
A (1− 1/e)-approximation algorithm for the generalized

assignment problem

Zeev Nutov∗

The Open University of Israel

nutov@openu.ac.il

Israel Beniaminy

ClickSoftware Technologies

israel@clicksoftware.com

Raphael Yuster

University of Haifa

raphy@math.haifa.ac.il

Abstract

We give a (1 − 1/e)-approximation algorithm for the Max-Profit Generalized As-
signment Problem (Max-GAP) with fixed profits when the profit (but not necessarily
the size) of every item is independent from the bin it is assigned to. The previously
best known approximation ratio for this problem was 1/2.

Key-words. Generalized assignment, Approximation algorithm.

1 Introduction

We consider the Max-Profit Generalized Assignment Problem (Max-GAP):

Instance: A set J of m bins (knapsacks), and a set I of n items. Each bin j ∈ J has a

capacity c(j). Each item i ∈ I has in bin j size `(i, j) and profit p(i, j).

Objective: Find a maximum profit feasible assignment.

To be more precise, an assignment for Max-GAP where every item is assigned to at most

one bin is feasible if the capacity constraints are satisfied; namely, `(Aj) =
∑

i∈Aj
`(i, j) ≤ c(j)

for every bin j ∈ J and the set Aj of items assigned to it.

∗Corresponding author, The Open University of Israel, nutov@openu.ac.il

1

A 1/2-approximation algorithm for Max-GAP was given by Chekuri and Khanna [6]

based on a result of Shmoys and Tardos [10], that considered the corresponding minimization

version Min-GAP: instead of profits p(i, j) there are costs w(i, j), and the objective is to find

a feasible assignment of all items (assuming such an assignment exists) while minimizing the

total cost.

Definition 1.1 A pseudopacking is an assignment so that `(i, j) ≤ c(j) for each item i

assigned to bin j, and that can be made feasible by removing from each bin at most one item.

Since checking whether all items can be assigned is an NP-hard problem, Shmoys and Tardos

[10] gave a bicriteria algorithm. They proved that for Min-GAP there is a polynomial

time algorithm that finds a pseudopacking of cost ≤ opt, where opt denotes the optimal

solution value. Using this, Chekuri and Khanna [6] proved that for Max-GAP there exists

a polynomial time algorithm that returns a pseudopacking of profit ≥ opt. This implies

a 1/2-approximation algorithm for Max-GAP [6]; for each overpacked bin, from the items

assigned to it, remove the cheaper among: the largest item or the rest of the items. Chekuri

and Khanna also showed that Max-GAP is APX-hard.

We consider Max-GAP with fixed profits when each item i has a fixed profit p(i, j) = p(i)

in every bin j, and prove:

Theorem 1.1 Max-GAP with fixed profits admits a (1− 1/e)-approximation algorithm.

A particular case of Max-GAP with fixed profits is the Multiple Knapsack with Assign-

ment Restrictions (MKAR) problem, where each bin j ∈ J has capacity c(j) and a specified

set I(j) ⊆ I of items that can be assigned to it, and each item i has size `(i) and profit

p(i). A particular case of MKAR is when p(i) = `(i) for all i; for this case several combi-

natorial 1/2-approximation algorithms are given in [5]. For the special case of MKAR with

`(i) ∈ {1, 2} a 2/3-approximation algorithm is given in [1]. A particular well studied case of

MKAR is the Multiple Knapsack problem, with I(j) = I for all j ∈ J , for which Chekuri and

Khanna [6] gave a PTAS. The difficulty of MKAR compared to Multiple Knapsack is in as-

signing items to “correct” bins. We give a simple and fast combinatorial 1/2-approximation

algorithm for MKAR which does not require solving linear programs (as in Theorem 1.1 or

as in [10]), generalizing [5].

Theorem 1.2 MKAR has a 1/2-approximation algorithm whose running time O(T (m, n)+

m2n2), where m = |J |, n = |I|, and T (m, n) is the time for computing a maximum cost

(s, t)-flow in a capacitated bipartite graph with parts of size m and n.

