcal{A}) = \psi_H(\mathcal{B}) = 0$, hence by the definition in [Nutov 2012a] \mathcal{A}, \mathcal{B} are tight;
(ii) $A \cap B \cap T = \{t\}$, hence \mathcal{A}, \mathcal{B} T-intersect.

However, the biset $\mathcal{A} \cap \mathcal{B}$ is not tight, since $\partial(\mathcal{A} \cap \mathcal{B}) = |\{a, b\}| = 2 > 0 = \kappa_H(t, s)$.

Another error in [Nutov 2012a] is ratio $O(\ln |C(\mathcal{F})|)$ for NODE-WEIGHTED BISET-FAMILY EDGE-COVER with uncrossable \mathcal{F}; here instead of edge-costs we are given node-weights $\{w_v : v \in V\}$ and seek to minimize the node-weight $w(V(J))$ of a cover J of \mathcal{F}, where $V(J)$ denotes the set of end-nodes of the edges in J. As was observed by [Vakilian 2013] and [Fukunaga 2015], the proof has an error. Recently [Fukunaga 2015] showed that the algorithm in [Nutov 2012a] achieves ratio $O(\max_{\mathcal{A} \in \mathcal{F}} |\partial \mathcal{A}| \cdot \ln |C(\mathcal{F})|)$, which is the currently best known ratio for the problem.

This gives ratios by a factor of k larger than the ones in Theorem 1.2. A correct result (proved in Section 4) that enables to obtain the ratios in Theorem 1.2 is:

\textbf{Theorem 2.3. NODE-WEIGHTED BISET-FAMILY EDGE-COVER with uncrossable biset family \mathcal{F} admits ratio $O(\ln |C(\mathcal{F})|)$, provided that $w(\partial \mathcal{A}) = 0$ for all $\mathcal{A} \in \mathcal{F}$.}

In [Nutov 2012a] we claimed the same ratio without the condition “$w(\partial \mathcal{A}) = 0$ for all $\mathcal{A} \in \mathcal{F}$”, but the proof has an error. The algorithm in [Nutov 2012a] imitates the approach of [Klein and Ravi 1995] for the NODE-WEIGHTED STEINER FOREST problem. The algorithm starts with $J = \emptyset$ and repeatedly adds to J an edge-set S such that $w(V(J \cup S)) = O \left(\frac{\text{opt}}{\nu(S)} \right)$, where we use the notation $\nu(S) = |C(\mathcal{F}^S)|$; note that $\nu(\emptyset) = |C(\mathcal{F})|$. To indicate the error in [Nutov 2012a] let us state a correct statement, that is also needed for the proof of Theorem 2.3. For an \mathcal{F}-core $\mathcal{C} \in C(\mathcal{F})$ and $h \in V$ let us use the notation $\mathcal{F}(h, \mathcal{C}) = \{A \in \mathcal{F}(\mathcal{C}) : h \in A^*\}$.
LEMMA 2.4. Let F be an uncrossable biset-family, let $\emptyset \neq C \subseteq C(F)$, and let S be an edge-set with the following property: if $C = \{C\}$ then S covers $F(C)$, and if $|C| \geq 2$ then S covers $F(h, C)$ for all $C \in C$ for some node h that belongs to no boundary of a biset in $\bigcup_{C \in C} F(C)$. Then $\nu(S) \leq \nu(\emptyset) - |C|/3$.

PROOF. Each F^S-core contains some F-core. Let A be an F^S-core that contains some $C \in C$. We claim that A contains at least two F-cores or $|C| \geq 2$ and $h \in A$. Otherwise, $A \in F(C)$ (since A contains no F-core distinct from C) and $h \in A^*$ if $|C| \geq 2$ (since h belongs to no boundary of a biset in $F(C)$); hence $A \in F(C)$ if $|C| = 1$ and $A \in F(h, C)$ if $|C| \geq 2$, contradicting the definition of S. Now let p be the number of F^S-cores that contain at least two F-cores. The inner parts of the F^S-cores are pairwise disjoint, since F^S is uncrossable; thus h belongs to at most one inner part of them, and every F-core is contained in at most one F^S-core. From this we get that $\nu(S) \leq \nu(\emptyset) - p$, and that $p \geq 1$ if $|C| = 1$ and $p \geq \lfloor (|C| - 1)/2 \rfloor$ if $|C| \geq 2$. In both cases we have $p \geq |C|/3$, and the lemma follows. \qed

In [Nutov 2012a] Lemma 2.4 was stated without the condition on h, which is not correct. To see this, consider the following example from [Fukunaga 2015]. Let $V = \{h, u_1, \ldots, u_n\}$ and $F = \{C_1, \ldots, C_n\}$ where $C_i = (u_i, \{u_i, h\})$. Let $S = \{hu_1, \ldots, hu_n\}$. Then S covers $F(h, C_i)$ for every i, but $F^S = F$ and hence $\nu(S) = \nu(\emptyset)$.

