Greedy approximation algorithms for directed multicuts
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Abstract

The Directed Multicut (DM) problem is: given a simple directed graph G = (V, E)
with positive capacities u, on the edges, and a set K C V x V of ordered pairs of
nodes of G, find a minimum capacity K-multicut; C' C E is a K-multicut if in G — C
there is no (s,t)-path for any (s,t) € K. In the uncapacitated case (UDM) the goal
is to find a minimum size K-multicut. The best approximation ratio known for DM
is O(min{y/n,opt}) by Gupta [9], where n = |V|, and opt is the optimal solution
value. All known non-trivial approximation algorithms for the problem solve large
linear programs. We give the first combinatorial approximation algorithms for the
problem. Our main result is an O(n2/3 Jopt!/?)-approximation algorithm for UDM,
which improves the O(min{opt, \/n})-approximation for opt = Q(n'/?*¢). Combined
with the paper of Gupta [9], we get that UDM can be approximated within better than
O(y/n), unless opt = O(y/n). We also give a simple and fast O(n?/?)-approximation
algorithm for DM.
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1 Introduction and preliminaries

An instance of the Directed Multicut (DM) problem consists of a simple directed graph
G = (V, E) with integral capacities u, on the edges and a set K C V x V of ordered pairs
of nodes of G. The goal is to find a minimum K-multicut, that is, a minimum capacity edge
set C' so that in G — C' there is no (s,t)-path for any (s,t) € K. In the uncapacitated case
(UDM), all edges have capacity 1.

The minimum multicut problem is one of the most fundamental problems in optimization.
Edge (and vertex) cuts are important for the of study of Markov chains and geometric
embedding. They are also appear in the study of clustering, divide and conquer approaches,
PRAM emulation, VLSI layout, and packet routing in distributed networks (see, e.g., [4]
and the references therein). The directed multicut problem is the dual of the fundamental
multicommodity flow problem. See Chapter 5 of the book [10] for more details on multicut
problems in the context of approximation algorithms. While the undirected graph case enjoys
some efficient approximation algorithms (see references below) the directed case seems much
harder. Few approximation results exist for the directed case in spite of the considerable
attention it has received.

We survey some related work. The case |K| = 1 is polynomially solvable based on the
fundamental Max-Flow Min-Cut Theorem. For |K| > 1 the min-cut max-flow equality breaks
down even on undirected graphs. In fact, the undirected multicut problem is MAXSNP-hard
even on stars [8]. A 2-approximation algorithm is given in [8] for the undirected multicut
problem on trees. The best approximation ratio for the minimum multicut problem on
general undirected graphs is O(log|K|) [7].

In [11], a related problem is studied. The input is as in the DM problem, except that
the pairs in K are unordered. The goal is to remove a min-capacity edge set C so that in
G — C no cycle contains a pair from K. This problem seems easier than the DM problem. In
particular, divide and conquer methods similar to the ones in [4, 7, 12] give an O(log” | K|)-
approximation for this variant [11]. In [4] a relatively general scheme is presented handling
many problems that are “decomposable”, but DM does not seem to lend itself in any way
to the divide and conquer approach. Given this fact, it may be that the directed multicut
problem is harder to approximate than the undirected one. In particular, a (poly)logarithmic
approximation is not known for DM, nor for UDM. However, so far, an exact proof separating
the approximability of the undirected and directed problems does not exist. In fact, the only
approximation threshold known for the directed case is the one derived from the undirected
case: namely, that the problem is MAXSNP-hard.



The first nontrivial approximation ratio of O(y/nlogn) for DM is due to Cheriyan,
Karloff, and Rabani [1]. This was slightly improved by Gupta [9] to O(y/n). Gupta’s analysis
also gives an O(opt?) capacity solution with opt being the optimal multicut capacity. This
can be considered as an O(opt)-approximation algorithm and is useful when opt is “small”.

Both algorithms [1] and [9] require solving large linear programs.

We design combinatorial approximation algorithms for DM. Let n and m be the number
of nodes and edges, respectively, in the input graph. We use the O notation that ignores

polylogarithmic factors. Our main result is:

Theorem 1.1 For UDM there exists an algorithm with running time O(n2m) that finds a
multicut C' of size O ((nlogn : opt)2/3) =0 ((n : opt)2/3).

The approximation ratio is O(n2?3 /opt'/3). Therefore, Theorem 1.1 implies that for UDM
the y/n-approximation can be improved if opt is large (e.g., opt = Q(n'/?*9) for some £ > 0).
This is the first algorithm whose approximation ratio improves as opt gets larger. Combined

with the results of [9] that provide an O(opt)-approximation, we get an approximation ratio
better than O(y/n), unless opt = ©(y/n).

