A Near-Linear Time Algorithm for Constructing a Cactus Representation of
Minimum Cuts

David R. Karger*

Abstract

We present an O(m) (near-linear) time Monte Carlo algo-
rithm for constructing the cactus data structure, a useful
representation of all the global minimum edge cuts of an
undirected graph. Our algorithm represents a fundamental
improvement over the best previous (quadratic time) algo-
rithms: because there can be quadratically many min-cuts,
our algorithm must avoid looking at all min-cuts during the
construction, but nonetheless builds a data structure rep-
resenting them all. Our result closes the gap between the
(near-linear) time required to find a single min-cut and that
for (implicitly) finding all the min-cuts.

1 Introduction

In this paper, we give an O(m)—time Monte Carlo
algorithm for constructing the cactus representation of
all (global) minimum cuts! in an undirected graph with
n vertices and m edges of arbitrary capacity. This
improves on the previous best O(nz) time algorithm of
Karger and Stein [5].

The cactus is an elegant data structure introduced
by Dinitz et. al. [1] that represents all (possibly ©(n?))
minimum cuts of an undirected graph using an O(n)-
edge undirected graph. The representing graph is a tree
of cycles—a collection of cycles connected to each other
by non-cycle edges that form a tree. Each vertex in
the original graph is mapped to a node of the cactus?
(though the mapping can be non-injective and non-
surjective). In the cactus, removing any tree edge,
or any pair of edges from the same cycle, divides the
cactus nodes in two. Each such partition induces a
corresponding partition of the original graph vertices;
these are precisely the minimum cuts of the original
graph. Thanks to this correspondence, a cactus makes it
easy to enumerate all minimum cuts, to find a minimum
cut separating any two vertices if one exists, and to
compute other useful characteristics of the min-cuts of
the original graph.

~ *Computer Science and Artificial Intelligence Laboratory,
Massachusetts Institute of Technology, Cambridge, MA 02139.
email: {karger, debmalya}@mit.edu. Research supported by
NSF contract CCF-0635286.

IThroughout this paper, “min-cut” will refer to a global
minimum edge cut.

2To avoid ambiguity, we will use the term vertex for the original
graph and node for the cactus.

Debmalya Panigrahi*

Karzanov and Timofeev gave a sequential algorithm
for constructing the cactus [6] that was parallelized
by Naor and Vazirani [8]. This algorithm used an
explicit listing of all the minimum cuts of a graph.
An undirected graph potentially has ©(n?) min-cuts,
each of which can be described explicitly in ©(n) space;
thus, the explicit listing uses ©(n3) space. Any cactus
construction using such a listing will of course require
O(n?) time just to read its input. This was unimportant
when min-cut algorithms were slow, as the time to
find the min-cuts dominated the time to construct
the cactus. However, as faster min-cut algorithms
were developed [3, 7, 5, 4], faster cactus construction
algorithms became imaginable. Karger and Stein [5]
gave an O(nz)—time cactus construction based on the
chain representation of minimum cuts. Using a fixed
root r, the chain representation represents all min-cuts
separating r from a given vertex z in O(n) space. This
is possible because those cuts form a nested sequence of
O(n) sets S; C Sy C -+, so can be represented via the
differences S; 1 — S; which in total have size n?. The
Karger-Stein algorithm is thus linear in the (maximum)
size of the representation it uses.

Subsequently, Karger [4] gave a near-linear time al-
gorithm for finding ¢ minimum cut in a graph; however,
no algorithm with similar time bounds was given for cre-
ating the cactus; the quadratic-space intermediate rep-
resentation used by the previous algorithms suggested
this would be difficult.

To achieve near-linear time, we need to find a better
way to examine all the minimum cuts of the graph that
need to be incorporated in the cactus. Indeed, it is
not only the size of these cuts’ representation that is
at issue: since there can be as many as ©(n?) min-cuts
even in a graph with n edges (consider the cycle), a
near-linear time cactus algorithm does not even have
time to encounter all the minimum cuts, let alone build
a large representation of them. This is the challenge we
surmount in the paper: to go directly from the size-m
graph to the size-n cactus, without ever “unpacking”
the set of minimum cuts that we need to examine for
the construction.

Our algorithm is Monte Carlo, as are all algorithms

for constructing the cactus—or even finding a minimum
cut—whose time bounds beat O(mn). It works with
high probability, but offers no way to check whether it
has produced the correct answer.

1.1 Our Approach. Although there may be ©(n?)
min-cuts, we show that the cactus can be constructed by
finding only O(m+n) minimal min-cuts. (The concept
of minimal min-cuts was introduced by Gabow in [2].)
For intuition, suppose the cactus is a tree, i.e. that
the cactus has no cycles, and that the nodes of the
cactus are in 1-1 correspondence with the vertices of
the graph. To build the cactus, we need only identify
the tree edges in the cactus. To do so, pick some vertex
r of the graph, and imagine we root the cactus at this
vertex. Then the minimum cuts correspond to subtrees
of this tree, and the subtree rooted at v is precisely the
minimal (in number of vertices) min-cut separating v
from the root r. Enumerating the contents of all such
subtrees could generate ©(n?) work. So instead, we aim
to identify the parent of each cactus node. If w is the
parent of v, then the subtree rooted at w, besides being
a minimal min-cut (for w) is the second smallest min-
cut separating v from r. Thus, to construct the cactus,
we label each vertex w with its minimal min-cut, and
we find the parent of v by finding the vertex labeled by
the second smallest min-cut for v among these minimal
min-cuts.

In general, multiple graph vertices can map to the
same cactus node. All these vertices have the same
minimal min-cut and second smallest min-cut. These
vertices are therefore indistinguishable and are treated
as a single vertex in the cactus construction.

