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Abstract. We study approximation algorithms, integrality gaps, and hardness of approximation,
of two problems related to cycles of “small” length k in a given (undirected) graph. The instance for
these problems consists of a graph G = (V, E) and an integer k. The k-Cycle Transversal problem is
to find a minimum edge subset of E that intersects every k-cycle. The k-Cycle-Free Subgraph problem
is to find a maximum edge subset of E without k-cycles.

Our main result is for the k-Cycle-Free Subgraph problem with even values of k. For any k = 2r,

we give an Ω

(

n
− 1

r
+ 1

r(2r−1)
−"
)

-approximation scheme with running time (1/")O(1/")poly(n) where

n = ∣V ∣ is the number of vertices in the graph. This improves upon the ratio Ω(n−1/r) that can be
deduced from extremal graph theory. In particular, for k = 4 the improvement is from Ω(n−1/2) to
Ω(n−1/3−").

Our additional result is for odd k. The 3-Cycle Transversal problem (covering all triangles) was
studied by Krivelevich [Discrete Mathematics, 1995], who presented an LP-based 2-approximation
algorithm. We show that k-Cycle Transversal admits a (k−1)-approximation algorithm, which extends
to any odd k the result that Krivelevich proved for k = 3. Based on this, for odd k we give an
algorithm for k-Cycle-Free Subgraph with ratio k−1

2k−3
= 1

2
+ 1

4k−6
; this improves upon the trivial

ratio of 1/2.

For k = 3, the integrality gap of the underlying LP was posed as an open problem in the
work of Krivelevich. We resolve this problem by showing a sequence of graphs with integrality gap
approaching 2. In addition, we show that if k-Cycle Transversal admits a (2 − ")-approximation
algorithm, then so does the Vertex-Cover problem, thus improving the ratio 2 is unlikely.

Similar results are shown for the problem of covering cycles of length ≤ k or finding a maximum
subgraph without cycles of length ≤ k (i.e., with girth > k).

1. Introduction. In this work, we study approximation algorithms, integrality
gaps, and hardness of approximation, of two problems related to cycles of a given
“small” length k (henceforth k-cycles) in a graph. The instance for each one of these
problems consists of an undirected graph G = (V,E) and an integer k. The goal is:

k-Cycle Transversal:
Find a minimum edge subset of E that intersects every k-cycle.

k-Cycle Free Subgraph:
Find a maximum edge subset of E without k-cycles.

Note that k-Cycle Transversal and k-Cycle-Free Subgraph are complementary prob-
lems, as the sum of their optimal values equals ∣E∣ = m; hence they are equivalent
with respect to their optimal solutions. However, they differ substantially when con-
sidering approximate solutions. Also note that for k = O(log n), with n = ∣V ∣ the
number of vertices in the graph, the number of k cycles in a graph can be computed
in polynomial time, c.f. [3], and that this number is polynomial for any fixed k. The
k-Cycle Transversal problem is sometimes referred to as the “k-cycle cover” problem
(as one seeks to cover k-cycles by edges). We use an alternative name, to avoid any
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mix up with an additional problem that has the same name – the problem of covering
the edges of a given graph with a minimum family of k-cycles.

We will also consider problems of covering cycles of length ≤ k or finding a
maximum subgraph without cycles of length ≤ k (i.e., of girth > k). We will elaborate
on the relation of these problems to our problems later. Most of our results extend
to the case when edges have weights, but for simplicity of exposition, we consider
unweighted and simple graphs only. We will also assume w.l.o.g. that the input
graph G is connected.

1.1. Previous and related work. Problems related to k-cycles are among the
most fundamental in the fields of Extremal Combinatorics, Combinatorial Optimiza-
tion, and Approximation Algorithms, and they were studied extensively for various
values of k. See for example [6, 1, 2, 19, 5, 9, 11, 14, 13, 15, 16, 18, 17, 7] for only a
small sample of papers on the topic. 3-Cycle Transversal was studied by Krivelevich
[14]. Erdős et al. [7] considered 3-Cycle Transversal and 3-Cycle-Free Subgraph and
their connections to related problems. Pevzner et al. [20] studied the problem of
finding a maximum subgraph without cycles of length ≤ k in the context of compu-
tational biology, and suggested some heuristics for the problem, without analyzing
their approximation ratio. However, most of the related papers studied k-Cycle-Free
Subgraph in the context of Extremal Graph Theory, and addressed the maximum
number of edges in a graph without k-cycles (or without cycles of length ≤ k). This
is essentially the k-Cycle-Free Subgraph problem on complete graphs. In this work we
initiate the study of k-Cycle-Free Subgraph in the context of approximation algorithms
on general graphs.

As the state of the art differs substantially for odd and even values of k, we
consider these cases separately. But for both odd and even k, note that k-Cycle
Transversal is a particular case of the problem of finding a minimum transversal in
a k-uniform hypergraph (a special case of the Hitting-Set problem, which admits a
k-approximation algorithm). Thus a simple greedy algorithm which repeatedly adds
to a partial solution and removes from G a k-cycle until no k-cycles remain, has
approximation ratio k.