Theorem 2.3 is proved in Section 4. Here let us show that Theorem 2.3 implies Theorem 1.2. Consider the case of rooted demands. As in edge-costs case, at iteration $i = 1, \ldots, k$ we increase the (T,s)-connectivity from $i - 1$ to i. Iteration i starts with a subgraph $H_{i-1} = (V_{i-1}, E_{i-1})$ with all nodes in V_{i-1} already included in the solution graph, so we set their weight to be 0 at the beginning of the iteration. At iteration i we compute an edge-set J_i that covers the family F_{i-1} of tight bisets of H_{i-1}. Since nodes in V_{i-1} have zero weight, $w(\partial A) = 0$ for all $A \in F_{i-1}$. We then use Theorem 2.1 to decompose the problem of covering F_{i-1} into $O(i)$ NODE-WEIGHTED BISET-FAMILY EDGE-COVER problems, each with an uncrossable biset family F. Each such F is a subfamily of F_{i-1} and thus satisfies the condition in Theorem 2.3; furthermore, F has at most $|T|$ cores. Thus the algorithm from Theorem 2.3 produces an $O(\ln |T|)$ approximate solution. As we cover $O(k^2)$ uncrossable families, ratio $O(k^2 \ln |T|)$ for rooted demands follows.

In the case of element-connectivity demands the problem is also decomposed into a sequence of k augmentation problems. Let $D_i = \{st \in D : r_{st} \geq i\}$, $i = 1, \ldots, k$. Iteration i starts with a subgraph $H_{i-1} = (V_{i-1}, E_{i-1})$ of G such that $\lambda^Q_{H_{i-1}}(s,t) \geq i - 1$ for all $st \in D_{i-1}$; all nodes in V_{i-1} are already included in the solution graph, so we set their weight to be 0 at the beginning of the iteration. During iteration i we compute an edge-set J_i such that the graph $H_i = H_{i-1} \cup J_i$ satisfies $\lambda^Q_H(s,t) \geq i$ for all $st \in D_i$. Given such H_i, we call a biset A on V tight if there exists $st \in D_i$ such that $|A \cap \{s, t\}| = |A^* \cap \{s, t\}| = 1$, $\partial A \subseteq Q$, and $\psi_{H_{i-1}}(A) = i - 1$. Then J_i is a feasible solution to the above augmentation problem if and only if J_i covers the family of tight bisets. It is known that this family is uncrossable. Furthermore, for any tight biset A we have $\partial A \subseteq V_{i-1}$, and thus $w(\partial A) = 0$ at iteration i, since all nodes in V_{i-1} have zero weight. Consequently, by the same argument as in the case of rooted demands we get ratio $O(\ln |T|)$ for the augmentation problem, and overall ratio $O(k \ln |T|)$.

ACM Journal Name, Vol. V, No. N, Month 20YY.
In what follows, we use the following property halo families c.f. [Nutov 2012a].

Lemma 2.5. Let \mathcal{F} be an uncrossable or a T-uncrossable biset family and let $A \in \mathcal{F}(C)$ and $B \in \mathcal{F}(C')$ for some $C, C' \in \mathcal{C}(\mathcal{F})$. If $C = C'$ then $A \cap B, A \cup B \in \mathcal{F}(C)$ and thus $\mathcal{F}(C)$ has a unique maximal member M_C - the union of all bisets in $\mathcal{F}(C)$. If $C \neq C'$ then $A \setminus B \in \mathcal{F}(C)$ and $B \setminus A \in \mathcal{F}(C')$ if \mathcal{F} is uncrossable, or if \mathcal{F} is T-uncrossable and A, B T-co-cross.

3. A SHORT PROOF OF THEOREM 2.1

The proof of Theorem 2.1 relies on the following key lemma.