Things get even more complicated in the presence
of cycles. We need to identify cycle edges of the cactus.
We can still speak of rooting the cactus, and of nodes
“below” others in the rooted cactus. Nodes on cycles,
however, can have two “parents”, meaning there is no
one second-smallest cut identifying a unique parent for
such nodes. Instead, we show that if (v,w) is a cycle
edge, then there is an edge e with one endpoint below v,
and another below w. In this case, the smallest min-cut
separating both endpoints of edge e from the root r is the
one that detaches edge (v, w) from the rest of its cactus
cycle. In other words, there is a minimal min-cut for
some edge e that “certifies” that v and w are neighbors
on a cactus cycle. Thus, enumerating the minimal min-
cuts for edges in the graph lets us identify cycle edge of
the cactus.

We similarly handle the last complication, that
some node u of the cactus may be “empty”, with no
graph vertex mapping to it. In this case, we show there
is an edge e of the graph whose two endpoints have

this empty node as a least common ancestor—thus, the
minimal min-cut separating (both endpoints of) e from
r corresponds to the subtree rooted at the empty u. We
go a step further- we show that if u is the parent of
v in the cactus, then there is an edge f with exactly
one endpoint in the subtree rooted at v such that the
minimal min-cut separating (both endpoints of) f from
r corresponds to the subtree rooted at u.

To find the minimal min-cuts, our algorithm builds
on Karger’s O(m)-time minimum cut algorithm [4].
Given a graph G, Karger’s algorithm uses random
sampling to construct a set 7 of O(logn) trees with
the property that any minimum cut of G 2-respects
some tree of 7. That is, there will be some tree
T € 7T such that it has at most two edges crossing
the given minimum cut. Removing this edge or pair of
edges will divide the tree into two or three pieces that
correspond to the vertex partition of the minimum cut
(if two pieces, the partition is obvious; if three pieces,
then the two non-adjacent pieces form one side of the
minimum cut). The minimum cut algorithm finds a
cut by inspecting all pairs of potentially removable tree
edges—not explicitly, as that would take Q(n?) time,
but by finding a “best match” second edge for each of
the n edges of T. While this algorithm will find some
min-cut, it will not find all.

We augment Karger’s algorithm to find all the min-
imal min-cuts. We know that each min-cut corresponds
to a singleton or pair of edges from a tree T' € 7, so
we seek the edges and pairs corresponding to minimal
min-cuts. We piggyback on the part of Karger’s algo-
rithm that hunts for minimum cuts, checking the val-
ues of cuts corresponding to certain singletons or pairs
of edges. However, where Karger’s algorithm can stop
once it finds some min-cut, we work more exhaustively
to enumerate all minimal min-cuts. This puts us at
risk of spending ©(n?) time encountering too-many non-
minimal min-cuts; we must therefore prove and exploit
structural theorems regarding these minimal min-cuts
that let us terminate the exploration early so as to guar-
antee spending only O(m) time.

Once we have this (implicitly represented) list of
all minimal min-cuts, we construct the tree of minimal
min-cuts of vertices using the second smallest min-cuts
as described earlier. We now use the minimal min-cuts
of edges to construct the cactus from this tree in O(m)
time.

Roadmap. We review Karger’s min-cut algo-
rithm [4] and describe our modifications to the algo-
rithm in section 2. In section 3, we describe our cac-
tus construction algorithm using the modified version
of the min-cut algorithm. We conclude and mention
some open problems in section 4.

2 Modified mincut algorithm

In this section, we review Karger’s O(m) min-cut algo-
rithm from [4] and then modify it to suit our purpose.

2.1 O(m) time min-cut algorithm [4]. To describe
this algorithm, we need to first define some terms that
we will use throughout the paper.

DEFINITION 2.1. A cut is said to k-respect a spanning
tree of a graph if the spanning tree contains at most k
edges of the cut. A cut is said to strictly k-respect a
spanning tree of a graph if the spanning tree contains
exactly k edges of the cut.

Also, throughout the paper, if a property is said to
hold with high probability, it means that the property
does not hold with probability inversely polynomial
in n, where the exponent of the polynomial can be
boosted to an arbitrarily large constant without losing
the property.

The following theorem provides the starting point
of the min-cut algorithm.

THEOREM 2.1. (KARGER [4]) Given any weighted,
undirected graph G, in O(m + nlog® n) time we can
construct a set of O(logn) spanning trees such that
each minimum cut 2-respects 1/3 of them with high
probability.

Throughout this discussion, we will consider these
trees to be rooted at the same vertex. Since there are
only O(logn) trees to consider, the problem of finding
a minimum cut in the graph reduces to finding, given a
spanning tree T, a min-cut that 2-respects T' provided
such a min-cut exists. This problem is further sub-
divided into finding any min-cut that 1-respects T' and
finding any min-cut that strictly 2-respects T. The
first subproblem can be solved easily by a post-order
traversal that leads to the following lemma.

LEMMA 2.1. (KARGER [4]) The values of all cuts that
1-respect a given spanning tree can be determined in
O(m +n) time.

The more involved case is that of finding a minimum
cut that strictly 2-respects the spanning tree. We can
however restrict the problem further.

DEFINITION 2.2. A bough in a tree is a mazximal path
on the tree with a leaf at one end and having the property
that all the other vertices have degree 2 in the tree.

If we contract all the boughs into their immediate
parent in the tree, then the number of leaves in the
new tree is at most half of that in the original tree.
This follows from the fact that each leaf in the new tree

consumes at least 2 leaves of the original tree. Thus,
in O(logn) iterations, the entire tree will shrink into a
single vertex. The problem then becomes one of finding
the strictly 2-respecting min-cuts where one of the edges
is on a bough in O(m) time.