Even k:. For k-Cycle Transversal with even values of k we are not aware of any
improvements upon the trivial ratio of k. The maximum number ex(n,C2r) of edges in
a graph with n nodes and without cycles of length k = 2r has been extensively studied.
This is essentially the 2r-Cycle-Free Subgraph problem on complete graphs. This line
of research in extremal graph theory was initiated by Erdős [6]. The first major result
is known as the “Even Circuit Theorem”, due to Bondy and Simonovits [5], states
that any undirected graph without even cycles of length ≤ 2r has at most O(rn1+1/r)
edges. This bound was subsequently improved. To the best of our knowledge, the
currently best known upper bound on ex(n,C2r) due to Lam and Verstraëte [17] is
1
2n

1+1/r +2r
2

n. We note that the best lower bounds on ex(n,C2r) are as follows. For

r = 2, 3, 5 it holds that ex(n,C2r) = Θ(n1+1/r). For other values of r, the existence of a
2r-cycle-free graph with Θ(n1+1/r) edges has not been established, and the best lower

bound known is ex(n,C2r) = Ω
(

n1+ 2
6r−3+�

)

where � = 0 if r is odd and � = 1 if r is

even; we refer the reader to [18] for a summary of results of this type. All this implies
that on complete graphs (a case which was studied extensively), the best known

ratios for 2r-Cycle-Free Subgraph are: constant for r = 2, 3, 5, and Ω
(

n− 1
r
+ 2

6r−3+�

)

otherwise (the latter expression is for constant r). For general graphs, the bound
ex(n,C2r) = O

(

n1+1/r
)

implies an Ω(n−1/r)-approximation by taking a spanning
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tree of G as a solution. In particular, for k = 4, the approximation ratio is Ω(1/
√
n),

and no better approximation ratio was known for this case.

Odd k:. For k-Cycle Transversal, an improvement upon the trivial ratio of k was
obtained for k = 3 by Krivelevich [14]. Let Ck(G) denote the set of k cycles in G,
and let �∗(G) denote the optimal value of the following LP-relaxation for k-Cycle
Transversal:

min
∑

e∈E

xe(1.1)

s.t.
∑

e∈C

xe ≥ 1 ∀C ∈ Ck(G)

xe ≥ 0 ∀e ∈ E

Theorem 1.1 (Krivelevich [14]). 3-Cycle Transversal admits a 2-approximation
algorithm.

For odd values of k, k-Cycle-Free Subgraph admits an easy 1/2-approximation
algorithm, as it is well known that any graph G has a subgraph without odd cycles
(namely, a bipartite subgraph) containing at least half of the edges (such a subgraph
can be computed in polynomial time). In fact, the problem of computing a maxi-
mum bipartite subgraph is exactly the Max-Cut problem, for which Goemans and
Williamson [10] gave an 0.878-approximation algorithm. Note however that the so-
lution found by the Goemans-Williamson algorithm has size at least 0.878 times the
size of an optimal subgraph without odd cycles at all, and the latter can be much
smaller than an optimal subgraph without k-cycles only.

1.2. Our results. Our main result is for the k-Cycle-Free Subgraph problem with
even values of k. It is summarized by the following theorem:

Theorem 1.2. For k = 2r, k-Cycle-Free Subgraph admits an Ω
(

n− 1
r
+ 1

r(2r−1)
−"
)

-

approximation scheme with running time (1/")
O(1/")

poly(n). In particular, 4-Cycle-
Free Subgraph admits an Ω(n−1/3−")-approximation scheme.

We note that for dense graphs we can obtain ratios for k-Cycle-Free Subgraph

that are close to the ones known for complete graphs, as follows. Let G = (V,E)
be a graph with n nodes and at least �

(

n
2

)

edges. Suppose one can find a k-cycle-
free graph H∗ = (V,E∗) with at least f(n, k) edges, n = ∣V ∣. Then given H∗,
the following randomized algorithm computes a k-cycle-free subgraph H of G with
�f(n, r) expected number of edges. Let � : V → V be a (random) permutation
function. For any edge ij ∈ E∗, the probability that f(i)f(j) ∈ E is at least �. Thus,
in expectation, the subgraph H of G consisting of edges uv ∈ E that satisfy u = f(i),
v = f(j) and ij ∈ E∗ has �f(n, k) edges. Moreover, it is not hard to verify that H
is k-cycle-free. In particular, for k = 4 we obtain a �-approximation algorithm, and
this ratio is better than the one in Theorem 1.2 for � = Ω(n−1/3).

On the negative side, the only hardness of approximation result we obtain is
APX-hardness. Thus for even values of k there is a large gap between the upper and
lower bounds we present. Resolving this large gap is an intriguing question left open
in our work. We stress that improving the ratio of Theorem 1.2 “significantly”, for
example to n−" for arbitrarily small values of ", will imply significant progress in the
long standing open problem of determining the value of ex(n,C2r): the maximum
number of edges in a graph with n nodes and without cycles of length k = 2r (i.e.,
2r-Cycle-Free Subgraph on complete graphs).

3



Our next result is for odd values of k. We extend the 2-approximation algorithm
of Krivelevich [14] for 3-Cycle Transversal to arbitrary odd k, and use it to improve
the trivial ratio of 1/2 for k-Cycle-Free Subgraph.

Theorem 1.3. For any odd k ≥ 3 the following holds:

(i) k-Cycle Transversal admits a (k − 1)-approximation algorithm.

(ii) k-Cycle-Free Subgraph admits a
(

1
2 + 1

4k−6

)

-approximation algorithm.

Some remarks are in place. Theorem 1.3 is valid also for digraphs, for any value of
k. For the problems of covering cycles of length ≤ k, or finding a maximum subgraph
without cycles of length ≤ k, our results extend as follows. For k = 3 we have for both
problems the same ratios as in Theorem 1.3. For any k ≥ 4, the problem of covering
cycles of length ≤ k admits a k-approximation algorithm (via the trivial reduction to
the Hitting Set problem). For any k ≥ 4, the problem of finding a maximum subgraph
without cycles of length ≤ k admits the ratio Ω(n−1/3−"). For k ≥ 6 this follows from
extremal graph theory results mentioned above, while for k = 4, 5 this is achieved by
first computing a bipartite subgraph G′ of G with at least ∣E∣/2 edges which preserves
the optimal value up to a factor of 1/2, and then applying on G′ the algorithm from
Theorem 1.2 for 4-cycles. The former is easily done by taking a random partition of
G and removing edges that are not cut.