Lemma 3.1. Let \mathcal{F} be a T-uncrossable biset family and let $p = \min_{A \in \mathcal{F}} |A \cap T|$. Then there exists a polynomial time algorithm that computes a partition Π of $\mathcal{C}(\mathcal{F})$ with at most $2\lceil \gamma/p \rceil + 1$ parts such that for each $C \in \Pi$ the family $\bigcup_{C \in \mathcal{C}} \mathcal{F}(C)$ is uncrossable, $\gamma = \max_{A, B \in \mathcal{F}} |\partial A \cap B \cap T|$. Furthermore, if $p \geq \gamma + 1$ then \mathcal{F} is uncrossable.

Proof. If $p \geq \gamma + 1$ then any $A, B \in \mathcal{F}$ must T-intersect or T-co-cross; thus \mathcal{F} is uncrossable in this case. We prove the first statement. For $C_i \in \mathcal{C}(\mathcal{F})$ let M_i be the inclusionwise maximal biset in $\mathcal{F}(C_i)$. Since \mathcal{F} is T-uncrossable, and by Lemma 2.5, for any $A_i \in \mathcal{F}(C_i)$ and $A_j \in \mathcal{F}(C_j)$ we have:

(i) A_i, A_j T-intersect if and only if $i = j$.
(ii) If $C_i \cap M_j^* \cap T$ and $C_j \cap M_i^* \cap T$ are both nonempty then A_i, A_j T-co-cross.

Construct an auxiliary directed graph J that has node-set $\mathcal{C}(\mathcal{F})$ and arc-set $\{C_i, C_j : C_i \cap T \subseteq \partial M_j\}$. The indegree of every node in \mathcal{F} is at most $\lceil \gamma/p \rceil$, by (i). This implies that every subgraph of the underlying graph of \mathcal{F} has a node of degree $\leq 2\lceil \gamma/p \rceil$. Hence the underlying graph of \mathcal{F} is $(2\lceil \gamma/p \rceil + 1)$-colorable, and such a coloring can be computed in polynomial time. Consequently, we can compute in polynomial time a partition Π of $\mathcal{C}(\mathcal{F})$ into at most $2\lceil \gamma/p \rceil + 1$ independent sets. For each independent set $C \in \Pi$, the family $\bigcup_{C \in \mathcal{C}} \mathcal{F}(C)$ is uncrossable, by (ii). \(\square\)

Now consider the following algorithm.

Algorithm 1: T-Uncrossable Biset-Family Edge-Cover(G, c, \mathcal{F})

1. $J \leftarrow \emptyset$
2. **while** $p := \min_{A \in \mathcal{C}(\mathcal{F})} |A \cap T| \leq \gamma$ **do**
3. **find** a partition Π of $\mathcal{C}(\mathcal{F})$ as in Lemma 3.1 with at most $2\lceil \gamma/p \rceil + 1$ parts
4. **for every** $C \in \Pi$ **find** an α-approximate cover J_C of $\bigcup_{C \in \mathcal{C}} \mathcal{F}_C(\mathcal{C})$
5. **for every** $C \in \Pi$ **do:** $J \leftarrow J \cup J_C$
6. **find** a β-approximate cover of J' of \mathcal{F} and add J' to J
7. return J

Let p_i denote the value of p at the beginning of iteration i in the while loop. Initially, $p_1 \geq 1$. Note that for any T-uncrossable family \mathcal{F}, if an \mathcal{F}-core C and $A \in \mathcal{F}$ T-intersect then $C \subseteq A$; this implies that if J covers all halo families of

ACM Journal Name, Vol. V, No. N, Month 20YY.
\(F \) then every \(F^j \)-core \(A \) contains at least two \(F \)-cores. From this it follows that \(p_i \geq 2p_{i-1} \) for all \(i \). Thus the number of iterations in the while loop is at most \(\ell - 1 \), where \(\ell \) is the least integer such that \(2^\ell \geq \gamma + 1 \). Consequently, the number of simple uncrossable biset families covered in the while loop is bounded by
\[
\sum_{i=0}^{\ell-1} (2^{\gamma/2^i} + 1) \leq \ell + 2^\gamma \sum_{i=0}^{\ell-1} (1/2)^i = \ell + 4\gamma(1 - 1/2^\ell) \leq \ell + 4\gamma^2/\gamma + 1.
\]

4. PROOF OF THEOREM 2.3

For an edge-set \(S \) let \(V(S) \) denote the set of endnodes of the edges in \(S \). Given a node-set \(R \) we say that edge-sets \(S_1 \) and \(S_2 \) are \q R\-disjoint if \(V(S_1) \cap V(S_2) \cap R = \emptyset \). A spider is a non-empty union \(S \) of paths \((\text{legs of } S) \) that start at the same node \(h \) (the head of \(S \)) such that no two of them have other node in common. Note that if \(S \) has legs \(S_1, \ldots, S_d \) then \(w(V(S)) = w_h + \sum_{i=1}^d w(V(S_i) \setminus \{h\}) \). We extend this definition to an \(R \)-spider by requiring that the legs of \(S \) are only \((R \setminus \{h\})\)-disjoint; if \(w_v = 0 \) for all \(v \in V \setminus R \) then we still have \(w(V(S)) = w_h + \sum_{i=1}^d w(V(S_i) \setminus \{h\}) \).