Now, we further sub-divide the problem.

DEFINITION 2.3. The set of descendants of a vertex v
n a spanning tree T is denoted by v%. Similarly, the

set of ancestors of v in T is denoted by ’U;.

If there is no scope of confusion, we will often
drop the suffix and denote these sets by v! and !
respectively. Now observe that since the spanning tree
is rooted, any set of edges in the tree can be uniquely
represented by the set of lower end-points of the edges.
Therefore, each strictly 2-respecting cut can be uniquely
represented by two vertices in the tree. We sub-divide
the problem based of the relative locations of these
vertices.

DEFINITION 2.4. Consider any two vertices v and w in
a spanning tree T. If v € w' or v € w!, then we write
v ||w (v and w are said to be comparable); else, v L w
(v and w are said to be incomparable).

Let us first show how to handle the case when
v L w. We need to define some notation.

DEFINITION 2.5. C(X,Y)) is the sum of weights of edges
with one end-point in vertex set X and the other in
vertex set Y. (An edge with both endpoints in X NY
is counted twice.) Qwerloading our notation, C(S) =

C(S,V — S).

DEFINITION 2.6. The v-precut at w (refer to Figure 1),
denoted C,(w), is the value

Co(w) = Clvt Uw') — C(vh) = C(w') — 2C(vt, wh)
if v L w and oo otherwise.

DEFINITION 2.7. The minimum v-precut, denoted C,,
is the value min{C,(w)|3(v',w") € E,v" € vt w' € w'},
and argmin{C,(w)|3(v',w’) € E,v' € v\, w' € w'} is
called a minimum precut of v.

The following lemma appears in [4].

LEMMA 2.2. If it is determined by incomparable ver-
tices, the minimum cut is min, (C(v') +C,).

Calculating C(v') for each vertex v follows directly
from Lemma 2.1- these are the respective cut values.
So, we are left to calculate C, for each vertex v; the
minimum cut can then be found in additional O(n) time.

@

Figure 1: The v-precut at w, Cy(w) = X — Z =
(X+Y)—(Y+2) =C(vtuw!)—Cv}) = (X+2)-2Z =
C(wt) —2C(v', wh).

Recall that we have already assumed that v is on
a bough of the spanning tree. Let us restrict ourselves
initially only to the case when v is a leaf. We maintain
a value wval[w] at each vertex w and initialize it to
C(w'). Now, we require to subtract 2C(v!,w') from
each val[w]. Further, once val[w] has been computed for
each w, we need to find a vertex which has the minimum
value of vallw]. The dynamic tree data structure [9]
helps solving both problems. Basically, it provides the
following primitives:

e Addpath(v,z): add z to val[u] for every u € v'.

e MinPath(v): return min,c,r val[u] as well as the u
achieving this minimum.

Karger shows that for a leaf v with d incident edges
in the graph, we can find C, via O(d) dynamic tree
operations that require O(dlogn) time.

This procedure is now extended from a single leaf
to an entire bough.

LEMMA 2.3. (KARGER [4]) Let v be a vertex with a
unique child u. Then either C, = Cy, or else C, = C,(w)
for some ancestor w of a neighbor of vertex v. In the
first case, all the minimum precuts of u which are not
ancestors of mneighbors of v continue to be minimum
precuts of v.

This lemma leads to a simple bottom-up walk on the
bough, where in each step, the value of C, computed
inductively has to be compared with the values of
Cy(w) in Lemma 2.3, which can be computed using an
additional O(d) dynamic tree operations, where d is the
number of edges incident on vertex v in the graph.

We now describe the case of comparable v and w,
ie. v || w. Without loss of generality, let us assume
that v € w! and v is on a bough. We need to compute
C(w! — vl). Tt is shown in [4] that

C(wh —vh) =Clwh) — C(vh) + 2(C(vt, wh) — C(vh, vh)).

For a given v, C(vt,v!) and C(v!) are fixed and can
be computed in O(m) time for all the vertices by a
minor extension of Lemma 2.1. Thus, it is sufficient
to compute, for each vertex w € wv', the quantity
C(wh) + 2C(vt, wl). wallw] is initialized to C(w!) for

each vertex using Lemma 2.1. Now, using a post-order
traversal as earlier and the dynamic tree operations
mentioned above, 2C(vt, w!) is added to val[w] for each
w € v'. Once val[w] has been computed for each w,
we need to find a vertex which has the minimum value
of val[w]. This can also be done using dynamic tree
operations.

In summary, a strictly 2-respecting min-cut can
be found in O(Dlogn) time for a bough which has a
total of D edges incident on the vertices of the bough.
After running the above procedure, val[w] is reset to its
original value by undoing all the operations (subtracting
instead of adding in AddPath) in O(Dlogn) time. A
different bough can now start running its procedure.
Since an edge is incident on at most 2 boughs, the
algorithm takes O(m) time to process all the boughs.
As discussed earlier, all the boughs are now folded up
and a new phase begins.

3 Cactus construction algorithm

Unlike the min-cut algorithm presented above, we are
not interested in finding only a single min-cut in the
graph. To specify our goals, we need some more
definitions.

DEFINITION 3.1. Let r be the vertex that was selected
to be the root of the O(logn) trees in the tree packing.
Then, the size of a cut is the number of vertices not on
the side of r in the cut.

Note that the weight of edges in a cut is its weight;
it is important to keep the distinction between size and
weight of a cut in mind.

DEFINITION 3.2. The minimal min-cut of a vertex v is
the min-cut of least size which separates v fromr. If v is
not separated from r by any min-cut, then its minimal
min-cut is undefined. QOverloading the definition, the
minimal min-cut of an edge (u,v) is the min-cut of least
size that separates r from both u and v. As earlier, if no
min-cut separates both u and v from r, then its minimal
min-cut is undefined.

