
Listing minimal edge-covers of intersecting families with

applications to connectivity problems

Zeev Nutov

The Open University of Israel

nutov@openu.ac.il

Abstract

Let G = (V,E) be a directed/undirected graph, let s, t ∈ V , and let F be an

intersecting family on V (that is, X ∩ Y,X ∪ Y ∈ F for any intersecting X,Y ∈ F)

so that s ∈ X and t /∈ X for every X ∈ F . An edge set I ⊆ E is an edge-cover of F

if for every X ∈ F there is an edge in I from X to V − X. We show that minimal

edge-covers of F can be listed with polynomial delay, provided that for any I ⊆ E the

minimal member of the residual family FI of the sets in F not covered by I can be

computed in polynomial time. As an application, we show that minimal undirected

Steiner networks, and minimal k-connected and k-outconnected spanning subgraphs of

a given directed/undirected graph, can be listed in incremental polynomial time.

1 Introduction

1.1 The problem, motivation, and previous work

We consider listing problems of the following type: given a graph G and a prescribed graph

property Π, list the family Π(G) of all subgraphs H of G that satisfy Π. For example, the

property Π can be ”H is a spanning tree”, ”H is an st-path”, ”H is a cycle”, and so on, c.f.,

[10]. In listing problems, the output may be exponential in the input size, and thus the time

complexity is usually expressed in both the input and the output sizes (see e.g., [12, 9, 6]).

A listing algorithm runs in incremental polynomial time if it lists any N ≤ |Π(G)| members

of Π(G) in time polynomial in N and the input size; if every additional member of Π(G) is

listed in time polynomial in the size of G, then the algorithm has polynomial delay.

1

Graph connectivity is a fundamental concept in network reliability theory. While in

the simplest case only the connectedness is required, in many applications higher levels

of connectivity are desirable. Some methods computing network reliability depend on the

efficient listing of all minimal sub-networks with the required connectivity [12, 4]. In a

very general setting, the type of problems we consider can be defined as follows. The S-

connectivity λS
G(u, v) of (u, v) in G is the maximum number of uv-paths such that no two of

them have an edge or a node in S − {u, v} in common.

Steiner Networks Listing (SNL)

Input: A (possibly directed) graph G = (V, E), S ⊆ V , and requirements r(u, v) on V × V .

Output: A list of minimal spanning subgraphs H of G that satisfy

λS
H(u, v) ≥ r(u, v) ∀(u, v) ∈ V × V . (1)

Common particular choices of S are: S = ∅ (edge-connectivity), S = V (node-connectivity),

and any S so that r(u, v) = 0 whenever u ∈ S or v ∈ S (so called element-connectivity).

In the undirected setting, the requirements are symmetric, namely, r(u, v) = r(v, u) for all

u, v ∈ V . For brevity, let λH(u, v) = λ∅
H(u, v) and κH(u, v) = λV

H(u, v).

In [3] it was shown that for {0, 1}-requirements undirected SNL can be solved in incre-

mental polynomial time, while for directed graphs no such algorithm exists, unless P=NP.

However, for listing minimal directed Steiner trees, [3] gave an algorithm with polynomial de-

lay. We consider the undirected edge-connectivity SNL, and directed/undirected edge/node-

connectivity variants of the following two problems. A graph is k-outconnected from s if

κ(s, v) ≥ k for all v ∈ V − s, namely, if it contains k internally-disjoint sv-paths for every

v ∈ V . A graph is k-connected if it is k-outconnected from every s ∈ V .

k-Outconnected Subgraphs Listing (k-OSL)

Input: A (possibly directed) graph G = (V, E), s ∈ V , and an integer k.

Output: A list of minimal k-outconnected from s spanning subgraphs of G.

k-Connected Subgraphs Listing (k-CSL)

Input: A (possibly directed) graph G = (V, E) and an integer k.

Output: A list of minimal k-connected spanning subgraphs of G.

We also consider edge-connectivity listing problems. These include as a special case

the problems of listing: directed/undirected spanning trees [10, 11, 5], minimal strongly

connected subgraphs [2], simple st-paths [10], and others. In [1] is given an incremental

polynomial time algorithm for undirected k-Edge-Connected Subgraphs Listing, and for k-

CSL for any fixed k. In [1] was posed an open problem if k-CSL admits an incremental

polynomial time algorithm when k is not fixed, but is a part of the input.