The following definition extends in a similar way \("F\)-spiders” from [Nutov 2012a].

Definition 4.1. Let \(F \) be a biset family on \(V \) and let \(R \subseteq V \). An \((F,R)\)-spider is a pair \((S,C)\), where \(\emptyset \neq C \subseteq \mathcal{C}(F) \) is the set of cores hit by the \((F,R)\)-spider, and \(S \) is an edge-set such that: if \(C = \{\emptyset\} \) then \(S \) covers \(F(C) \), and if \(|C| \geq 2 \) then \(S \) is a union of (possibly empty) pairwise \((R \setminus \{h\})\)-disjoint \(F(h,C)\)-covers \(\{S_C : C \in \mathcal{C}\} \) (legs of the \((F,R)\)-spider) for some \(h \in R \) (a head of the \((F,R)\)-spider).

We often denote an \((F,R)\)-spider just by \(S \), meaning that the set \(C = C_S \) of cores hit by \(S \) is clear from the context. Later, we will prove the following.

Theorem 4.1. For any \(R \subseteq V \), any cover \(J \) of an uncrossable biset family \(F \) contains a family \(S \) of \(R \)-disjoint \((F,R)\)-spiders that collectively hit at least \(\frac{2}{3} |C(F)| \) distinct \(F \)-cores.

In [Nutov 2012a], Theorem 4.1 was stated and proved for the case \(R = V \). The proof is correct, but the case \(R = V \) is not sufficient for proving Theorem 2.3. However, the proof of Theorem 4.1 is a minor modification of the proof of the case \(R = V \) in [Nutov 2012a].

Let us briefly describe how Theorem 4.1 and Lemma 2.4 imply Theorem 2.3. Let \(R \) be the set of nodes in \(V \) that belong to no boundary of a biset in \(\bigcup_{C \in \mathcal{C}} F(C) \). Note that in the setting of Theorem 2.3 all nodes in \(V \setminus R \) have weight zero.

Lemma 4.2. Let \(S \) be a family of \((F,R)\)-spiders as in Theorem 4.1 for an optimal cover of an uncrossable biset family \(F \). There is an \((F,R)\)-spider \((S^*,C^*)\) in \(S \) such that \(\frac{w(V(S^*))}{|C^*/3\varepsilon|} \leq \frac{9}{2} \cdot \frac{\text{opt}}{\nu(\emptyset)} \).

Proof. Let \(C_S \) denote the set of \(F \)-cores hit by a spider \(S \in S \). Since the spiders in \(S \) are \(R \)-disjoint \(\sum_{S \in S} w(V(S)) \leq \text{opt} \). Since the spiders in \(S \) hit at least \(\frac{2}{3} \nu(\emptyset) \) distinct \(F \)-cores \(\sum_{S \in S} |C_S| \geq \frac{2}{3} \nu(\emptyset) \). Thus \(\sum_{S \in S} |C_S|/3 \geq \frac{2}{3} \nu(\emptyset) \). Consequently, by an averaging argument, there is \((S^*,C^*) \in S \) as required. \(\square \)
Lemma 4.3. There exists a polynomial time algorithm that given an instance of Node-Weighted Biset-Family Edge-Cover with uncrossable F and $w_v = 0$ for all $v \in V \setminus R$, finds an edge-set $S \subseteq E$ such that $\frac{w(V(S))}{\nu(\emptyset) - \nu(S)} \leq 9 \frac{\text{opt}}{\nu(\emptyset)}$.