In the following discussion, we will often refer to
a cut by a subset of vertices—the side of the cut not
containing the root vertex r.

DEFINITION 3.3. Two cuts X and Y are said to be
crossing if each of XNY, X =Y, Y — X and X NY°
18 mon-empty.

LEMMA 3.1. (SEE EG, KARGER [4]) If X and Y are
crossing min-cuts, then XNY, X =YY — X and X UY
are min-cuts. Further,

C(XNY,XNY9)=C(X-Y,Y — X) =0.

LEMMA 3.2. The minimal min-cut of a vertex or edge
is unique. Further, the minimal min-cut of a vertexr v
does not cross any other min-cut of the graph.

Proof. If there are two minimal min-cuts of a vertex v
(resp., edge (u,v)), then their intersection is a smaller
min-cut containing v (resp., u and v), contradicting
minimality. Similarly, if the minimal min-cut X of a
vertex v crosses another min-cut Y, then either X NY
or X —Y is a smaller min-cut containing v, contradicting
minimality.

We are now in a position to describe our plan. We
first construct a list of O(m) min-cuts containing the
minimal min-cut of each vertex, if one exists. Then,
we label each vertex with its corresponding minimal
min-cut from the list and also, subsequently, find the
minimal min-cuts of a sufficient set of edges. Finally,
this set of minimal min-cuts for vertices and edges are
used to construct a cactus representation of the graph.

3.1 Listing minimal min-cuts of vertices. We
modify the min-cut algorithm described above to meet
our objective. All our modifications are for the strictly
2-respecting scenario; the part of the algorithm that
finds all 1-respecting min-cuts is exactly the same as
above. Recall that the original algorithm has O(logn)
phases, where the algorithm is run on progressively
smaller trees in each phase. Now, consider a scenario
where the minimal min-cut for a vertex u is defined by
vertices v and w, where v L w and u € v!. Our goal is to
ensure that we identify this min-cut in the phase where
we process v. However, due to the recursive process, wt
might now be a proper subset of the vertices compressed
into a single node at this stage. In this case, we will fail
to identify the minimal min-cut for u. So, we need to
modify the structure of the algorithm slightly.

We also have O(logn) phases, but we maintain two
trees in each phase. One tree is the shrunk tree S,
identical to the earlier algorithm. The other tree T is the
original spanning tree without any edge contraction.

Each vertex in the contracted tree S represents a
set of vertices in the original tree T (refer to Figure 2).
For each such set X, let ¢(X) denote the leader of the
set, which is the vertex of least depth in 7. Conversely,
each vertex v is the leader of a contracted vertex in S
(i.e. set of vertices in T') in some phase; denote this set
by ¢=1(v). Now, any such set X can have two possible
structures in T":

o If X is a leaf in S, then it represents a subtree
rooted at £(X) in T.

o If X is a vertex with degree 2 in S, then it
represents a subtree rooted at £(X) in T, where one

Y

Figure 2: The tree on the left is a spanning tree 7" where
the boughs in the different phases are marked. The
shaded bough (on the left), for instance, is processed in
phase 2 at which stage its two vertices correspond to sets
X and Y in T (due to boughs being folded up). These
sets are shown on the right; a = ¢(X) and b = ((Y).

of the children subtrees of £(X) has been removed.
This child subtree is rooted at £(Y), where Y is the
only child of X in S.

Our goal is to ensure that if the minimal min-cut of
vertex u is defined by vertices v and w, where v L w
and u € v}, then this min-cut is identified when ¢~1(v)
is processed.

We need another definition.

DEFINITION 3.4. Consider any vertex v on a bough and
let w be a minimum precut of v. If there exists no
descendant x of w such that x is also a minimum precut
of v, then w is said to be a minimal minprecut of v. If
w s the only such vertex, it is said to be the unique
minimal minprecut of v.

LEMMA 3.3. Let the minimal min-cut of vertex u 2-
respect a tree T, where it is represented by vertices v
and w, v L w and u € vt. Then, w is the unique
minimal minprecut of v.

Proof. Clearly, w is a minimal minprecut of v, else there
is a smaller min-cut separating w from root r. If there
are multiple minimal minprecuts of v, then these min-
cuts cross, violating Lemma 3.2.

To identify minimal minprecuts, we need to
strengthen the MinPath primitive provided by the dy-
namic tree data structure. Recall that MinPath(v) for
a variable val returns the minimum value of val among
ancestors of v and a vertex which achieves this minimum
value. If there are multiple ancestors of v achieving this
minimum value, then the vertex returned by MinPath is
ambiguous. However, we would like MinPath to return
the closest ancestor of v achieving this minimum value.
To achieve this, we run AddPath(v,¢) (for some ¢ > 0)
for each vertex v as a pre-processing step. Clearly, val[v]
now has a value e|v!|. We choose a small enough ¢ so
that this pre-processing step does not tamper with the
ability of the algorithm to distinguish min-cuts from
other cuts. Now, if we use our usual MinPath opera-
tions, we will always find the closest ancestor in case of
a tie in the original graph.

We need to impose some additional structure on the
minimal minprecuts of a vertex.

DEFINITION 3.5. Consider a vertex v and let its min-
mmal minprecuts be wi,wa, ..., wg, where each w; 1 v.
Let 4; be the lca of w; and v in tree T. Clearly, each
l; lies on the path connecting v to root r; let ¢, be the
shallowest vertex among the {;s. Correspondingly, let
w, be a minimal minprecut of v such that lca of w, and
v is by (we = w; for somei). We call w, an outermost
minimal minprecut of v. If w, is unique, it is called the
unique outermost minimal minprecut of v.