2

Throughout the paper, let G = (V, E) denote the input graph. Let n = |V | and m = |E|.

Given G and graph property Π, our goal is to list the family Πmin of minimal members of

the family Π(G) of all subgraphs of G that satisfy Π. We assume that G ∈ Π(G) and that

Π(G) 6= ∅; otherwise our algorithms can be easily modified to return an error message.

1.2 Results in this paper

In this paper we characterize SNL instances that can be solved in incremental polynomial

time; recall that in [3] it was shown that directed SNL with {0, 1}-requirements (in this case

all the choices of S are equivalent) does not admit such algorithm, unless P=NP. We prove:

Theorem 1.1 Undirected edge-connectivity SNL, directed/undirected edge/node-connectivity

k-CSL, and directed edge/node-connectivity k-OSL, admit an incremental polynomial time

algorithm.

Theorem 1.1 is just a summary of (some) applications of an algorithm that lists minimal

edge-covers of an intersecting st-family. A family F of subsets of V is an intersecting family

if X ∩Y, X ∪Y ∈ F for any intersecting X, Y ∈ F . F is an st-family if s ∈ X and t ∈ V −X

for every X ∈ F . An edge set I covers F if for every X ∈ F there is uv ∈ I with u ∈ X and

v ∈ V − X. We give an algorithm for listing minimal (possibly directed) edge-covers of an

intersecting st-family F , but its efficient implementation, in case F is not given explicitly,

requires that certain queries related to F can be answered in polynomial time. Given an

edge set I on V , the residual family FI of F (w.r.t. I) consists of all members of F that are

uncovered by edges of I. It is well known that if F is intersecting, or if F is an st-family,

so is FI, for any I. An inclusion minimal member of F is called an F-core. Clearly, the

F -cores of an intersecting family F are pairwise disjoint, and an intersecting st-family has

a unique core. For any edge set I on V , make the following assumption:

The Core Assumption:

Computing the FI-core C of an intersecting st-family F , or determining that I is an F -cover,

can be implemented in Q(m, n) time, where Q(m, n) is polynomial in m and n.

Theorem 1.2 Directed/undirected minimal edge-covers of an intersecting st-family can be

listed with delay O(n(Q(m, n) + m)), under the Core Assumption.

Let G = (V, E) be a graph. For disjoint X, Y ⊆ V let δG(X, Y) = δE(X, Y) be the set of

edges from X to Y in E; let δE(X) = δE(X, V −X) and let dE(X) = |δE(X)| be the degree

of X in G.

3

Example: A natural example of an intersecting st-family is the family F = {X ⊆ V − t :

s ∈ X, dH(X) = λH(s, t)} of minimum st-cuts in a (possibly directed) graph H = (V, E). It

is well known that this F is intersecting. The F -core C can be found using one max-flow

computation; after a maximum flow is computed, C is the set of nodes reachable from s in

the corresponding ”residual” network.

We consider the following generalizations of Theorem 1.2. Let p : 2V → Z+ be a set-

function on V . An edge set J on V is a p-cover, if dJ(X) ≥ p(X) for every X ⊆ V .

Connectivity listing problems can be formulated as a Set-Function Covers Listing (SFCL)

problem: given a directed/undirected graph G = (V, E) and a set-function p on V , list all

minimal p-covers contained in E. In the undirected setting, we assume that p is symmetric,

namely, that p(X) = p(V −X) for all X ⊆ V . The following two types of set-functions often

arise in various connectivity problems (c.f., [8]).

Definition 1.1 A set function p on V is skew-supermodular if for every X, Y ⊆ V at least

one of the following holds:

p(X) + p(Y) ≤ p(X ∩ Y) + p(X ∪ Y) (2)

p(X) + p(Y) ≤ p(X − Y) + p(Y −X) (3)

If (2) always holds whenever X ∩ Y 6= ∅ and X ∪ Y 6= V then p is crossing-supermodular.

Definition 1.2 Let p be a set function on V and let J be an edge set on V . The residual

function pJ of p (w.r.t. J) is

pJ(X) = max{p(X)− dJ(X), 0} ∀X ⊆ V .