Our additional result is:
Theorem 1.2 DM admits an O(n?/®)-approzimation algorithm with running time O(nm?).

The approximation ratio in [1, 9] is better than the one in Theorem 1.2. However,
our algorithm is very simple and runs faster than the algorithms in [1, 9]; the latter can be
implemented in O(n?m?) time using the algorithm of Fleischer [5] for finding an approximate

solution of multicommodity-flow type linear programs.
We prove Theorems 1.1 and 1.1 in Sections 2 and 3, respectively.

We now describe the notation used. Let G = (V| E) be a directed graph. For s,t € V
the distance dg(s,t) from s to t in G is the minimum number of edges in an (s,t)-path;
dg(s,t) = oo if no (s, t)-path exists in G. For disjoint subsets S, 7 C V of V let d¢(S,T) =
{st € E: s € St €T} We often omit the subscript G if it is clear from the context.
An edge set C C F is an (s,t)-cut if C' = §(S) for some S C V — ¢ with s € S. Let
u(C) = Y{u. : e € C} be the capacity of C; u(C) = |C| if no capacities are given. For
simplicity of exposition, we ignore that some numbers are not integral. The adaptation using
floors and ceilings is immediate. Unless specifically stated otherwise, all logs in the paper

are to the base 2.

Before we describe the algorithm, a few preliminary remarks are required. Our algorithms

run with certain parameters, which should get appropriate values that depend on n and opt



to achieve the claimed approximation ratios. Specifically, for UDM we show an algorithm
that for any integer ¢ computes a multicut of size ¢ - opt + O((nlogn)®/¢2). Setting ¢ =
(nlog 7’L)2/3/0ptl/3 gives the claimed approximation ratio. Since opt is not known, we execute

)2/3

the algorithm for ¢ = 1,...,(nlogn)””, and among the multicuts computed output one of

minimum size. For DM we show an algorithm that for any integers ¢, u with 1 </ <mn —1

2/3 and

and p > opt computes a K-multicut of capacity < u - (20 + n?/(?). Setting £ = n
i = opt gives the claimed approximation ratio. Since opt is not known, we apply binary
search to find the minimum integer p so that a multicut of capacity < - (20 + n?/(?) is
returned. Note that if 4 > opt, a multicut C' of capacity < u(2¢ + n?/(?) is returned. If
{1 < opt, then either the returned multicut C is of capacity < u(2¢+n?/¢?) < 3optn?/® which

is fine or we know that p < opt as the above inequality fails.

Remark: Recently we became aware of the paper [13], which gives an O(n?*/?)-approxima-
tion algorithm for the related Edge-Disjoint Paths problem. Our result for UDM, which was
derived independently, and the main result in [13] rely on the same combinatorial statement
(Corollary 2.5 in our paper, Theorem 1.1 in [13]), but the proofs are different.

2 The uncapacitated case

Definition 2.1 For X,Y C V, let Rg(X,Y) = [{(z,y) C X XY : 2 # y,dg(z,y) < oc}|
denote the number of pairs (x,y) C X X Y such that an (x,y)-path ezists; let R(G) =
Ra(V,V).

Definition 2.2 We say that G = (V, E) is a p-layered graph if V' can be partitioned into
p layers Ly,..., L, so that every e € E belongs to 0c(Li, Liy1) or to 6c(Li, L;) for some
ie{l,...,p—1}, or to d¢(L;, L;) for someiec{l,....p—1}, j€{2,...,p}, j > i.

Lemma 2.1 Let G = (V, E) be a 4-layered graph containing at least k edge-disjoint (L1, Ly)-
paths such that G — 0¢(La, Ls) is a simple graph. Then R(Ly, L) + R(Ly, Ly) > k.

Remark: Observe that the graph induced by L, U L3 may contain parallel edges.

Proof: We will prove the statement by induction on k. The case k = 0 is obvious. Assume
k > 1, and that F is a union of the k edge-disjoint paths. Let st € dg(Lo, L3), let G' =
G—{s,t},and let S ={v e L, :vs € E}, T ={v € L, :tv € E}. Then G' contains
at least k& — (|S| + |T|) edge-disjoint (Ly, Ly)-paths. Also, Rg/(L1, L3) < Rg(Ly, L3) — |S]
and Re (Lo, Ly) < Rg(Lo, Ly) — |T|. This follows because of the removal of {s,¢}. By the
induction hypothesis, if & > |S|+|T'| then Rg/(L1, L3) + Rg/(La, Ly) > k— (|S]+1|T). Thus,
Re (L1, L3) + Rer(La, Ly) > max{k — (|S| 4+ |T|),0}. Combining, we get the statement. O
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Lemma 2.2 Let G be a simple {-layered graph containing k edge-disjoint paths from the
first layer to the last layer, and let S and T be the union of the pg > 2 first and pr > 2 last
layers, respectively, so that SNT = 0. Then R(S,T) = Q(kpspr)-