The following lemma is an extension of Lemma 2.3.

LEMMA 3.4. Let v be a vertex in T, X = (=1 (v) and w
be the unique outermost minimal minprecut of v. If X
is a leaf in S, then there exists at least one edge between
X and w'. On the other hand, if X is a non-leaf in S,
let Y be the only child of X in S and uw=£(Y). Then,
either there exists at least one edge between X and w',
or w s the unique outermost minimal minprecut of u.

Proof. If X is a leaf in S, then by definition of a mini-
mum precut, X and w' must be connected. Otherwise,
let there be no edge between X and w'. We need to
prove that w is the unique outermost minimal minprecut
of u. First, note that by definition of minimum precut,
u! and w! must be connected since vt = X Uwul. Fur-
ther, by Lemma 2.3, C,(w) = C,(w) = C, = C,, and if
any descendant of w is a minimal minprecut of u, then
it is also a minimal minprecut of v, contradicting the
minimality of w. Thus, w is a minimal minprecut of w.
If z is a minimal minprecut of u such that the lca of z
and wu is either an ancestor of or the same as the Ica of
w and u, then z 1 v and is a minimal minprecut of v.
Thus, w is the unique outermost minimal minprecut of
U.

If w and v represent a minimal min-cut for a vertex
u € v}, where w L v, then w is the unique outermost
minimal minprecut of v. Thus, our goal is to identify
the unique outermost minimal minprecut of a vertex,
if it exists. To process a leaf X in a bough in S, we
run AddPath followed by MinPath queries for the other
endpoint of each edge with one endpoint in X. For pro-
cessing a vertex X of degree 2 in .S, assume inductively
that we have already found the unique outermost min-
imal minprecut w corresponding to its child Y in S,
provided such a vertex w exists. We now run AddPath
followed by MinPath queries for the other endpoint of
each edge with one endpoint in X. Also, we check if w
is a minprecut of v = £~1(X) by inspecting the value of
val[w]. The set of minimal minprecuts identified con-
tains the unique outermost minimal minprecut of v, if

it exists. We now run lca queries to determine if v has a
unique outermost minimal minprecut among the mini-
mal minprecuts identified. The total time consumed by
this procedure is O(dlogn), where d edges are incident
on vertices in X.

We now describe the algorithm used to identify
all strictly 2-respecting minimal min-cuts which are
represented by comparable vertices. When we process
vertex v, we would like to find all such min-cuts
represented by v and w, where v € w!. Recall
that Karger’s min-cut algorithm allows us to compute
val[w] for each w such that inspecting val[w] for each
vertex w reveals all the min-cuts we want to identify.
However, whereas in the min-cut algorithm, only one
MinPath query needs to be run at vertex v, a single
query would only reveal the deepest w which forms
such a min-cut with v, but would not reveal additional
vertices satisfying the property further up the spanning
tree. To overcome this challenge, we maintain a list
at each vertex w, denoted by desc[w], which contains
its descendants v with which it has been found to form
a min-cut that is potentially minimal for some vertex.
This list is initially empty for each vertex and populated
by the following procedure (which is run, for each vertex
being processed on a bough in S, after the AddPath
calls): Run a MinPath query at v. Let w be returned
by this query. If v,w do not form a min-cut, then stop;
else, if desclw] is non-empty, then add v to desclw] and
stop; otherwise, add v to desclw] and recurse at w (ie,
run a MinPath query at w and so on). The correctness
of the procedure is established by the following lemma.

LEMMA 3.5. Let u € v' oru L v in T. If both u and v
represent min-cuts with some verter w € v N uT, then
any min-cut represented by v and any z such that z € w'
s mot a minimal min-cut for any vertex.

Proof. This follows directly from the observation that
any min-cut represented by v and z must necessarily
cross the min-cut represented by w and u. If such a min-
cut is minimal for a vertex, then Lemma 3.2 is violated.

The AddPath queries clearly take O(m) time in the
above procedure. All the MinPath queries associated
with the processing of a vertex v, except the last query,
result in populating the previously empty desc list of
some vertex; thus, there are at most n such queries.
The last query can be charged to the vertex being
processed; thus there are at most n such queries as well.
Overall, O(n) MinPath queries are made. Thus, the
above procedure has a time complexity of O(m).

3.2 Labeling minimal min-cuts of vertices. We
will now label each vertex with the smallest min-cut con-
taining it among those that 2-respect a fixed spanning

tree T. As discussed earlier, the vertices representing a
min-cut can be used to classify the min-cuts into 3 cat-
egories: 1-respecting min-cuts (category 1) and strictly
2-respecting min-cuts where the vertices are incompa-
rable (category 2) or comparable (category 3). We label
each vertex with the smallest min-cut containing it in
each category. Finally, for each vertex, we find the min-
imum among its O(logn) labels corresponding to the 3
categories of edges in the O(logn) trees.

Category 1 (1l-respecting). Lemma 2.1 states
that in O(n) time, we can find the weights of all 1-
respecting cuts. Assuming that we know the weight
of a min-cut using the algorithm in [4], it immediately
follows that we can identify all the 1-respecting min-cuts
in O(n) time. To label each vertex with the minimal
min-cut containing it, we contract all the edges in T
that do not represent min-cuts. Then, the smallest
min-cut containing vertex v is the edge connecting the
contracted vertex containing v to its parent. Thus, we
simply label all vertices in a contracted set by the root
of the set. This takes O(n) time.