Theorems 1.1 and 1.2 are proved in Sections 2 and 3, respectively.

2

2 A (1− 1/e)-approximation algorithm

The proof of Theorem 1.1 follows. Let J be the set of m bins, and I be the set of n items.

Recall that each bin j has capacity c(j), and each item i has a bin-dependent size `(i, j) and

a global profit p(i).

We use a standard LP-formulation for set-packing problems. For S ⊆ I let p(S) =∑
i∈S p(i) and for a bin j, let `(S, j) =

∑
i∈S `(i, j). Let Π = {(S, j) : `(S, j) ≤ c(j)}. For

every pair (S, j) ∈ Π introduce a variable y(S,j) which represents the “amount of S packed

in the bin j”. Then integral feasible solutions to the following linear program correspond to

feasible solutions to the Max-GAP with fixed profits instance.

max
∑

(S,j)∈Π p(S)y(S,j) (1)

s.t.
∑

(S,j)∈Π,i∈S y(S,j) ≤ 1 ∀i ∈ I∑
(S,j)∈Π y(S,j) ≤ 1 ∀j ∈ J

y(S,j) ≥ 0 ∀(S, j) ∈ Π.

The corresponding dual problem is:

min
∑

i∈I xi +
∑

j∈J zj (2)

s.t.
∑

i∈S xi + zj ≥ p(S) ∀(S, j) ∈ Π

xi, zj ≥ 0 ∀i ∈ I, j ∈ J

Note that (2) has exponential number of constraints, while (1) has exponential number of

variables. However, any basic feasible solution of (1) has at most n + m non-zero variables.

Now, if we had a polynomial time separation oracle for (2), we could compute an optimal

solution to (1) (the non-zero entries) in polynomial time, see Chapter 6 in [8]. The number

of non-zero entries in such a computed solution is polynomial in n + m. Unfortunately, such

an oracle may not exist, since the separation problem for (2) defined by a specific bin j is

equivalent to the knapsack problem. To see this, introduce new variables wi = p(i) − xi

and rewrite the constraints in (2) as w(S) =
∑

i∈S wi ≤ zj. Then, checking whether for a

specific j there exists (S, j) ∈ Π so that w(S) > zj is equivalent to checking whether there

exists S ⊆ I so that `(S, j) ≤ c(j) and w(S) > zj. The latter is a knapsack problem. Since

knapsack admits an FPTAS, we get an approximate separation oracle, which for any ε > 0

checks whether there exists (S, j) ∈ Π so that w(S) > zj(1 − ε). This implies that we can

solve the following linear program in time polynomial in 1/ε and in its size:

3

min
∑

i∈I xi +
∑

j∈J zj (3)

s.t.
∑

i∈S xi + zj(1− ε) ≥ p(S) ∀(S, j) ∈ Π

xi, zj ≥ 0 ∀i ∈ I, j ∈ J.

Thus we can also solve the dual of (3), which is:

max
∑

(S,j)∈Π p(S)y(S,j) (4)

s.t.
∑

(S,j)∈Π,i∈S y(S,j) ≤ 1 ∀i ∈ I∑
(S,j)∈Π y(S,j) ≤ 1

1−ε
∀j ∈ J

y(S,j) ≥ 0 ∀(S, j) ∈ Π.

Let ν and ν(ε) denote the optimal values of (1) and of (4), respectively. Clearly, ν(ε) ≥ ν.

Note that if y(ε) is a feasible solution to (4) then (1− ε)y(ε) is a feasible solution to (1). In

particular, a feasible solution y = (1− ε)y(ε) to (1) of value at least (1− ε)ν(ε) ≥ (1− ε)ν

can be found in time polynomial in 1/ε and in the size of the problem. We will apply a

standard randomized rounding on y to obtain an integral feasible solution ỹ to (1). The

rounding procedure is as follows.

1. For each bin j choose randomly with distribution y(S,j) a unique set Aj of items assigned

to bin j at this stage (possibly Aj = ∅).

2. For every item assigned to more than one bin, remove that item from all bins containing

it, except for one, chosen arbitrarily.