Finally, we give some hardness of approximation results for our problems. Recall
that Krivelevich [14] posed as an open question if his upper bound of 2 on the inte-
grality gap of LP (1.1) is tight for k = 3. We resolve this question, and in addition
show that the ratio 2 achieved by Krivelevich for k-Cycle Transversal with k = 3 is
essentially the best possible (conditioned on certain complexity assumptions); in fact,
we establish this 2-approximation threshold for any k. Unfortunately, for triangle-free
graphs we can show only APX-hardness.

Theorem 1.4. For any k ≥ 3 the following holds:

(i) If k-Cycle Transversal admits a (2−")-approximation algorithm for some posi-
tive universal constant 0 < " < 1/2, then so does the Vertex-Cover problem.
Furthermore, for any " > 0 there exist infinitely many undirected graphs G
for which the integrality gap of LP (1.1) is at least 2− ".

(ii) k-Cycle-Free Subgraph is APX-hard for any constant k.

Theorems 1.2, 1.3, and 1.4, are proved in Sections 2, 3, and 4, respectively.

1.3. Techniques. The proof of Theorem 1.2 is the main technical contribution
of this paper. Our algorithm for k-Cycle-Free Subgraph with k = 2r consists of two
steps. In the first step we identify in G a subgraph G′ which is an almost regular
bipartite graph with the property that G and G′ have approximately the same optimal
values. The construction of G′ can be viewed as a preprocessing step of our algorithm
and may be of independent interest for other optimization problems as well. In the
second step of our algorithm, we use the special structure of G′ to analyze the simple
procedure that first removes edges at random from G′ until only few k-cycles remain
in G′, and then continues to remove edges from G′ deterministically (one edge per
cycle) until G′ becomes k-cycle free.

The proof of part (i) of Theorem 1.3 is a natural extension of the proof of Kriv-
elevich [14] of Theorem 1.1. Part (ii) simply follows from part (i).

The proof of Theorem 1.4(i) gives an approximation ratio preserving reduction
from Vertex-Cover on 3-cycle-free graphs to 3-Cycle Transversal. It is well known that
breaking the ratio of 2 for Vertex-Cover on triangle free graphs is as hard as breaking
the ratio of 2 on general graphs. For the integrality gap we use the same reduction
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on graphs that, on one hand, are triangle free, but on the other have a minimum
vertex-cover of size (1−o(1))n. Such graphs exist, and appear in several places in the
literature; see for example [8]. The APX-hardness in part (ii) is naturally derived by
a reduction to Independent Set (the complementary of Vertex Cover) in sparse graphs.

2. Algorithm for even k (Proof of Theorem 1.2). In what follows let opt(G)
be the optimal value of the k-Cycle-Free Subgraph problem on G. We may assume that
G is connected, as otherwise the problem can be solved in each connected component
of G separately. We start by a simple reduction which shows that we may assume
that our input graph G is bipartite, at the price of loosing only a constant in the
approximation ratio. Fix an optimal solution G∗ to k-Cycle Free Subgraph. Partition
the vertex set V of G randomly into two subsets, A and B, each of size n/2, and
remove edges internal to A or B. In expectation, the fraction of edges in G∗ that
remain after this process is 1/2. With probability at least 2/3 the fraction of edges in
G∗ that remain is at least 1/4; here we apply the Markov inequality on the fraction
of edges inside A and B.

Assuming that the input graph G is bipartite (and connected), our algorithm
has two steps. In the first step, we extract from G a family G of subgraphs Gi =
(Ai+Bi, Ei), so that either: one of these subgraphs has a “�-semi-regularity” property
(see Definition 2.1 below) and a k-cycle-free subgraph of size close to opt(G), or we
conclude that opt(G) is small. In the latter case, we just return a spanning tree in
G. In the former case, it will suffice to approximate k-Cycle-Free Subgraph on Gi ∈ G,
which is precisely what we do in the second step of the algorithm.

Definition 2.1. A subset A of nodes in a graph is �-semi-regular if ΔA ≤
� ⋅ dA where ΔA and dA denote the maximum and the average degree of a node in
A, respectively. A bipartite graph with sides A,B is �-semi-regular if each of A,B is
�-semi-regular.

We will prove the following two statements that imply Theorem 1.2.

Lemma 2.2. Let k = 2r be a positive integer and let " > 0. For any bipartite in-

stance G of k-Cycle-Free Subgraph there exists an algorithm that in (1/")O(1/")
poly(n)

time finds a family G of at most 2"−2/" subgraphs of G so that at least one of the
following holds:

(i) G contains an n2"-semi-regular bipartite subgraph Gi of G so that opt(Gi) =
Ω("2/")opt(G).

(ii) opt(G) = O
(

n"−2/"
)

.

Lemma 2.3. k-Cycle-Free Subgraph on bipartite �-semi-regular instances G =

(A+B,E) and k = 2r admits an Ω

(

(

�r(∣A∣∣B∣)
r−1

r(2r−1)

)−1
)

-approximation ratio in

(randomized) polynomial time.