Category 2 (strictly 2-respecting, incompa-
rable). The smallest min-cut containing a vertex is the
smallest among the min-cuts represented by its ances-
tors in the bough containing it in S. We trace the path
along the bough downward maintaining the smallest en-
countered min-cut C. The label given to a vertex v is
the min-cut stored as C' when v is encountered. Clearly,
this takes O(1) time for each vertex along the walk, and
therefore O(n) time overall.

Category 3 (strictly 2-respecting, compara-
ble). We perform a post-order tree traversal using a
mergeable minheap to hold all the minimal min-cuts
which contain the current vertex w. These min-cuts
are exactly the min-cuts whose lower vertex has been
encountered but the upper vertex has not been encoun-
tered yet. Labeling v with the smallest min-cut in the
heap takes O(1) time. Now, all the cuts whose upper
vertex is u are removed from the heap and the heap is
passed on to the parent of u, say v. All the heaps passed
up from its children are now merged at v in amortized
O(1) time. This takes O(n) time overall.

3.3 Minimal min-cuts of edges. As described ear-
lier, we also need to find the minimal min-cuts of edges.
We need the following definition.

DEFINITION 3.6. A certificate of a min-cut X is an
edge e such that X is the minimal min-cut of e, i.e.
X is the min-cut of least size separating both endpoints
of e from the root vertex r.

The following lemma states a property that ensures
the existence of a large weight of certificates for a min-

Figure 3: Maximal min-cuts contained in a min-cut
represented by an empty node- A, B,C and D are the
maximal min-cuts contained in the min-cut represented
by the empty node z.

cut.

LEMMA 3.6. Consider a min-cut X. Let Y C X be a
min-cut satisfying the following properties:

e Y is a mazimal min-cut contained in X, i.e. there
does not exist a min-cut Z such that Y C Z C X.

e Y does not cross any other min-cut.

Then, the total weight of certificates of X with one
endpoint in'Y is at least ¢/2, where ¢ is the weight of a
min-cut.

Proof. The properties satisfied by Y ensure that any
edge between Y and X — Y is a certificate of X. Now,
if the total weight of edges between Y and X —Y is less
than ¢/2, then X —Y is a cut of weight less than c.

We now show that the above lemma ensures that
the min-cuts of interest to us have many certificates.
Recall from the introduction that we are interested in
min-cuts which are represented either by empty cactus
nodes or by consecutive nodes on a cactus cycle.

Let us consider the first category of min-cuts, i.e.
those represented by empty cactus nodes. As discussed
earlier, we are interested not only in finding such a min-
cut X but also in identifying its children in the cactus,
i.e. identify all the cycles and subtrees below this empty
node in the cactus. Each such cycle/subtree Y is a
maximal min-cut contained in X, i.e. there is no min-
cut Z with Y € Z C X. For each such maximal min-
cut Y, we are interested in finding a certificate of X
with exactly one endpoint in Y. The following lemma,
combined with Lemma 3.6 shows that the total weight
of such certificates is large for each such Y.

LEMMA 3.7. For any min-cut represented by an empty
node in the cactus, each mazrimal min-cut contained in
it satisfies the properties of Y in Lemma 3.6.

Proof. The maximal min-cuts contained in a min-cut
represented by an empty cactus node are the subtrees
and cycles below the node (see Figure 3). Any min-cut

represented by a subtree or a cycle in the cactus does
not cross any other min-cut.

Now, we consider the second category of min-cuts,
those represented by a pair of contiguous cycle nodes
in the cactus. The cactus representation itself shows
that the total weight of edges between the min-cuts
represented by the cycle nodes is ¢/2.

We can now find the minimal min-cuts of edges
using the algorithm for constructing minimal min-cuts
of vertices. We construct a set of O(logn) graphs
from the input graph G, where each edge (of weight,
say w) in G is contracted with probability min(w/2c, 1)
independently in each new graph.

LEMMA 3.8. Let G’ be any mew graph produced by
random contraction of edges of G. If X and Y satisfy
the condition in Lemma 8.6, then with ©(1) probability,
there exists a certificate of X with exactly one endpoint
in'Y which is contracted in G', and no edge in the cut
(X,V — X)) is contracted.

Proof. Let the certificates of X with one endpoint in
Y have weight w,ws,...,ws, where Zle w; > ¢/2
by Lemma 3.6. If there is an edge of weight > 2¢ in
this set, then it is necessarily contracted. Thus, let us
assume that w; < 2¢, Vi. Then, the probability that
none of the certificates is contracted is given by

o w, T 1 1

1- - <JJa-)" <(1—)72 <e V4
[To-39<T[0- 5" -7 <e
On the other hand, let the edges in the cut (X,V —
X) have weight Wy, W, ..., W;, where 2221 W, =
c. Then, the probability that none of these edges is
contracted is given by

l

[0

i=1

l
f i1 Wi
2c

-5) =1/2.

The following corollary follows immediately.

COROLLARY 3.1. For each min-cut X that is repre-
sented by either an empty node or a pair of adjacent
cycle nodes in the cactus, and mazimal min-cut Y con-
tained in X, at least one certificate of X with exactly one
endpoint in'Y is contracted and no edge in (X,V — X)
is contracted, in at least one of the ©(logn) contracted
graphs, with high probability.

Note that a vertex in a contracted graph represents
a set of vertices and edges on them in the original
graph. A union-find data structure can keep track of
the composition of a vertex in each contracted graph
(and to construct the contracted graphs) in O(n) time.

We also keep track of the size of a vertex, i.e. number
of original vertices contracted into the vertex. This
serves to compute the sizes of the min-cuts in the
above algorithm. Thus, we can afford to find the
minimal min-cut for each vertex only, for each of the
contracted graphs and the original graph. Then, we
use the information maintained above to label each
(original) vertex and (original) edge with the smallest
min-cut containing it in each of the contracted graphs.
Note that while each vertex will necessarily be given
its correct label, some edges might have wrong labels
(which correspond to larger min-cuts containing them)
or have no label at all. We show later that the set of
edges correctly labeled is sufficient.