Proof. Let (S^*, C^*) be an (F, R)-spider as in Lemma 4.2. Assume that we know the number $d = |C^*|$, and that if $d \geq 2$ then we know a head h of (S^*, C^*) and whether $\delta_{S^*}(h) \neq \emptyset$. There is a polynomial number of choices, so we can try all choices and return the best outcome (guessing d can be avoided, by a slightly more complicated algorithm). We note that given C and h the problem of finding a minimum node-weight cover of $F(C)$ or of $F(h, C)$ admits ratio 2. If $d = 1$ then for each $C \in C(F)$ we compute a 2-approximate $F(C)$-cover and return the lightest one. If $d \geq 2$ then we temporarily set $w_h = 0$ if $\delta_{S^*}(h) \neq \emptyset$ or $w_h = \infty$ if $\delta_{S^*}(h) = \emptyset$; then for each $C \in C(F)$ we compute a 2-approximate $F(h, C)$-cover S_C and return the union S of d lightest sets S_C. Then $w(V(S)) \leq 2w(V(S^*))$, since legs of S^* are pairwise $(R \setminus \{h\})$-disjoint and since $w_v = 0$ for all $v \in V \setminus R$. Thus from Lemma 2.4 and our choice of S^* we get $\frac{w(V(S))}{\nu(\emptyset) - \nu(S)} \leq 2 \frac{w(V(S^*))}{\nu(\emptyset)} \leq 9 \frac{\text{opt}}{\nu(\emptyset)}$. \qed

The overall algorithm starts with $J = \emptyset$ and while $\nu(J) \geq 1$ repeatedly adds to J an edge-set S such that $\frac{w(V(S))}{\nu(J) - \nu(J \cup S)} \leq 9 \frac{\text{opt}}{\nu(\emptyset)}$. Such an algorithm has ratio $9(\ln \nu(\emptyset) + 1) = 9(\ln |C(F)| + 1)$; if F is symmetric (namely, if $(V \setminus A^+) \cap (V \setminus A) \in F$ whenever $A \in F$), then the ratio is in fact $9 \ln |C(F)|$, see [Klein and Ravi 1995]. Furthermore, for biset families arising from Survivable Network problems, the problem of finding a minimum node-weight cover of $F(C)$ or of $F(h, C)$ admits a polynomial time algorithm, and the ratio can be further reduced to $\frac{3}{2} \ln |C(F)|$.

In the rest of this section we prove Theorem 4.1. A biset family is a **ring** if it is is closed under intersection and union. To prove Theorem 4.1 the only properties of F that we need are that the inner parts of the F-cores are pairwise-disjoint and that $F(C)$ is a ring for any F-core C (this is so by Lemma 2.5); it is not hard to see that then $F(h, C)$ is a ring for any $h \in V$. Note that any ring has a unique core. We need the following property of rings, c.f. [Nutov 2012a].

Lemma 4.4. Let J be an inclusionwise minimal cover of a ring F with core C. Then there is an ordering e_1, \ldots, e_q of J and bisets $C_1 \subseteq \cdots \subseteq C_q$ in F where $C_1 = C$, such that $\delta_J(C_i) = \{e_i\}$, and if $e_i = v_i u_i$ where $u_i \in C_i$, then $\{e_1, \ldots, e_i\}$ covers $F(h, C)$ for $h \in \{v_i, u_i+1\}$.

The following definition extends the concept of R-spiders introduced earlier, and as we shall see it is also closely related to (F, R)-spiders in Definition 4.1.

Definition 4.2. Let $\mathcal{P} = \{P_u : u \in U(\mathcal{P})\}$ be a family of simple directed paths on V with a set $U(\mathcal{P})$ of distinct ends, where each P_u ends at u, and let $R \subseteq V$. An R-spider S with head h is called a (\mathcal{P}, R)-**spider** if S is a union of subpaths (one may be of length 0) $\{S_u : u \in U\}$ of the paths in \mathcal{P} for some $\emptyset \neq U \subseteq U(\mathcal{P})$ (the set of ends hit by S), where each S_u is an hu-subpath of P_u, such that if $|U| = 1$ then $S \in \mathcal{P}$ and if $|U| \geq 2$ then $h \in R$.

Lemma 4.5. Let \mathcal{P} be a family of simple directed paths on V with a set $U(\mathcal{P})$ of distinct endnodes and let $R \subseteq V$. Then there is a family S of pairwise R-disjoint (\mathcal{P}, R)-spiders that collectively hit at least $\frac{2}{3} |U(\mathcal{P})|$ distinct nodes in $U(\mathcal{P})$.