For bipartite graphs, the approximation scheme as in Theorem 1.2 is as follows:

Algorithm for bipartite graphs
1. Compute the family G as in Lemma 2.2.
2. For each Gi ∈ G compute a k-cycle-free subgraph Hi of Gi

using the algorithm from Lemma 2.3, with � = n2".
3. If some subgraph H = Hi has at least n edges then return H .
4. Else, return a spanning tree in G.

The running time is dominated by the one in Lemma 2.2, and the analysis of the
approximation ratio is straightforward.
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2.1. Reduction to �-semi-regular graphs (Proof of Lemma 2.2). Let G =
(A + B,E) be a bipartite connected graph, let " > 0 be a small constant, let n =
∣A∣ + ∣B∣, and let � = n". For simplicity of exposition we will assume that � and
ℓ = 1/" are integers.

We define an iterative process which partitions a subgraph G′ = (A′ + B′, E′)
of G with A′ ⊆ A and B′ ⊆ B into at most ℓ = 1/" subgraphs so that at least one
of the sides in each subgraph is �-semi-regular. Specifically, the family ℱ(G′, A) is
defined as follows. Partition the nodes in A′ into at most ℓ sets Aj , where Aj consists
of nodes in A′ of degree in the range

[

�j , �j+1
)

. The family ℱ(G′, A) consists of the
graphs Gj = G′ − (A′ − Aj) (namely, Gj is the induced subgraph of G′ with sides
Aj and B′). Note that Aj is a �-semi-regular node set in Gj , but Gj may not be �-
semi-regular. In a similar way, the family ℱ(G′, B) is defined. Since the union of the
subgraphs in ℱ(G′, A) is G′, and since ∣ℱ(G′, A)∣ ≤ 1/", there exists G′′ ∈ ℱ(G′, A)
so that opt(G′′) ≥ " ⋅ opt(G′); a similar statement holds for ℱ(G′, B). For a family G
of subgraphs of G let ℱ(G, A) = ∪{ℱ(G′, A) : G′ ∈ G} and ℱ(G, B) =

∪{ℱ(G′, B) :
G′ ∈ G}.

Define a sequence of families of subgraphs of G as follows. G0 = {G}, G1 =
ℱ(G0, A), G2 = ℱ(G1, B), and so on. Namely, Gi = ℱ(Gi−1, A) if i is odd and
Gi = ℱ(Gi−1, B) if i is even. The following statement is immediate.

Claim 2.4. There exists a sequence of graphs {Gi = (Ai +Bi, Ei)}2ℓi=0 so that
for every i: Gi ∈ Gi, Gi ⊆ Gi−1, and opt(Gi) ≥ " ⋅ opt(Gi−1).

We now study the structure of the graphs Gi. We show that the average degree in
Gi is rapidly decreasing when i is increasing, until one of the Gi’s is �

2-semi-regular.
Claim 2.5. For every i, either Gi+2 is �2-semi-regular, or at least one of the

following holds:
∙ If i is even then dAi+2 < dAi+1/�, where dAi

is the average degree of Ai in
Gi.
∙ If i is odd then dBi+2 < dBi+1/�, where dBi

is the average degree of Bi in Gi.
Proof. Suppose that i is even; the proof of the case when i is odd is similar. In

Gi+1 ∈ Gi+1, the maximum degree ΔAi+1 of Ai+1 is at most � times the average degree
dAi+1 of Ai+1. If Gi+2 is not �2-semi-regular, then ΔAi+2 > �2 ⋅ dAi+2 . However, the
maximum degree in Ai+2 is ΔAi+2 ≤ ΔAi+1 ≤ �dAi+1 . This implies that dAi+2 <
dAi+1/�.

All in all, we conclude that for some i ≤ 2/", Gi is �2-semi-regular and satisfies
opt(Gi) ≥ "iopt(G); or G2/" has constant average degree and satisfies opt(G2/") ≥
"2/"opt(G). The latter implies that opt(G) = O("−2/"n).

2.2. Algorithm for �-semi-regular graphs (Proof of Lemma 2.3). The
algorithm presented here is randomized but can be derandomized by using k-wise
independent random variables (see for example [12]). Let G = (A + B,E) be a
bipartite �-semi-regular graph. Let dA be the average degree of nodes in A, and dB
be the average degree of nodes in B. Let m = dA∣A∣ = dB ∣B∣ =

√

dAdB∣A∣∣B∣ be the
number of edges in G. Our algorithm builds on the following two results (the first is
by Naor and Verstraëte [19]).

Theorem 2.6 ([19]). The maximum number of edges in a bipartite graph G =
(A+B,E) without cycles of length k = 2r is:

(2r − 3)
[

(∣A∣∣B∣)
r+1
2r + ∣A∣+ ∣B∣

]

if r is odd

(2r − 3)
[

∣A∣ 12 ∣B∣
r+2
2r + ∣A∣+ ∣B∣

]

if r is even
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Lemma 2.7. The number of k-cycles in G is at most m�2r−1dr−1
A dr−1

B .
Proof. Consider picking k = 2r distinct nodes in G, r from A and r from B,

uniformly at random. Denote the nodes a1, a2, . . . , ar ∈ A and b1, . . . , br ∈ B. We
analyze the probability that (a1, b1, a2, b2, . . . , ar, br, a1) is a k cycle in G. In our
analysis, our random choices are made according to the order of the cycle at hand,
i.e., we first pick a1, then b1, then a2, and so on. As a1 has degree at most �dA,
the probability that b1 is adjacent to a1 is at most �dA/∣B∣. Similarly, as b1 has
degree at most �dB , the probability that a2 is adjacent to b1 is at most �dB/∣A∣.
Continuing this line of argument, it is not hard to verify that the probability that
(a1, b1, a2, b2, . . . , ar, br, a1) is a k cycle in G is at most

�2r−1 drAd
r−1
B

∣A∣r−1∣B∣r .