3.4 Cactus construction from minimal min-
cuts. We initially form a partition of the vertices into
sets containing vertices with the same minimal min-cut.
Any pair of vertices in such a set is not separated by any
min-cut in the graph; hence each of these sets can be
contracted into a single vertex. In the remaining dis-
cussion, a vertex will denote such a contracted vertex.

We state the following lemma; the proof of existence
follows directly from the properties of the cactus data
structure, while the algorithm is omitted due to lack of
space.

LEMMA 3.9. Among the vertex-minimal min-cuts, each
vertex has a unique second smallest min-cut containing
it. Further, each vertex can be labeled by its second-
smallest min-cut in O(m) time overall.

We now form a tree T' by connecting vertex v with
vertex u if the minimal min-cut of u is the second
smallest min-cut of v. This tree can be constructed in
O(n) additional time. The following lemma is a direct
consequence of the construction.

LEMMA 3.10. The mimtmal min-cut containing any
vertex v is the sub-tree of T subtended at v.

We discard all edges that are not between incom-
parable vertices in T' in O(m) time using lca queries in
tree T

LEMMA 3.11. The minimal min-cut of an edge that
either has both endpoints in a single vertex in T, or
whose endpoints are in comparable vertices in T, is also
the minimal min-cut of some vertex.

Proof. Let an edge have both endpoints in the same
vertex in tree T'. Since its endpoints are not separated
by any min-cut in the graph, any min-cut containing
either of its endpoints contains both its endpoints.
Hence, the minimal min-cut containing both endpoints
is also minimal for each endpoint individually. Now, let

an edge have endpoints in comparable vertices (say u
and v, where v € v!) in 7. Then, the minimal min-
cut of v also contains u, which implies that all min-cuts
containing v also contain u. Thus, the minimal min-cut
of the edge is also the minimal min-cut of v.

We now describe the construction of the cactus from
tree T. In the following discussion, a contiguous part
of the cactus representing min-cuts contained in a set of
vertices S is referred to as a cactus of S. The following
property follows immediately from the fact that a min-
cut is contiguous in the cactus.

LEMMA 3.12. Consider any vertex x and its children
Y1, Y2, ..., Y in tree T. The vertices in the subtree of
x in T (call this set X) are contiguous in the cactus.
Further, the vertices in the subtree of each of y; (call
these sets Y;) are contiguous in the cactus.

For each node of this tree, our goal then becomes
constructing the cactus representation for the vertices in
its subtended subtree, assuming that the cactus repre-
sentation of its children subtrees have been constructed
recursively. Thus, we are interested in constructing the
cactus representation of X with each Y; contracted into
a single vertex. This cactus will represent all the min-
cuts that are contained in X but not in any Y;. For this
purpose, we need to identify the set of edges whose min-
imal min-cuts will be represented in the cactus for X.
Let (u,v) be an edge. Let = = lca(u,v) in tree T and y
and z be children of x containing u and v respectively.
Then, we define a function f : £ — V x V such that
f(u,v) = (y,z). The following lemma states that for
the purpose of the construction, we can consider (u,v)
to be an edge between y and z.

LEMMA 3.13. Consider an edge e between vertices u
and v, where w L v in T. The minimal min-cut of e
must be contained in xt, where x = lca(u,v), and must
contain y* and z+, where y and z are children of x such
that u € y* and v € z*. Further, x,y,z can be identified
for all edges in O(m) time.

Proof. The first proposition follows from the observa-
tion that u,v € z! and z!, being a minimal min-cut
of a vertex, does not cross any min-cut according to
Lemma 3.2. The second proposition follows from the
non-crossing property of the min-cuts y* and z!. The
value of z,y and z for each edge can be found using
a post-order traversal maintaining a union-find data
structure that keeps track of all edges whose one end-
point has been encountered but the other has not.

Thus, we can now concentrate on the following
problem. We are given a set of vertices X comprising

subsets Y7, Y, ..., Y}, where U¥_|Y; C X and Y; ny; =
() for all 4 # j. For convenience, we assume that
Vit:1 = X — UE|Y;. We assume, for the purpose
of this construction, that each Y; is contracted into a
single vertex. Further, we are given all edges between
any pair of (contracted) vertices Y; and Y; and their
corresponding labels. Our goal is to construct a cactus
on the vertices Y7, ..., Ys41 such that all the min-cuts
contained in X but not in any of the Y;s are represented
by the cactus.

One further complication arises from the fact that
while some edges are labeled with the minimal min-
cuts containing them, other edges may have no label
or incorrect labels. First, we remove all edges without a
label since Corollary 3.1 ensures that each minimal min-
cut has a (correctly) labeled certificate. Now, we need
to distinguish between min-cuts having the correct label
and those that have erroneous labels. The following
property helps us make this distinction.

LEMMA 3.14. If X1, X5, ..., X, are min-cuts such that
UK, X; is also a min-cut, then among all edges with
their two endpoints in different X;s, the label corre-
sponding to the smallest min-cut is a correct label.

Proof. This follows from Lemma 3.8, coupled with the
fact that each edge label is either correct (ie, gives the
minimal min-cut of the edge) or gives a strictly larger
min-cut containing both endpoints of the edge.

During the construction, we will mark any node for
which the cactus has not been constructed yet. Initially,
all the Y;s are unmarked. Now, let (Y;,Y}) be the edge
with the smallest label. We introduce a new node a as
a parent of ¥; and Y; and mark a. We move all edges
with exactly one endpoint in Y; UY; to a and remove all
edges between Y; and Y;. We then move on to the next
smallest label among the surviving edges. The previous
lemma ensures that the label we process at any stage
is correct on account of being the minimum surviving
label.