Let F(p) = {X ∈ F : p(X) > 0} denote the support family of p. For s ∈ V let F s(p) =

{X ∈ F(p) : s ∈ X}.

Note that for any p-cover J and e = st ∈ J , pJ−e is a 0, 1 function and F s(pJ−e) is an

st-family.

Proposition 1.3 If p is symmetric skew-supermodular, or if p is crossing-supermodular,

then F = F s(pJ−e) is an intersecting st-family for any e = st ∈ J ∈ Πmin.

Proof: If p is symmetric skew-supermodular, or if p is crossing-supermodular, so is pJ

for any edge set J , c.f., [8]. Thus if p is skew supermodular then X ∪ Y, X ∩ Y ∈ F or

X − Y, Y −X ∈ F for any X, Y ∈ F ; if p is crossing-supermodular then X ∩ Y, X ∪ Y ∈ F

for any X, Y ∈ F . In both cases, since F is an st-family, it is an intersecting st-family. 2

We say that the Core Assumption holds for p if F = F s(pJ−e) satisfies the Core Assump-

tion for any p-cover J and e = st ∈ J . Using Theorem 1.2 we prove:

4

Theorem 1.4 SFCL admits an incremental polynomial time algorithm for: undirected G

and symmetric skew-supermodular p, and for directed G and crossing-supermodular p, under

the Core Assumption.

Theorems 1.2, 1.4, and 1.1 are proved in Sections 2, 3, and 4, respectively.

2 Proof of Theorem 1.2

Let G = (V, E) be a graph and let F be a non-empty intersecting st-family on V . Clearly,

F has a unique core. A naive approach to generate an F -cover I is as follows: start with

I = ∅, and while I is not an F -cover, repeatedly add an edge e ∈ δ(CI) to I, where CI is the

minimal FI-core. Note that then, at every step, the edges in I have both endpoints in CI .

This indeed generates an F -cover, but it might not be minimal, e.g., the last edge added

might cover the whole F , and thus the edges added at previous steps are redundant. We may

fix this by removing redundant edges from the obtained cover, but this makes difficult to

force the algorithm to generate every cover exactly once. To ensure minimality, we maintain

the following property of a partial cover I: for every e ∈ I there exists C ∈ F so that

δI(C) = {e}. To achieve that, when an edge e ∈ δ(CI) is added to I, we delete all the

other edges in δ(CI), after verifying that E − δE(CI) covers FI+e. This guarantees that the

F -cover produced is minimal, and we use recursion to produce each F -cover exactly once.

Formally, the algorithm is:

Initialization: E ′ ← E, I ← ∅.

LIST(E ′, I)

Let C be the FI-core.

For every e ∈ δE′(C) do:

If e is an FI-cover then return I + e;

Else If E ′ − δE′(C) is an FI+e-cover then do:

LIST(E ′ − δE′(C), I + e).

EndIf

EndIf

EndFor

The following (known) statement is used to prove that the algorithm lists every minimal

F -cover exactly once.

Lemma 2.1 Let I be a minimal (directed or undirected) cover of an intersecting st-family

F and let C be the F-core. Then dI(C) = 1.

5

Proof: Suppose to the contrary that there are e 6= f ∈ δI(C). By the minimality of I, there

exists We, Wf ∈ F such that δI(We) = {e} and δI(Wf) = {f}. Note that C ⊆ We ∩ Wf

and thus each of e, f covers We ∩ Wf . There is an edge in I that covers We ∪Wf , since

We, Wf ∈ F implies We ∪ Wf ∈ F . This edge must be one of e, f , since if for arbitrary

intersecting sets X, Y an edge covers X ∪ Y then it also covers one of X, Y . Consequently,

one of e, f covers both We∩Wf and We∪Wf , and thus covers each of We, Wf (if for arbitrary

intersecting sets X, Y an edge covers both X ∩ Y, X ∪ Y then it also covers each of X, Y).

This contradicts that δI(We) = {e} and δI(Wf) = {f}. 2

Corollary 2.2 Every minimal F-cover of an intersecting st-family F is listed by LIST

exactly once.