Proof: By Lemma 2.1, R(L;, L;) + R(L;41, Lj+1) > k for every two pairs L;, L;11 C S and
Lj,Lji; CT. This is shown as follows. Start with the graph induced by L;UL; 1 UL;ULj;;.
Let P be one of the k paths guaranteed by the premise in the lemma. Associate with P
a pair of nodes w;y1,u; with u;41 € L;yq and w; € L;. The w;yq vertex is the first L4
vertex in P and u; is the last L; vertex in P. For every pair w41 € L;y1,u; € L; put
p(uit1,u;) parallel edges from w41 to u; with p(u;y1,u;) the number of P paths associated
with this pair. Hence, we have constructed a 4—layered subgraph as in Lemma 2.1 and this
lemma implies that R(L;, L;) + R(Lit+1,Lj+1) > k. The statement follows by summing the

contribution of all such pairs. O

We use the following special case of the Max-Flow Min-Cut theorem (c.f., [3]).

Theorem 2.3 (Menger’s Theorem) Let s,¢ € G. The maximum number of edge-disjoint

(s,t)—paths in G equals the size of a minimum (s, t)—cut

Lemma 2.4 Let s,t be a pair of nodes in a simple graph G with dg(s,t) > 4plogn + 2.
Then there exists an (s,t)-cut C so that R(G) — R(G — C) = Q(|C|p?).

Proof: Consider the corresponding dg(s,t) BFS layers from s to ¢, where nodes that cannot
reach ¢ are deleted. Let X; be the layer at distance ¢ from s, and let Y; be the layer at
distance i to t. Let k; be the maximum number of edge-disjoint (Xj.,, Y} )-paths in the

graph G; induced by all the layers starting with X, and ending at Y}.,,, j = 1,...,2logn.

We claim that there exists an index j with k; < 2-k; ;. Otherwise, since ky > 1, we

have k; > 27. For j = 2logn + 1 we get k; > 2n?, which is not possible in a simple graph.

Let j be such an index with k; < 2-k;_y, and let C' be a minimum (Xj.,, Y;,,)-cut, so
|C| = kj. We now apply Lemma 2.2 on the graph G;_;. Note that G;_; contains at least
|C|/2 edge-disjoint paths between its first layer X(; )., and its last layer Y(;_1).; this is since
k; = |C| by Menger’s Theorem, and k;_; > k;/2 by the choice of j. Since C separates the
first and the last p layers of G;_;, the statement follows from Lemma 2.2. O

Corollary 2.5 For UDM there exists an algorithm that for any integer ¢ > 4logn + 2
finds in O(mn?/0?) time a K-multicut B with |B| = O ((nlogn)Q/EQ), where K = {(u,v) :
d(u,v) > (}.

Proof: Let p = ¢/(4logn+2). The algorithm starts with B = (). While there is an (s, t)-path
for some (s,t) € K it computes an (s, t)-cut C' = Cy; as in Lemma 2.4, and sets B «+ BUC,
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G + G — C. We claim that at the end of the algorithm |B| = O(R(G)/p*) = O(n?/p*);
we get that |B| = O ((nlog n)2/£2) by substituting p = ¢/(4logn). Lemma 2.2 implies that
there exists a constant a > 0 so that each time Cy,; is deleted, R(G) is reduced by at least
a|Cy|p?. Thus we get

ap® - |B| < ap* - Z |Cyul < R(G) < n*

(s,t)eK

The dominating time at each iteration is spent for computing a cut as in Lemma 2.4.
This can be done using O(logn) max-flow computations as follows directly from the proof of
Lemma 2.4. Thus it can be computed in O(m|Cy,|) time using the Ford-Fulkerson algorithm
[6]. Thus the total time required is O(m|B|) = O(mn?/¢?). O

We are now ready to prove Theorem 1.1. Given an integer ¢, apply the following procedure
starting with A, B = (:

Phase 1:

While there is an (s, t)-path P with |P| < ¢ for some (s,t) € K do:
A+—A+P, G+ G- P.

End While

Phase 2: Find in G — A a K-multicut B as in Corollary 2.5.