We now describe the construction for all the possi-
ble cases (refer to Figure 4). In general, at any stage
of the construction, suppose the smallest label corre-
sponds to an edge (a,b). If both a and b are unmarked
nodes (case (a)), then we have already constructed the
cactus for a and b; so we can assume that a and b are
singleton vertices. In this case, we simply introduce a
new node ¢ which is the parent of ¢ and b, and mark the
new node. Now, suppose a is a marked node but b is
not. Then, we introduce a new node ¢ and make it the
parent of b. However, the relationship between ¢ and a
is not clear at this stage. There are three possibilities:
either c overlaps a, or it is the same cut as a or it is the

c C a
N SN TN

@ (b)
¢ c c C

© (d)
c c c

e/ — I
x bO X0 y
© ®

Figure 4: (Marked nodes are dark.) (a) a and b are
both unmarked, (b-f) a is marked and b is unmarked;
(b) b € a, (c) a has more than 2 children, (d) a has no
sibling, (e) a has siblings but both of a’s children are
contained in ¢, and (f) a has siblings and = € ¢ while

y¢ec

parent of a. To distinguish between these possibilities,
we run a set of containment queries, each of which can
be answered in O(1) time using lca values in the span-
ning trees. First, we check if b € a; if so, then ¢ = a
(case (b)). In that case, we add b as a child of a and
remove c¢; a remains marked. Suppose the above check
fails. Then, a and ¢ are not the same min-cut. Now, if
a has more than 2 children, then a has no sibling (case
(¢)); so, ¢ must be the parent of a. We unmark a and
mark c¢. On the other hand, if a has exactly 2 children x
and y, then we check if x € cand y € ¢. If both z,y € ¢,
then c¢ is the parent of a (case (d)). In this case, if a has
no sibling, we unmark a, mark ¢ and add c as the parent
of a. Otherwise, if a has siblings (case (e)), we mark c,
remove a and its siblings, connect the children of the
siblings of @ (including the children of a) in a chain and
close the chain using ¢ to form a cycle; also, ¢ is marked.
The final possibility is that x is contained in ¢, but y is
not (case (f)). In this case, ¢ is marked and added as
a sibling of a containing x and b. If both a and b are
marked, then we need to run the above checks for both
a and b.

Finally, we are left with no edges. This indicates
that we have found all the min-cuts contained in X.
At this stage, we can have two situations. If the
node representing X in the cactus has more than one
cycle/subtree below it, then X is the minimal min-
cut for all the edges between these cycles/subtrees. In
this case, there will be a single empty node at the
highest level of the cactus formed. We replace this
empty node with the node representing X. The other
possibility is that the node representing X has exactly
one cycle/subtree below it in the cactus. If it has
exactly one subtree below it, then there is no edge with
endpoints that are incomparable in T" and have X as

their lca. If it has exactly one cycle below it, then there
will be a cycle at the highest level of the cactus, where
the last node added to the cycle is an empty node.
In this case, we replace this empty node by the node
representing X. This completes the construction of the
cactus of X.

4 Conclusion and Future Work

We have presented an O(m) algorithm for constructing
the cactus representation of a graph. An important
open question is whether there exists an O(m) time
computable certificate for the same problem. However,
the apparently simpler question of whether there exists
an O(m) time computable certificate for the min-cut of
an undirected graph is also open.

References

[1] Efim A. Dinitz, Alexander V. Karzanov, and Micael V.
Lomonosov. On the structure of a family of minimum
weighted cuts in a graph. In A. A. Fridman, edi-
tor, Studies in Discrete Optimization, pages 290-306.
Nauka Publishers, Moscow, 1976.

[2] Harold N. Gabow. Applications of a poset representa-
tion to edge connectivity and graph rigidity. In Pro-
ceedings of the 32" Annual Symposium on the Foun-
dations of Computer Science, pages 812-821, 1991.

[3] Jianxiu Hao and James B. Orlin. A faster algorithm for
finding the minimum cut in a directed graph. Journal
of Algorithms, 17(3):424-446, 1994. A preliminary
version appeared in Proceedings of the 3" Annual
ACM-SIAM Symposium on Discrete Algorithms.

[4] David R. Karger. Minimum cuts in near-linear time.
Journal of the ACM, 47(1):46-76, January 2000. A
preliminary version appeared in Proceedings of the 28"
ACM Symposium on Theory of Computing.

[5] David R. Karger and Clifford Stein. A new approach
to the minimum cut problem. Journal of the ACM,
43(4):601-640, July 1996. Preliminary portions ap-
peared in SODA 1992 and STOC 1993.

[6] Alexander V. Karzanov and E. A. Timofeev. Efficient
algorithm for finding all minimal edge cuts of a non-
oriented graph. Cybernetics, 22:156-162, 1986.

[7] Hiroshi Nagamochi and Toshihide Ibaraki. Com-
puting edge connectivity in multigraphs and capaci-
tated graphs. SIAM Journal on Discrete Mathematics,
5(1):54-66, February 1992.

[8] Dalit Naor and Vijay V. Vazirani. Representing and
enumerating edge connectivity cuts in RNC. In
F. Dehne, J. R. Sack, and N. Santoro, editors, Pro-
ceedings of the 2™ Workshop on Algorithms and Data
Structures, volume 519 of Lecture Notes in Computer
Science, pages 273-285. Springer-Verlag, August 1991.

[9] Daniel D. Sleator and Robert E. Tarjan. A data
structure for dynamic trees. Journal of Computer and
System Sciences, 26(3):362-391, June 1983.