Proof: By induction on |F|. For |F| = 1 the statement is obvious. Assuming that the

statement is true for any family F ′ with 1 ≤ |F ′| < |F|, we will prove it for F . Let C be the

minimal F -core. By Lemma 2.1, any minimal F -cover I contains a unique edge in δE(C).

We claim that when an edge e ∈ δE′(C) is considered in the main loop, the algorithm lists

exactly once every minimal F -cover in E containing e. As we examine every edge in δE(C)

exactly once, the statement follows. Indeed, if e covers F , then {e} is the unique minimal

F -cover containing e. If E − δE(C) + e is not an F -cover, then no F -cover containing e

exists. Else, by the induction hypothesis, the algorithm lists exactly once every minimal

cover of F ′ = Fe, and adds e to each Fe-cover listed. 2

Lemma 2.3 LIST can be implemented to run with delay O(n(Q(m, n) + m)).

Proof: Let I be a partial F -cover generated in the run of the algorithm, and let C be an

FI-core. Recall that C can be found in Q(m, n) time. Using fundamental data structures,

we can find an edge e (in fact, all the edges) in δE′(C) in O(m) time. Checking if e is an

FI-cover, or if E ′ − δE′(C) is an FI+e-cover can be done in Q(m, n) time. Hence the time

invested in the pair C, e is O(Q(m, n) + m). After e is chosen (added to the partial cover),

at most n− |C| = O(n) core examinations occur until a new minimal F -cover is discovered.

Hence the delay is O(n(Q(m, n) + m)). 2

The proof of Theorem 1.2 is complete.

3 Proof of Theorem 1.4

To prove Theorem 1.4, we use a reduction from [3, 7] implied by the backtracking method

for enumeration [10]. Given a monotone family Π (namely I ∈ Π and I ⊆ I ′ implies I ′ ∈ Π)

6

of subsets of E, let Πmin be the family of inclusion minimal members of Π. Recall that our

goal is to list the family Πmin.

Proposition 3.1 ([3, 7]) Let Π be a monotone family of subsets of E so that that the

membership in Π can be tested in polynomial time. If for any pair e, J with e ∈ J ∈ Πmin

we can list the minimal members of Π(J, e) = {Y ⊆ E − J : J − e + Y ∈ Π} in incremental

polynomial time, then Πmin can also be listed in incremental polynomial time.

Let G = (V, E) be a directed/undirected graph, let p be a (symmetric, if G is undirected)

set function on V , and let Π be the family of p-covers in E. Clearly, the family of p-covers is

monotone, and under the Core Assumption, checking whether J is a (minimal) p-cover can

be done in polynomial time. Thus Proposition 3.1 together with Theorem 1.2 determines

the following reduction.

Corollary 3.2 If F s(pJ−e) is an intersecting st-family for any e = st, J with e ∈ J ∈ Πmin,

then Πmin can be listed in incremental polynomial time, under the Core Assumption.

Proof: Since J is an F -cover, pJ−e is a 0, 1 valued function. It is easy to see that in

the directed setting, F(pJ−e) = F s(pJ−e), namely, that pJ−e(X) = 1 implies s ∈ X and

t ∈ V − X. Thus in the directed setting, an edge set is a pJ−e-cover if, and only if, it is

an F s(pJ−e)-cover. This is also so in the undirected setting, since p, and thus also pJ−e, is

symmetric. The statement now easily follows from Proposition 3.1 and Theorem 1.2. 2

Theorem 1.4 now follows from Proposition 1.3.

4 Proof of Theorem 1.1

Edge-connectivity SNL can be formulated as SFCL as follows (c.f., [8]). By Menger’s Theo-

rem, H = (V, J) satisfies (1) (with S = ∅) if, and only if,

dJ(X) ≥ p(X) ≡ max{r(u, v) : u ∈ X, v ∈ V −X} ∀ ∅ 6= X ⊂ V . (4)

We set p(∅) = p(V) = 0. (Remark: For general SNL instances a more general model is

required, where p is defined on pairs of subsets of V , see [8].) The set-function p defined in

(4) is skew-supermodular, c.f., [8]. Furthermore, p is symmetric, if r is symmetric and J is

undirected. Thus undirected edge-connectivity SNL is equivalent to the problem of listing

minimal edge covers of the skew-supermodular symmetric set-function p defined by (4).