The number of k-tuples (a1, b1, a2, b2, . . . , ar, br) in G is bounded by ∣A∣r∣B∣r.
Thus the number of k-cycles in G is at most �2r−1drAd

r−1
B ∣A∣ = m�2r−1dr−1

A dr−1
B .

We now present our algorithm for k-Cycle Free Subgraph. In our analysis, we
assume w.l.o.g. that ∣A∣ ≥ ∣B∣. We also assume that ∣A∣ and ∣B∣ are sufficiently

large with respect to �. Namely we assume that ∣A∣∣B∣ ≥ (256�)
2
. Otherwise, the

subgraph consisting of a single edge adjacent to v for each node v ∈ A, will suffice to
yield an approximation ratio of Ω(1/�) which will equal Ω(n−2") in our final setting
of parameters. Theorem 2.6 implies that for any r

opt(G) ≤ 4r((∣A∣∣B∣) r+1
2r + ∣A∣) .

We now consider two cases: the case in which (∣A∣∣B∣) r+1
2r ≥ ∣A∣ and thus opt(G) ≤

8r(∣A∣∣B∣) r+1
2r ; and the case in which (∣A∣∣B∣) r+1

2r ≤ ∣A∣ and thus opt(G) ≤ 8r∣A∣. In
the later case, the subgraph consisting of a single edge adjacent to v for each node
v ∈ A will suffice to yield an approximation ratio of Ω(1/r). We now continue to

study the case in which opt(G) ≤ 8r(∣A∣∣B∣) r+1
2r .

Consider the following random process in which we remove edges from G. Each
edge will be removed from G independently with probability p to be defined later.
Denote the resulting graph by H . Denote by q = 1 − p the probability that an edge
is not removed.

Claim 2.8. As long as mq ≥ 16, with probability at least 1
2 the subgraph H

satisfies:
∙ The number of edges in H is at least mq/2.
∙ The number of k cycles in H is at most 4q2rm�2r−1dr−1

A dr−1
B .

Proof. The expected number of edges in H is mq ≥ 16. Thus, using the Chernoff
bound, the number of edges in H is at least half the expected value with probability
≥ 3/4. In expectation, the number of k-cycles in H is at most q2rm�2r−1dr−1

A dr−1
B .

With probability at least 3/4 (Markov) the number of k-cycles in H will not exceed
4 times this expected value.

We now set q such that the number of k-cycles in H is at most 1
2 the number of

edges in H . Namely, we set q to satisfy 4q2rm�2r−1dr−1
A dr−1

B ≤ mq/4. Then:

q−1 = 16
1

2r−1 �(dAdB)
r−1
2r−1 .

With this setting of parameters and our assumption that ∣A∣∣B∣ ≥ (256�)2, we have
that mq ≥ 16 and Claim 2.8 holds. Thus, we may remove an additional single edge
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from each remaining k-cycle in H to obtain a k-cycle-free subgraph with at least mq/4
edges. This is the graph our algorithm will return. To conclude our proof, we now
analyze the quality of our algorithm.

We consider 2 cases. Primarily, consider the case that m ≤ 8r(∣A∣∣B∣) r+1
2r . This

implies that (∣A∣∣B∣dAdB) 1
2 ≤ 8r(∣A∣∣B∣) r+1

2r , which in turn implies that dAdB ≤
64r2(∣A∣∣B∣) 1

r . Using the fact that opt(G) ≤ m we obtain in this case an approxima-
tion ratio of

mq

4opt(G)
≥ q

4
= Ω

(

1

�(dAdB)
r−1
2r−1

)

≥ Ω

(

1

�(64r2∣A∣∣B∣)
r−1

r(2r−1)

)

=

= Ω

(

1

�(∣A∣∣B∣)
r−1

r(2r−1)

)

.

The second case is analyzed similarly. Assuming m ≥ 8r(∣A∣∣B∣) r+1
2r we get that

dAdB ≥ 64r2(∣A∣∣B∣) 1
r . Using the fact that opt(G) ≤ 8r(∣A∣∣B∣) r+1

2r we obtain in this
case an approximation ratio of

mq

4opt(G)
≥ (∣A∣∣B∣dAdB) 1

2

32r(∣A∣∣B∣) r+1
2r ⋅ 16 1

2r−1 �(dAdB)
r−1
2r−1

= Ω

(

(dAdB)
1

2(2r−1)

�r(∣A∣∣B∣) 1
2r

)

=

= Ω

(

1

�r(∣A∣∣B∣)
r−1

r(2r−1)

)

.

3. Algorithms for odd k (Proof of Theorem 1.3). To prove Theorem 1.3, we
prove two theorems that consider a more general setting of a family ℱ of subgraphs of
G which are not necessarily k-cycles, nevertheless each subgraph C ∈ ℱ is of size ≤ k.
We need some definitions. Let G be a graph and let ℱ be a family of subgraphs (edge
subsets) of G. For a subgraph H of G, let ℱ(H) be the restriction of ℱ to subgraphs
of H ; H is ℱ-free if ℱ(H) = ∅. An edge set F that intersects every member of ℱ is an
ℱ-transversal. We consider the following two problems. The instance of the problems
consists of a graph G = (V,E) and a family ℱ of subgraphs of G. The goal is:

ℱ -Transversal: Find a minimum size ℱ -transversal.
ℱ -Free Subgraph: Find a maximum size ℱ -free subgraph of G.