Let ỹ be an integral solution derived from y by such randomized rounding, and let ν̃ =∑
(S,j)∈Π p(S)ỹ(S,j) be the (random variable corresponding to the) profit of ỹ. Let Pi be the

probability that item i is packed by ỹ, that is, Pi is the probability that there exists (S, j) ∈ Π

with i ∈ S and ỹ(S,j) = 1. Let xij =
∑

(S,j)∈Π,i∈S y(S,j) be the fraction of item i assigned to

bin j by y, and let xi =
∑

j∈J xij be the overall fraction of item i assigned to all bins by y.

Proposition 2.1 Pi ≥ (1− 1/e + 1/(32m2))xi for every item i ∈ I.

Proof: Let i ∈ I. Clearly, Pi = 1 − Πj∈J(1 − xij). Let T = {j ∈ J : xij > 0} be the

set of bins j ∈ J with xij being non-zero, and let t = |T |. Notice that t ≤ m = |J |, and

we may clearly assume that t ≥ 2 since for t = 1 the statement to prove is trivial. The

minimum value of 1 − Πj∈J(1 − xij) is attained when xij = xi/t for every j ∈ T . Thus

4

Pi ≥ 1− (1− xi/t)
t, and

Pi

xi

≥ 1

xi

(
1−

(
1− xi

t

)t
)

.

The right-hand side of the latter inequality is monotonically decreasing in xi, so its minimum

is reached when xi = 1. Thus

Pi

xi

≥ 1

xi

(
1−

(
1− xi

t

)t
)
≥ 1−

(
1− 1

t

)t

.

Since t ≤ m, in order to complete the proof is suffices to show that for all t ≥ 2, (1− 1/t)t <

1/e − 1/(32t2). To see this, let ∆(t) = 1/e − (1 − 1/t)t. Clearly ∆(t) > 0 and ∆(t) is

monotone decreasing. For t ≥ 2

∆(t)−∆(t + 1) =
(
1− 1

t + 1

)t+1

−
(
1− 1

t

)t

=
(
1− 1

t

)t
[(

1 +
1

t2 − 1

)t (
1− 1

t + 1

)
− 1

]

>
(
1− 1

t

)t [(
1 +

t

t2 − 1

)(
1− 1

t + 1

)
− 1

]
=

(
1− 1

t

)t
[(

1 +
t

t2 − 1
− 1

t + 1
− t

(t2 − 1)(t + 1)

)
− 1

]

= (1− 1

t
)t 1

(t2 − 1)(t + 1)

≥ 1

4(t2 − 1)(t + 1)

In particular,

∆(t) ≥
∞∑
s=t

1

4(s2 − 1)(s + 1)
>

1

32t2
.

2

Note that we used a solution y of value
∑

i∈I p(i)xi ≥ (1− ε)ν. Also note that since our

algorithm is polynomial in 1/ε and the size of the input we may choose ε = 1/(32m2) and

our algorithm remains polynomial in the size of the input. It follows therefore that

E(ν̃) =
∑
i∈I

p(i)Pi ≥
(
1− 1

e
+

1

32m2

)∑
i∈I

p(i)xi

≥
(
1− 1

e
+

1

32m2

)
(1− ε)ν

>
(
1− 1

e
+

1

32m2
− ε

)
ν =

(
1− 1

e

)
ν.

5

To complete the proof of Theorem 1.1, we show that the algorithm can be derandomized.

We show how the method of conditional probabilities (see, e.g., [3]) can be used in our setting.

As before, let y be a feasible solution to (1) of value at least (1 − ε)ν(ε) ≥ (1 − ε)ν. Now,

for each bin j ∈ J let S(j) = {S : y(S,j) > 0}. In case νj =
∑

(S,j)∈Π y(S,j) < 1 we also add the

empty set to S(j) and define y(∅,j) = 1−νj. Recall that each S(j) has only a polynomial size.

When we preformed our randomized rounding we have selected a unique Aj ∈ S(j) (each

with its corresponding probability y(S,j)) and proved that E(ν̃) =
∑

i∈I p(i)Pi > (1 − 1/e)ν.