Lemma 4.1 Let p defined by (4). Then F = F s(pJ−e) is an intersecting st-family for any

(undirected) p-cover J and e = st ∈ J ; furthermore, F satisfies the Core Assumption.

7

Proof: F is an intersecting st-family by Proposition 1.3. We show that F satisfies the Core

Assumption. Given an edge set I, the minimal FI-core can be computed in polynomial time

as follows. In the graph H = (V, J − e + I), for every {u, v} ⊆ V , compute a maximum uv-

flow. If its value is r(u, v)−1, find the minimal set Cuv so that s ∈ Cuv, |Cuv∩{u, v}| = 1, and

dH(Cuv) = r(u, v)− 1. If no set Cuv exists, then I is an F -cover. Otherwise, the minimum

size set among the sets Cuv computed is the F -core. 2

The SNL part of Theorem 1.1 now follows from Theorem 1.4.

It remains to prove the k-OSL/k-CSL part. Undirected edge-connectivity k-CSL is just a

particular case of SNL. For edge-connectivity, directed k-OSL (in fact, the reverse problem

of k-OSL, when we require k disjoint paths from every v ∈ V to s) and k-CSL are particular

cases of directed SFCL with crossing supermodular p. However, we do not see such an

immediate reduction for directed node-connectivity k-OSL/k-CSL, nor for the undirected

node-connectivity k-CSL. We thus will present a different formal proof, which we will also

be able to extend to all the variants of k-OSL/k-CSL considered in Theorem 1.1.

We show that Proposition 3.1 reduces both directed/undirected k-CSL and the directed k-

OSL (but not the undirected k-OSL) to the directed/undirected variants of following problem

which we think is of independent interest:

Minimal k-Paths Augmentations Listing (k-PAL):

Input: An integer k, a graph H = (V, J) with (k−1) edge/internally-disjoint st-paths where

s, t ∈ V , and an edge set E on V disjoint to J .

Output: A list of minimal augmenting edge-sets I ⊆ E so that H + I has k edge/internally-

disjoint st-paths.

Lemma 4.2 If directed/undirected edge/node-connectivity k-PAL admits an incremental poly-

nomial time algorithm, then so are directed/undirected edge/node-connectivity k-CSL and

directed edge/node-connectivity k-OSL.

Proof: This follows from Proposition 3.1 and the following two known facts. Let H = (V, J)

be a graph, let e ∈ J , and let I be an edge set on V .

Fact 1: If H is directed/undirected k-edge/node-connected and e = st ∈ J , then H − e + I

is k-connected if, and only if, H − e + I contains k edge/internally-disjoint st-paths.

Fact 2: If H directed and k-outconnected from s, and e = ut ∈ J , then H − e + I is

k-outconnected from s if, and only if, H− e+ I contains k edge/internally-disjoint st-paths.

2

8

Remark: Fact 2 in the proof of Lemma 4.2 does not extend to undirected node-connectivity

k-OSL. E.g., let V = {s, x, y, u, t}, J = {sx, sy, su, st, xy, ut}, e = ut, and I = xt. The

reason is that some of the ”deficient sets” created by the deletion of ut contain u, while

the others contain t (so we should require both k internally disjoint st- and su-paths). We

believe that undirected k-OSL also admits an incremental polynomial time algorithm, but

resolving this question is beyond the scope of this paper.

To complete the proof of Theorem 1.1, in the rest of this section we prove:

Theorem 4.3 Directed/undirected edge/node-connectivity k-PAL admits an algorithm with

polynomial delay.

The proof of Theorem 4.3 folows. The directed/undirected version of k-PAL when the

paths are required to be edge-disjoint is easily reduced to the the problem of listing minimal

directed/undirected covers of an intersecting st-family. Specifically, it is well known that

the set family F = {X ⊂ V − t : s ∈ X, dH(X) = k − 1} is intersecting if H has k − 1

edge-disjoint st-paths, and that (by Menger’s Theorem) H + I has k edge-disjoint st-paths

if, and only if, I is an F -cover. The other details are also straightforward.