For ℱ = Ck(G), we get the problems k-Cycle Transversal and k-Cycle Free Sub-

graph, respectively. Let �∗ℱ (H) denote the optimal value of the following LP-relaxation
for ℱ -Transversal on an arbitrary graph H .

min
∑

e∈E(H)

xe(3.1)

s.t.
∑

e∈C

xe ≥ 1 ∀C ∈ ℱ(H)

xe ≥ 0 ∀e ∈ E(H)

An edge ofH is ℱ-redundant if no member of ℱ(H) contains it; e.g., if ℱ = Ck(G),
then an edge of H is ℱ -redundant if it is not contained in any k-cycle of H . We prove:

Theorem 3.1. Suppose that any subgraph H of G admits a polynomial time
algorithm that:

8



(i) Solves LP (3.1) on H.
(ii) Finds ℱ-redundant edges of H.
(iii) Finds an ℱ(H)-transversal of size at most ∣E(H)∣ ⋅ (k − 1)/k.

Then there exist a polynomial time algorithm that finds an ℱ(G)-transversal of size
≤ (k − 1) ⋅ �∗ℱ (G).

To prove Theorem 1.3(ii) we connect the approximation of ℱ -Free Subgraph and
ℱ -Transversal by the following theorem:

Theorem 3.2. Suppose that for any graph G with m edges there exist a polyno-
mial algorithm that finds an ℱ(G)-free subgraph of size ≥ �m, and that ℱ -Transversal
admits an �-approximation algorithm. Then k-Cycle-Free Subgraph admits an ��/(�+
� − 1)-approximation algorithm.

Let us now show that Theorem 3.1 implies Theorem 1.3(i) and that Theorem 3.2
implies Theorem 1.3(ii). Let G be a graph with m edges. As was mentioned, it is not
hard to find in G a subgraph with at least m/2 edges and without odd cycles. For
Theorem 1.3(i), it is easy to see that this setting obeys the conditions of Theorem 3.1,
hence we obtain a (k − 1)-approximation for ℱ -Transversal in this case. For Theo-
rem 1.3(ii), we apply Theorem 3.2 with � = 1/2 and � = k − 1. The ratio obtained
is ��/(� + � − 1) = (k − 1)/(2k − 3) = 1

2 + 1
4k−6 .

We now prove Theorems 3.1 and 3.2, in Sections 3.1 and 3.2, respectively.

3.1. Proof of Theorem 3.1. The algorithm is as follows:

Initialization: H ← G; F1 ← ∅.
Phase 1:
While for an optimal solution x to (3.1) xe ≥ 1/(k − 1) for some e ∈ E(H) do:

F1 ← F1 + e; H ← H − e.
EndWhile

Phase 2:
- Remove all ℱ(H)-redundant edges from H . Denote the resulting graph by H2.
- Compute an ℱ(H2)-transversal F2 of size at most ∣E(H2)∣ ⋅ (k − 1)/k.

Return F1 ∪ F2.

Under the assumptions of the Theorem, all steps can be implemented in polyno-
mial time. It is also easy to see that the algorithm returns a feasible solution. We
now analyze the approximation ratio. We start with a simple claim followed by our
key Lemma.

Claim 3.3. Let H be the graph obtained after Phase 1 of the algorithm and let
xe be an optimal solution to LP (3.1) on H. Then xe = 0 for every ℱ(H)-redundant
edge e in H. Thus the restriction of x to H2 is also an optimal solution to LP (3.1)
on H2.

Proof. Let e be an ℱ(H)-redundant edge. Assume for sake of contradiction that
xe > 0. We can now reduce the value of the LP solution by zeroing out xe. The new
solution is still valid, as e is ℱ(H)-redundant and thus does not appear in the first
family of constraints of (3.1).

Let H2 be obtained from H by removing all ℱ(H)-redundant edges. Then the
restriction of x to H2 is an optimal solution to LP (3.1) on H2, since any solution
to LP (3.1) on H2 can be extended to one on H by setting xe = 0 for every ℱ(H)-
redundant edge e.

Using the claim above, we may assume that the subgraph H2 has an optimal
solution x to LP (3.1) in which xe < 1/(k − 1) for all e ∈ E(H2).
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Lemma 3.4. Let H2 be a subgraph of G without ℱ-redundant edges and let x be
an optimal solution to LP (3.1) on H2. If xe < 1/(k − 1) for every e ∈ E(H2) then
�∗ℱ (H2) ≥ ∣E(H2)∣/k.

Proof. Let �∗ℱ(H2) = �∗ℱ(H2) denote the optimal value of the dual LP to LP (3.1):

max
∑

C∈ℱ

yC(3.2)

s.t.
∑

C∋e

yC ≤ 1 ∀e ∈ E(H2)

yC ≥ 0 ∀C ∈ ℱ(H2)

Let x and y be optimal solutions to (3.1) and to (3.2), respectively. Consider two
cases, after noting that the primal complementary slackness condition is:

xe > 0 =⇒
∑

C∋e

yC = 1 ∀ e ∈ E(H2)(3.3)

Case 1: xe > 0 for every e ∈ E(H2).
In this case �∗ℱ (H2) ≥ ∣E(H2)∣/k, since from (3.3) we get:

∣E(H2)∣ =
∑

e∈E(H2)

1 =
∑

e∈E2

∑

C∋e

yC =
∑

C∈ℱ(H2)

∣C∣yC ≤
∑

C∈ℱ(H2)

kyC = k�∗ℱ (H2) = k�∗ℱ (H2) .