We shall now deterministically decide which S ∈ S(j) to chose as Aj, starting sequentially

from bin 1, until the last bin is reached, and Am is selected. For S ∈ S(1), let E(ν̃ | S)

denote the conditional expectation of ν̃ given that we selected S as A1. By the formula for

conditional probabilities we have

E(ν̃) =
∑

S∈S(1)

E(ν̃ | S)y(S,j).

In particular, there exists S ∈ S(1) for which E(ν̃ | S) ≥ E(ν̃). How do we locate this

S? We first compute E(ν̃) precisely. This can be done since E(ν̃) =
∑

i∈I p(i)Pi and since

each Pi can be computed precisely as each xij is known. We sequentially test all S ∈ S(1)

(there are only a polynomial number of tests). For each S ∈ S(1) we can compute precisely

E(ν̃ | S) because

E(ν̃ | S) = p(S) +
∑

i∈I\S
p(i)(1− Πj∈J\{1}(1− xij)).

Thus, we can deterministically locate S ∈ S(1) for which E(ν̃ | S) ≥ E(ν̃) and define A1 = S.

We now continue to bins 2, 3, . . . ,m and do the same thing while maintaining the invariant

that the conditional expectation, given the selections in the prior bins, never deceases. After

selecting the set Am in the last bin we have a deterministic selection whose profit is at least

as good as the original expectation E(ν̃), and hence at least (1 − 1/e)ν. This completes

the proof of Theorem 1.1. The proof also shows that the integrality gap of (1) is at least

(1− 1/e), that is, there always exists an integral solution to (1) of value at least (1− 1/e)ν.

We remark that our algorithm extends to the following more general problem considered

in [4]. The Max-GAP with Color Constraints problem is a generalization of Max-GAP

obtained by assigning a color c(i) to each item i ∈ I. The color constraints require that for

each bin, the number of distinct colors of items assigned to it is at most a specified constant

K.

Corollary 2.2 Max-GAP with Color Constraints problem with fixed profits admits a (1 −
1/e)-approximation algorithm.

6

Proof: The proof uses the same strategy as the one of Theorem 1.1. The definition of Π

needs to be changed so that it includes only those sets of items that do not violate the color

constraints. The approximate separation oracle for a specific constraint related to a specific

bin checks all possible combinations of colors for the bin, and finds the approximate solution

for the knapsack problem when the set of items under consideration is restricted to each

color combination. If some color combination violates the constraint, then we have found a

pair (S, j) violating the constraint. The number of combinations is at most |I|K . Therefore,

the approximate separation oracle is still performed in polynomial time. No other part of

the proof is affected. 2

3 A 1/2-approximation algorithm for MKAR

Before proving Theorem 1.1, we show that even highly restricted instances of MKAR are

APX-hard. We note that the case when `(i) ∈ {1, 2} (but bin capacities and item profits

are arbitrary) was shown to be APX-hard in [2]. We prove:

Theorem 3.1 MKAR with unit profits is APX-hard even on instances where all the bins

have size 3 and `(i) ∈ {1, 3} for all i.

Proof: The proof is similar to the one given in [6] to show APX-hardness of some other

Max-GAP instances, and is presented here only for completeness of exposition. The following

problem is reduced to MKAR:

Maximum 3-Dimensional Matching (3DM):

Instance: An equitable partition X, Y, Z of a ground set V and a set-family T ⊆ X×Y ×Z.

Objective: Find a subfamily M ⊆ T of pairwise disjoint sets (matching) of maximal size.

Here is the reduction. Given an instance ((X, Y, Z), T) of 3DM with |T | = m and

|X| = |Y | = |Z| = n, create an instance of MKAR as follows. The set of bins is T , and the

set of items is V ∪ U where U is a set of additional m− n items. All bins have size 3, items

in V have size 1, items in U have size 3, and all items have unit profits. Item i ∈ V can be

placed in bin j ∈ T if the set j contains the element i. Items in U can be placed in any bin.