To handle directed k-PAL with internally-disjoint paths, we apply a standard reduction

to the edge-disjoint variant of k-PAL. Specifically, one can view the graph H = (V, J + E)

as a network with source s and sink t where the nodes in V − s and all edges have unit

capacity. Apply a standard conversion of node capacities to edge capacities: replace every

node v ∈ V − s by the two nodes v+, v− connected by the edge v+v− having the same

capacity as v, and redirect the heads of the edges entering v to v+ and the tails of the edges

leaving v to v−.

A natural approach to solve the undirected (edge/node-connectivity) k-PAL is to reduce it

to the directed k-PAL with H and E replaced by their bidirections D(H) and D(E), that are

obtained from H and E, respectively, by replacing every undirected edge by two opposite

directed edges. Then we list all directed augmenting edge sets for the obtained directed

k-PAL instance, and output their underlying undirected edge sets. It is not hard to see

that this will produce all augmenting edge sets for the original undirected k-PAL instance.

However, since in general, an undirected edge set has many orientations, it is not obvious

that such an algorithm will list every undirected augmenting edge set exactly once. Hence,

to prove that this approach works, we need the following statement:

Lemma 4.4 Let H = (V, J) be an undirected graph containing k − 1 internally disjoint st-

paths, let I be a minimal edge set on V so that H + I contains k internally disjoint st-paths,

and let D be the bidirection of H. Then there exists a unique orientation ID of I so that

9

D + ID contains k internally disjoint st-paths.

The proof of Lemma 4.4 follows. We need several definitions and preliminary statements.

Definition 4.1 An ordered pair (S, T) of disjoint subsets of V is called a setpair; (S, T) is

an st-setpair if s ∈ S and t ∈ T . An edge set I covers a setpair family F if dI(S, T) ≥ 1 for

all (S, T) ∈ F . A family F of setpairs is intersecting if (S ′∩S ′′, T ′∪T ′′), (S ′∪S ′′, T ′∩T ′′) ∈ F

for any (S ′, T ′), (S ′′, T ′′) ∈ F with S ′ ∩ S ′′, T ′ ∩ T ′′ 6= ∅; (S, T) ∈ F is an F -core if S ⊆ S ′

and T ⊇ T ′ for any (S ′, T ′) ∈ F .

Other definitions, e.g., the residual family FI of a setpair family F , are also natural

analogues of the ones used for set families. The proof of the following ”setpair analogue” of

Lemma 2.1 is identical to that of Lemma 2.1, and thus is omitted.

Lemma 4.5 Let I be a minimal (directed or undirected) cover of an intersecting setpair

st-family F and let (S, T) be the F-core. Then dI(S, T) = 1.

Corollary 4.6 Let I be a minimal directed/undirected cover of an intersecting setpair st-

family F . Then there exist a unique ordering e1, . . . , eq of I, and a family (S1, T1), . . . (Sq, Tq)

of setpairs in F , so that:

(i) S1 ⊆ S2 · · · ⊆ Sq and S1 ⊇ S2 · · · ⊇ Sq;

(ii) (Sj, Tj) is the FIj−1
-core where I0 = ∅ and Ij−1 = {e1, . . . , ej−1} for j = 2, . . . , q;

(iii) δI(Sj, Tj) = {ej}, j = 1, . . . , q.

Thus if I is undirected, then I has a unique orientation that covers F , namely, every ej is

oriented from Sj to Tj.

Proof: The required orderings are uniquely determined as follows. (S1, T1) is the F -core.

By Lemma 4.5, there is a unique edge in δI(S1, T1), say e1. (S2, T2) is the Fe1
-core and

δI(S2, T2) = {e2}. And so on, namely, (Sj, Tj) is the FIj−1
-core and δI(Sj, Tj) = {ej}. 2

Let us now get back to the proof of Lemma 4.4.

Proof of Lemma 4.4 We may assume that st /∈ J ; otherwise, the same proof applies on

H − st with k replaced by k − 1. Let us say that an st-setpair is tight in H (in D), if

|S ∪ T | = k− 1 and dH(S, T) = 0. Since D is a bidirection of H, (S, T) is tight in D if, and

only if, it is tight in H. Let F be the family of tight setpairs in H (in D). By Menger’s

Theorem, H + I (or D + I) contains k internally disjoint st-paths if, and only if, I covers

F . It is also known that F is an intersecting setpair family. Thus, by Corollary 4.6, I has a

unique orientation ID that covers F . The statement follows. 2

The proof of Theorem 4.3, and thus also of Theorem 1.1 is complete.