Case 2: xf = 0 for some f ∈ E(H2).
Since H2 has no ℱ -redundant edges, there is C ∈ ℱ(H2) so that f ∈ C. Since xf = 0,
we have

∑

e∈C−f xe ≥ 1. Since ∣C − f ∣ ≤ k − 1, there exists e ∈ C − f so that
xe ≥ 1/(k − 1). This is a contradiction.

We now bound the value of ∣F1∣ and ∣F2∣ with respect to �∗ℱ(G). We start with
some notation. Let H0 = G be the starting point of our algorithm. Let H1 be
the graph obtained from H0 by the removal of e1 after the first round of Phase 1.
Similarly, for the i’th round of Phase 1, let Hi be the graph obtained from Hi−1 by
the removal of ei. Let H = Hℓ be the graph obtained after Phase 1 of our algorithm
(here ℓ denotes the number of rounds in Phase 1). It is not hard to verify that
�∗ℱ (H

i−1) ≥ �∗ℱ (H
i) + xei . Here xei is obtained from the optimal solution to Hi−1.

This implies that �∗ℱ (G) ≥ �∗ℱ (H) +
∑ℓ

i=1 xei .

Now we bound ∣F1∣ and ∣F2∣. First notice that ∣F1∣ ≤ (k−1)∑ℓ
i=1 xei . Recall that

H2 is the graph obtained in Phase 2 from H by removing all ℱ(H)-redundant edges.
It also holds that ∣F2∣ ≤ ∣E(H2)∣ ⋅ (k − 1)/k. By Lemma 3.4, �∗ℱ (H2) ≥ ∣E(H2)∣/k.
Hence

∣F2∣
�∗ℱ (H2)

≤ ∣E(H2)∣ ⋅ (k − 1)/k

∣E(H2)∣/k
= k − 1 .

As by Claim 3.3, �∗ℱ (H) = �∗ℱ (H2) we have that

∣F1∣+ ∣F2∣ ≤ (k − 1)(�∗ℱ (H) +

ℓ
∑

i=1

xei) ≤ (k − 1)�∗ℱ(G) ,

which concludes our proof.
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3.2. Proof of Theorem 3.2. In what follows let opt be the optimal solution
value of the ℱ -Free Subgraph problem on G. We choose the better result F from the
following two algorithms:

Algorithm 1: Find an ℱ(G)-free subgraph of size ≥ �m.

Algorithm 2: Find an ℱ(G)-transversal I of size≤ � times an optimal ℱ(G)-transversal
(and remove it from G).

Algorithm 1 computes a solution of size ≥ �m. Algorithm 2 computes a solution
of size ≥ m − �(m − opt). The worse case is when these lower bounds coincide:
�m = m − �(m − opt) which implies opt = m(� + � − 1)/�. This gives the ratio

�m
m(�+�−1)/� = ��

�+�−1 . Formally, ∣F ∣ ≥ max{�m,m − �(m − opt)}. Consider two
cases:

Case 1: �m ≥ m− �(m− opt), so opt ≤ m(�+ � − 1)/�. Then

∣F ∣
opt
≥ �m

opt
≥ �

(�+ � − 1)/�
=

��

�+ � − 1
.

Case 2: m− �(m− opt) ≥ �m, so m/opt ≤ �/(� + � − 1). Then

∣F ∣
opt
≥ m− �(m− opt)

opt
= �− (�− 1) ⋅ m

opt
≥ �− (� − 1) ⋅ �

�+ � − 1
=

��

�+ � − 1
.

In both cases the ratio is bounded by ��
�+�−1 , which concludes our proof.

4. Hardness of approximation (Proof of Theorem 1.4). We first prove
Theorem 1.4 for k = 3, and then show the slight modification needed to extend it to
any k. Given an instance J = (VJ , EJ ) of Vertex-Cover, construct a graph G = (V,E)
for the 3-Cycle Transversal/3-Cycle-Free Subgraph instance by adding to J a new node
s and the edges {sv : v ∈ VJ}. Clearly, every edge uv ∈ EJ corresponds to the 3-cycle
Cuv = {us, sv, uv} in G.

Suppose that J is 3-cycle-free. Then the set of 3-cycles of G is exactly {Cuv :
uv ∈ EJ}. The following statement implies that w.l.o.g. we may consider only 3-cycle
transversals that consist of edges incident to s.

Claim 4.1. Suppose that J is 3-cycle-free. Let F be a 3-cycle transversal in G
and let uv ∈ F ∩EJ . Then F −uv+ su is also a 3-cycle transversal in G. Thus there
exists a 3-cycle transversal F ′ ⊆ {sv : v ∈ VJ} in G with ∣F ′∣ ≤ ∣F ∣.

Proof. The only 3-cycle in G that is covered by the edge uv is Cuv. This cycle is
also covered by the edge su.

Claim 4.2. Suppose that J is 3-cycle-free. Then U ⊆ VJ is a vertex-cover in J
if, and only if, the edge set FU = {su : u ∈ U} is a 3-cycle transversal in G.

Proof. We show that if U ⊆ VJ is a vertex-cover in J then FU is a 3-cycle
transversal in G. Let Cuv be a 3-cycle in G. As U is a vertex-cover, u ∈ U or v ∈ U .
Thus su ∈ FU or sv ∈ FU . In both cases, Cuv ∩ FU ∕= ∅.

We now show that if FU is a 3-cycle transversal in G, then U is a vertex-cover in
J . Let uv ∈ EJ . Then Cuv is a 3-cycle in G, and thus su ∈ FU or sv ∈ FU . This
implies that u ∈ U or v ∈ U , namely, the edge uv is covered by U .