Clearly, 3 items from V can fit in a bin if, and only if, they form a set in T . Thus bins with

3 items correspond to a matching in T . It follows therefore that if 3DM has a matching of

size n, then MKAR has a solution of size 3n + (m− n) = 2n + m.

A 3-bounded instance 3DM-3 of 3DM is one in which the number of occurrences of any

element of V in T is at most 3. Kann [9] showed that there exists an ε0 > 0 such that it

is NP-hard to decide whether an instance of 3DM-3 has a matching of size n or if every

7

matching has size at most (1 − ε0)n. In the latter case, our MKAR instance can achieve a

profit of at most 3(1− ε0)n + 3ε0n + [m− (1− ε0)n− 3ε0n/2] = 2n + m− ε0n/2.

It follows therefore that it is NP-hard to decide whether our MKAR instance can achieve

a profit of 2n + m or of 2n + m− ε0n/2. The APX-hardness now follows from the fact that

m = O(n) for 3DM-3. 2

The proof of Theorem 1.2 follows. Given an instance of MKAR, the assignment graph is

a bipartite graph G = (I + J, E) where ij ∈ E if i ∈ I(j) (assuming `(i) ≤ c(j) for every

i ∈ I(j)). Consequently, I(j) is the set of neighbors of j in G. Each edge e = ij ∈ E has

length `e = `(i) and profit pe = p(i). Let πe = pe/`e. For a node v of G let δ(v) denote the

set of edges incident to v. Consider the linear program:

max
∑

e∈E πexe (5)

s.t.
∑

e∈δ(j) xe ≤ c(j) ∀j ∈ B∑
e∈δ(i) xe ≤ `(i) ∀i ∈ I

xe ≥ 0 ∀e ∈ E.

Let x be a feasible solution to (5). We say that xe (or e) is fractional if 0 < xe < `e (for

e = ij, xe is the amount of item i packed in bin j). Any non-fractional feasible solution to

(5) bijectively corresponds to a solution to the MKAR instance, and has profit
∑

e∈E πexe.

Lemma 3.2 Let x be a basic feasible solution to (5). Then the set F (x) of fractional edges

is a forest so that in any connected component of F (x) at most one leaf belongs to I. In

particular, if M is a maximum matching in F (x), then any non-isolated node i ∈ I of F (x)

is matched by M .

Proof: Let x be a feasible solution to (5), and let P = (e1, . . . , e`) be a path or a cycle

in F (x). Let P ′ = {e1, e3, . . .}, P ′′ = P − P ′ = {e2, e4, . . .}. Set ε = min{ε+, ε−} where

ε+ = min{`e−xe : e ∈ P} and ε− = min{xe : e ∈ P}. Since all the edges in P are fractional,

ε > 0. Let de = ε for e ∈ P ′, de = −ε for e ∈ P ′′, and de = 0 otherwise. Let x′ = x + d,

x′′ = x − d. It is easy to see that if P is a cycle, then x′, x′′ are feasible solutions. Since

x = (x′ +x′′)/2, x cannot be basic. Thus F (x) is a forest. A similar argument applies if P is

a path in F (x) between two leaves u, v ∈ I. In this case, it is easy to see that x′, x′′ satisfy

the constraints of (5) for every node of G distinct from u, v. To see that this is so for u and

for v, note that if i ∈ I is a leaf of F (x), then for e ∈ δ(i), xe > 0 if, and only if, e is the

unique edge of F (x) incident to i. Consequently, in any connected component of F (x) at

most one leaf belongs to I. The second statement follows easily from the first statement. 2

8

Corollary 3.3 Given a feasible solution x to (5) we can find in O(|E(G)|2) time a feasible

solution z such that π · z ≥ π · x and F (z) is a forest so that in any connected component of

F (z) at most one leaf belongs to I, where |E(G)| is the number of edges in G.