10

Remark: Our algorithm for listing minimal directed/undirected edge-covers of an intersect-

ing st-family easily extends from set-families to setpair-families, by replacing the set-core C

by the setpair-core (S, T). This results in the following statement, that also provides an

alternative proof of Theorem 4.3:

Directed/undirected minimal edge-covers of an intersecting st-family can be listed with delay

O(n(Q(m, n) + m)), under the Core Assumption.

The proof of this statement is identical to that of Theorem 1.2, except that we use Lemma 4.5

instead of Lemma 2.1.

5 Conclusions and open problems

In this paper we characterized several minimal connectivity structures that can be listed

in incremental polynomial time. In particular, we gave incremental polynomial time listing

algorithms for: undirected edge-connectivity SNL, directed/undirected k-CSL, and directed

k-OSL. We note that the undirected element-connectivity SNL admits a similar result, by a

similar proof.

One open problem is which among the problems we considered admits a listing algo-

rithm with polynomial delay. Another question is whether there are additional interesting

SNL/SFCL instances, especially those that correspond to directed graphs, that admit an ef-

ficient listing algorithm; e.g., the result of [3] that directed Steiner trees can be listed with

polynomial delay, cannot be deduced from any statement in this paper. Finally, a natural

question is whether the results in this paper can be extended to setpair families, that corre-

spond to node-connectivity requirements. In particular, is the undirected k-OSL admits an

efficient listing algorithm?

Acknowledgment: I thank an anonymous referee for many useful comments.

References

[1] E. Boros, K. Borys, K. Elbassioni, V. Gurvich, K. Makino, and G. Rudolf. Generat-

ing k-vertex connected spanning subgraphs and k-edge connected spanning subgraphs.

Manuscript, 2007.

[2] E. Boros, K. Elbassioni, V. Gurvich, and L. Khachiyan. Enumerating minimal dicuts

and strongly connected subgraphs and related geometric problems. In Integer Program-

11

ming and Combinatorial Optimization (IPCO), volume LNCS 3153, pages 152–162,

2004.

[3] E. Boros, K. Elbassioni, V. Gurvich, L. Khachiyan, and K. Makino. Generating paths

and cuts in multi-pole(di)graphs. In MFCS, volume 3153, pages 298–309, 2004.

[4] C. J. Coulbourn. The Combinatorics of Network Reliability. Oxford University Press,

1987.

[5] H. N. Gabow and E. W. Mayers. Finding all spanning trees of directed and undirected

graphs. SIAM Journal on Computing, 7(3):280–287, 1978.

[6] D. S. Johnson and H. Papadimitriou. On generating all maximal independent sets.

Information Processing Letters, 27:119–123, 1988.

[7] L. Khachiyan, E. Boros, K. Borys, K. Elbassioni, V. Gurvich, and K. Makino. Gen-

erating cut conjunctions and bridge avoiding extensions in graphs. In Algorithms and

Computation: 16th International Symposium, ISAAC 2005, pages 156–165, 2005.

[8] G. Kortsarz and Z. Nutov. Approximating minimum cost connectivity problems, in

Approximation Algorithms and Metaheuristics, T. F. Gonzalez ed.,. CRC, 2005.

[9] E. Lawler, J. K. Lenstra, and A. H. G. R. Kan. Generating all maximal independent sets:

NP-hardness and polynomial-time algorithms. SIAM Journal on Computing, 9:558–565,

1980.

[10] R. C. Read and R. E. Tarjan. Bounds on backtrack algorithms for listing cycles, paths,

and spanning trees. Networks, 5:237–252, 1975.

[11] A. Shioura, A. Tamura, and T. Uno. An optimal algorithm for scanning all spanning

trees of undirected graphs. SIAM Journal on Computing, 26(3):678–692, 1997.

[12] L. Valiant. The complexity of enumeration and reliability problems. SIAM Journal on

Computing, 8:410–421, 1979.

12