From the claims above it follows that an �-approximation for 3-Cycle Transversal

on G implies an �-approximation for Vertex-Cover on 3-cycle-free graphs J .

The following claim uses a rather standard local-ratio argument [4].
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Claim 4.3. Any approximation algorithm with ratio � ≥ 3/2 for Vertex-Cover on
3-cycle-free graphs implies an �-approximation algorithm for Vertex-Cover (on general
graphs).

Proof. Suppose that there is an �-approximation algorithm for Vertex-Cover on 3-
cycle-free graphs. Let J be a general graph, and let opt(J) be the size of its minimum
vertex cover. Consider the following two phase algorithm. Phase 1 starts with an
empty cover F1, and repeatedly, for every 3-cycle C in J , adds the nodes of C to F1

and deletes them from J . Note that any vertex-cover contains at least two nodes of
C, which implies a “local ratio” of 2/3. Let J2 be the triangle free graph obtained
after Phase 1. In Phase 2 use the �-approximation algorithm (for 3-cycle-free graphs)
to compute a vertex-cover F2 of J2. The statement follows since: opt(J) ≥ 2

3 ∣F1∣ +
opt(J2) ≥ 2

3 ∣F1∣+ ∣F2∣
� ≥

∣F1∣+∣F2∣
� .

We now prove that for k = 3 the integrality gap of (1.1) is at least 2 − ". We
will use the fact that for any " > 0, there exist infinitely many graphs J = (VJ , EJ )
which are 3-cycle-free and have minimum vertex-cover of size at least ∣VJ ∣(1 − "

2 ).
Such graphs appear in various places in the literature. For example see Theorem 1.2
in [8] in which 3-cycle-free graphs J with independence number at most "

2 ∣VJ ∣ are
presented. For such graph J , the minimum 3-cycle cover in the corresponding graph
G has size at least ∣VJ ∣(1 − "

2 ). On the other hand, the solution xe = 1/2 if e is
incident to s and xe = 0 otherwise is a feasible solution to LP (1.1) on G with value

∣VJ ∣/2. Hence the integrality gap is at least
(1− "

2 )

1/2 = 2− ".

Now we prove that 3-Cycle-Free Subgraph is APX hard using the same construc-
tion. Let �(J) denote the maximum size of an independent set in J . Recalling
that k-Cycle-Free Subgraph and k-Cycle Transversal are complementary problems, and
that the Independent Set problem is the complementary problem to Vertex Cover, we
conclude from Claims 4.1 and 4.2:

Claim 4.4. Suppose that J is 3-cycle-free. Then the maximum number of edges
in a 3-cycle-free subgraph of G equals ∣EJ ∣+ �(J).

Proof. Let H be a 3-cycle-free subgraph in G and let uv ∈ EJ − H . Then
H − su + uv is also a 3-cycle free subgraph in G. Thus there exists a 3-cycle-free
subgraph H ′ containing EJ so that ∣E(H ′)∣ ≥ ∣E(H)∣. Furthermore, W ⊆ VJ is an
independent set in J if, and only if, the graph HW = J + {s} + {sw : w ∈ W} is
3-cycle-free. Consequently, the maximum number of edges in a 3-cycle-free subgraph
of G equals ∣EJ ∣+ �(J).

Now we use the fact that Independent Set is APX-hard on sparse 3-cycle-free
graphs. Specifically, Trevisan [21] shows that for some universal constants C > c > 0,
the decision problem whether a 3-cycle free graph J of maximum degree 3 has �(J) ≥
C∣VJ ∣ or if �(J) ≤ c∣VJ ∣, is NP-complete. In the former case, we have by Claim 4.4
that G has a 3-cycle-free subgraph with at least C∣VJ ∣+ ∣EJ ∣ edges, while in the latter
case any 3-cycle-free subgraph in G has at most c∣VJ ∣+ ∣EJ ∣ edges. As ∣EJ ∣ ≤ 3∣VJ ∣,
the APX-hardness for k = 3 follows.

The proof easily extends to arbitrary k ≥ 4 (for the APX-hardness k should
be constant). We use the same construction as for the case k = 3, but in addition
subdivide every edge of J by k − 3 nodes, and do not make any assumptions on
J . Hence every edge uv ∈ EJ is replaced by a path Puv of the length k − 2, and
Cuv = Puv + su + sv is a k-cycle in G. Since 3(k − 2) > k for k ≥ 4, G has no other
k-cycles, namely, the set of k-cycles in G is {Cuv = Puv + su + sv : uv ∈ EJ}. The
rest of the proof of this case is identical to the case k = 3, and thus is omitted.

A similar proof (with slight modifications) applies for the problems of covering
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cycles of length ≤ k, or finding a maximum subgraph without cycles of length ≤ k

5. Open problems. For k-Cycle Transversal, we have shown approximation al-
gorithms with ratio k − 1 for odd values of k and ratio k when k is even k. However,
the best approximation threshold we have is 2. Closing this gap (even for k = 4, 5) is
left open.

For k-Cycle-Free Subgraph, we have ratios 2/3 for k = 3 and n−1/3−" for k = 4.
The best approximation threshold we have is APX-hardness. Hence, we do not even
know if our ratio of 2/3 for k = 3 is tight. Our result for k = 3 actually establishes a
lower bound of 2/3 on the integrality gap for the natural LP for 3-Cycle-Free Subgraph,
but the best upper bound we have is only 3/4. Finally, in our opinion, the most
challenging open question is closing the huge gap for the case k = 4.
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