Proof: For Q ⊆ E denote π(Q) =
∑{π(e) : e ∈ Q}. Let P, P ′, P ′′ be as in the proof of

Lemma 3.2. Set Q = P ′ if π(P ′) ≥ π(P ′′) and Q = P ′′ otherwise, and ε = min{ε+, ε−},
where ε+ = min{`e − xe : e ∈ Q} and ε− = min{xe : e ∈ P −Q}. Let ze = xe + ε for e ∈ Q,

ze = xe − ε for e ∈ P − Q, and ze = xe otherwise. Note that |F (z)| ≤ |F (x)| − 1 (by the

choice of ε), and that π · z ≥ π · x. Furthermore, z is a feasible solution to (5) if x is, by

an argument similar to the one as in the proof of Lemma 3.2. Thus, by repeatedly replacing

x by z as above, we convert x into z as in the statement. Finding cycle/path P as above

(or determining that such does not exist) can be done in O(|E(G)| time, and each time P is

found the number of fractional edges reduces by at least 1. The statement follows. 2

Lemma 3.4 Given an instance of MKAR, a pseudopacking of profit at least the optimal

value of (5) can be computed in O(T (m, n) + m2n2) time, where m, n and T (m, n) are as in

Theorem 1.2.

Proof: Finding an optimal solution x to (5) (which may not be basic) is easily reduced to a

max-cost flow problem as follows. We direct all edges in G from I to J , add a source s with

edges si of the capacity `(i) for every i ∈ I, and a sink t with edges jt of the capacity c(j)

for every j ∈ J . The costs are πe for e ∈ E and are zero otherwise. We then compute a flow

f of maximum cost from s to t. It is easy to see that the restriction of f to E is an optimal

solution to (5). Then we compute in O(|E(G)|2) = O(m2n2) time a feasible solution z as

in Corollary 3.3. Finally, we compute a maximum matching M in F (z) and set xe = `e for

every e ∈ M . It is easy to see that the resulting (possibly non-feasible) solution that has no

fractional edges corresponds to a pseudopacking as required. 2

As was mentioned in the Introduction, after a pseudopacking of profit at least opt is

found, an assignment of profit at least opt/2 can be found in linear time. Thus Lemma 3.4

implies Theorem 1.2.

We note that the integrality gap of (5) is 1/2 even for unit profits. Note that in the

previous section we used a different LP-formulation to get a better approximation ratio.

Acknowledgment We thank an anonymous referee for useful comments.

9

References

[1] J. Aerts, J. Korst and F. Spieksma Approximation of a retrieval problem for parallel

disks, Lecture Notes in Computer Science 2653 (2003), 178–188.

[2] J. Aerts, J. Korst, F. Spieksma, W. Verhaegh, and G. Woeginger, Random redundant

storage in disk arrays: complexity of retrieval problems, IEEE Transactions on Comput-

ers, Vol. 52, no. 9 (2003), 1210–1214.

[3] N. Alon and J.H. Spencer, The Probabilistic Method, Second Edition, Wiley, New York,

2000.

[4] M. Dawande and J. Kalagnanam, The Multiple Knapsack Problem with Color Con-

straints, IBM Research Report RC 21128 (94508), March 24, 1998.

[5] M. Dawande, J. Kalagnanam, P. Keskinocak, R. Ravi, and F. S. Salman, Approxima-

tion algorithms for the multiple knapsack problem with assignment restrictions, J. of

Combinatorial Optimization 4 (2000), 171–186.

[6] C. Chekuri and S. Khanna, A PTAS for the multiple Knapsack Problem, Proceedings of

the 11th annual ACM-SIAM Symposium on Discrete Algorithms (SODA) 2000, 213–222.

[7] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory

of NP-Completeness, W. H. Freeman, San-Francisco, 1979.

[8] M. Grötschel, L. Lovász, and A. Schrijver, Geometric algorithms and combinatorial

optimization, Springer, 1998.

[9] V. Kann, Maximum bounded 3-dimensional matching is MAX-SNP-complete, Informa-

tion Processing Letters 37 (1991), 27–35.

[10] D. B. Shmoys and E. Tardos, An approximation algorithm for the generalized assignment

problem, Math. Programming A 62 (1993), 461–474.

10