For any integer ¢, the algorithm computes a K-multicut C' = A U B of size ¢ - opt +
O((nlogn)?/f?); |A| < £ - opt since any K-multicut contains at least one edge of each path
removed, and |B| = O((nlogn)®/¢?) by Corollary 2.5. As was explained in the introduction,

2/3, and among the multicuts computed

we execute the algorithm for ¢ = 1,...,(nlogn)
output one of minimum size. For ¢ = (nlogn)*®/opt'/* we get the claimed approximation

ratio.

Let us now discuss the implementation of the algorithm. After executing Phase 1 at
iteration ¢, the graph G — A is used as an input for iteration ¢ 4+ 1. As the total length of
the paths removed is at most n?, and each iteration requires a shortest path computation
the total time of Phase 1 executions is O(mn?). The total time of Phase 2 executions is
0, (27:2/13 mn? /22) = O(mn?). Thus the time complexity is as claimed, and the proof of

Theorem 1.1 is complete.



3 An O(n*?)-approximation algorithm for DM

3.1 The algorithm:

Consider the following algorithm:

Input: An instance (G, u, K) of DM, and integers /, pu.
Initialization: C < .
While in G there is an (s,t)-path P for some (s,t) € K do:
(a) Let P" be the union of the first and the last ¢ edges of P (P' = P if |P| < 2/);
(b) Among the (s,t)-cuts in G disjoint with P’ compute one C’ of minimum capacity
(u(C') = o0 if P' = P);
(c)If P=P then C«+~ CUP, G+ G—P.
(ci) Else, if u(C") > p then: u, < u, — min{u, : e € P'} for every e € P’;
C <+ CUP}, G+ G— P}, where Py={e € P':u,=0}.
(cii)Else (u(C") <p) C+~CUC', G+ G—-C".
End While

Lemma 3.1 At the end of the algorithm C is a K-multicut. If u > opt then u(C) <
pe (204 n?/0?).

Proof: Assume that p > opt. Consider a specific iteration of the main loop, and the edge

sets P, C' found. There are three possible cases.

If P = P then P is added to C. Since the optimum contains at least one of these edges,
the number of edges added in these case throughout the algorithm is at most 2-£-opt < 2-£- .
If u(C") > p then u(C’) > p > opt. This implies that any minimum K-multicut contains at
least one edge from P’. Hence, after setting u, < u, — min{u, : e € P'} for every e € P’ the
optimum decreases by at least min{u, : e € P'}. Since |P'| = 2/, the total capacity of the
edges in all sets P} added into C' during the algorithm is at most 2¢opt < 2{4.

Otherwise, if u(C") < p then R(G) — R(G — C") > (2. Thus the total number of cuts C’
removed during the algorithm < n?/¢?  and their total capacity < un?/¢2.

To see that R(G) — R(G — C") > (2, let Pj. and Pj be the first and the last ¢ nodes in
P, respectively. We claim that Rg(Py, Py) = |Py|- |P;| = (> and Rg_c/(Pr, Pi) = 0. The
first statement follows from the simple observation that P, P; belong to the same path P
of G, and thus dg(u,v) < oo for every pair u,v with u € Pp,v € P;. To see the second
statement, note that dg_c/(u,v) = oo for every such pair u, v, as otherwise there would be
an (s,t)-path in G — ", contradicting that C’ is an (s, t)-cut in G. O



We are now ready to prove Theorem 1.2. As was mentioned in the introduction, for
¢ = n?3 we use binary search to find the minimum integer ;1 so that a multicut of capacity
< p - (20 4+ n?/%) is returned. Lemma 3.1 implies that p < opt, and the required ratio

follows.

We now analyze the running time. We can assume that u, € {1,...,n*} or u, = oo for
every e € F. In this case binary search for the appropriate p requires O(log(n*)) = O(logn)
iterations. Indeed, let ¢ be the least integer so that {e € E : u, < c} is a K-multicut. Edges
of capacity > ¢n? do not belong to any optimal solution, and their capacity is set to oc.
Edges of capacity < ¢/n? are removed, as adding all of them to the solution affects only
the constant in the approximation ratio. This gives an instance with tmax/Umin < n*, where
Umax and Ui, denote the maximum finite and the minimum nonzero capacity of an edge in
E, respectively. Further, for every e € E set u, < [ue/umin|. It is easy to see that the loss

incurred in the approximation ratio is only a constant, which is negligible in our context.

The dominating time is spent for computing O(m) minimum cuts at step (b); each
such computation leads to a removal of an edge, since reducing the capacities along P’ by
min{u, : e € P'} guarantees that at least one edge gets capacity zero. As a max-flow/min-
cut computation can be done in O(nm) time (c.f., [2]), the total running time is O(nm?).
This finishes the proof of Theorem 1.2.
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