ACM Journal Name, Vol. V, No. N, Month 20YY.
The case $R = V$ was proved in [Chuzhoy and Khanna 2008]. Hence there exists a family S of pairwise node-disjoint (P, V)-spiders that hit at least $\frac{2}{3}|U(P)|$ nodes in $U(P)$. Since any (P, V)-spider is also a (P, R)-spider, this family satisfies all the requirements except of one: there can be $\overline{S} \in S$ that hits at least 2 ends with head $h \in V \setminus R$. We resolve this by an elementary construction that makes the paths in P to be $(V \setminus R)$-disjoint: for every path P and every $v \in V(P) \setminus R$ that is not an end of P, make a copy v_P of v and let P go through v_P instead of v. Note that this operation does not affect the ends of the paths, hence their number remains the same. Then the paths in P become pairwise $(V \setminus R)$-disjoint; hence the [Chuzhoy and Khanna 2008] result gives a family \overline{S} as required, since now every (P, V)-spider in \overline{S} that hits at least 2 ends has head in R. The lemma follows since shrinking the nodes v_P back into v keeps the required properties: each spider remains a (P, R)-spider since its legs remain pairwise $(R \setminus \{h\})$-disjoint, and any two (P, R)-spiders remain R-disjoint.

Now we use Lemmas 4.4 and 4.5 to prove Theorem 4.1. The proof essentially coincides with the proof in [Nutov 2012a] for the case $R = V$. Define a family P of directed paths in a complete directed graph on V as follows. For every $C \in \mathcal{C}(F)$ fix some inclusion-wise-minimal $F(C)$-cover $J_C \subseteq J$. By Lemma 2.5, $F(C)$ is a ring. Let e_1, \ldots, e_q be an ordering of J_C and $C_1 \subseteq \cdots \subseteq C_q$ bisets in $F(C)$ as in Lemma 4.4, where $e_i = v_i u_i$ is as in the lemma. Obtain a directed path P_C by taking for each edge e_i the arc $v_i u_i$ and for every $i = q, \ldots, 2$ the dummy arc $u_i v_{i-1}$, if $u_i \neq v_{i-1}$; e.g., if $u_i \neq v_{i-1}$ for all i, then the node sequence of P_C is $(v_q, u_q, v_{q-1}, u_{q-1}, \ldots, v_1, u_1)$. Denote $u_C = u_1$ and note that $u_C \in C$.

Let $P = \{P_C : C \in \mathcal{C}(F)\}$. Since the sets $\{C : C \in \mathcal{C}(F)\}$ are pairwise-disjoint (by Lemma 2.5), any two paths in P have distinct ends. Hence Lemma 4.5 applies, and there exists a family S of node-disjoint (P, R)-spiders that hits at least $\frac{2}{3}|U(P)|$ nodes in $U(P) = \{u_C : C \in \mathcal{C}(F)\}$.

For any (P, R)-spider $\overline{S} \in \overline{S}$ and the set U of nodes in $U(P)$ hit by \overline{S} naturally corresponds a pair (\overline{S}, C), where $\overline{S} \subseteq J$ is defined by the non-dummy arcs in \overline{S} and $C = \{C \in \mathcal{C}(F) : u_C \in U\}$. We show that (\overline{S}, C) is an (F, R)-spider. For $C \in C$ let \overline{S}_C be the hu_C-path in \overline{S} and let S_C be the corresponding subset of S. If $C = \{C\}$ then $S_C = P_C$; thus in this case $\overline{S} = S_C = J_C$, and since J_C covers $F(C)$ the pair (\overline{S}, C) is an (F, R)-spider. Assume that $|C| \geq 2$ and let h be the head of \overline{S}. Since \overline{S} is a (P, R)-spider, the edge-sets $\{S_C : C \in C\}$ are pairwise $(R \setminus \{h\})$-disjoint. By Lemma 4.4 and the construction, each S_C is an $F(h, C)$-cover. Thus (\overline{S}, C) is an (F, R)-spider in this case as well.

Now let S be the family (F, R)-spiders corresponding to the (P, R)-spiders in \overline{S}. Since the arc-sets in S are node-disjoint, so are the edge-sets in S. Since \overline{S} hits at least $\frac{2}{3}|U(P)|$ nodes in $U(P)$ and since $|\mathcal{C}(F)| = |U(P)|$, S hits at least $\frac{2}{3}|\mathcal{C}(F)|$ cores in $\mathcal{C}(F)$. Thus S is as required, and the proof of Theorem 4.1 is complete.

ACKNOWLEDGMENT

The author thanks Ali Vakilian and Takuro Fukunaga for finding the second error reported here.
REFERENCES

