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Abstract

A bisection of a set U is a partition of U into two nonempty parts. Two bisections

are parallel if they collectively partition U into three parts. A natural model for a family

of pairwise parallel bisections is a tree. Given a bisection family F and a family T of

pairwise parallel bisections, we suggest decomposition/composition tools for modeling

F based on T . We introduce plant models resulting from such compositions. As

an application, we obtain a simple characterization of bisection families that can be

modeled by a cactus-tree (i.e., a tree-of-edges-and-cycles) and its variants. We use this

characterization to derive several related results.

1 Introduction and Notation

Several types of subset families of a set, e.g.: laminar, crossing, intersecting families, and

rings, arise often in graph connectivity problems. For example, in a digraph, the minimum

(s, t)-cuts form a ring family, while the globally minimum cuts form a crossing family. Gabow

[11] suggests a representation for intersecting and crossing families, which size is quadratic

in the size of the groundset, with several applications to digraph connectivity problems. The

representations mentioned can be applied to similar cut families of (undirected) graphs, via
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replacing every edge by the pair of anti-parallel arcs between its end-vertices. However,

for such families of edge-cuts of undirected graphs, it is possible to find more simple and

compact representations, often of a linear size. This enables, among others, to develop

efficient algorithms for several problems; see, for example, [2, 3, 9, 8, 7, 12, 13, 14].

While an arc-cut of a digraph is defined by a subset of its vertices, a natural object

to represent an edge-cut of a graph is an (unordered) bisection of the vertex set, i.e., its

partition into two nonempty parts. Motivated by edge connectivity problems, we develop

tools for modeling certain bisection families of a set. These tools generalize the techniques

used in [6] for modeling the family of minimum edge cuts of a weighted graph. Our results

form a basis for models and algorithms of [7] and, partly, of [8].

Two distinct bisections of a groundset U are called parallel if they collectively partition U

into three nonempty parts. It is known that any parallel bisection family T (i.e., of mutually

parallel bisections) has the naturally defined bijective tree model (T , τ). T is a tree on a

node set U with |U| ≤ 2|U | − 3, and τ : U → U is a mapping such that: for every bisection

{X ,U \ X} of U determined by deletion of an edge from T , {τ−1(X ), τ−1(U \ X )} is a

bisection in T , and every bisection in T arises in this way exactly once (see Fig. 1a,b).

A set of edges C ⊆ E is an (edge)-cut of G if there exists a bisection B = {X, X̄} of

V such that C is the set of edges in E having endnodes in distinct parts of B; in this case

we say that B (or that X) defines C (in G). Note that in a connected graph, every cut

is defined by a unique bisection, thus there is a bijective correspondence between edge-cuts

of G and the bisections of its vertex set. Henceforth, unless stated otherwise, “cut” means

edge cut. The weight (resp., cardinality) of a cut is defined as the sum of weights (resp., the

number) of its edges. Cuts consisting of one edge are referred as bridges. Let λ(G) denote

the minimum weight (or the cardinality, if no weights are given) of a cut of G. Note that

there can be Ω(n2) minimum cuts, and thus the space required to list all of them can be

Ω(n3) if every cut is described as a bisection of V , or as a set of edges.

It is not hard to prove that in an integrally weighted graph with λ(G) odd, the minimum

cuts are pairwise parallel. In [6] it was shown that the minimum cuts of an arbitrary graph

with nonnegative weights on its edges can be represented in a compact and simple way by

the cactus-tree model (H, ϕ). H is a cactus-tree, that is a connected graph such that every its

block is an edge or a cycle, and ϕ is a mapping from V to the node set of H. The (inclusion)

minimal cuts of a cactus-tree have a simple structure: any such cut is either a bridge, or

a pair of edges belonging to the same cycle. For every minimal cut of H determined by

a bisection {X ,U \ X} of the node set U of H, {τ−1(X ), τ−1(U \ X )} is a bisection that

determines a minimum cut of G, and every minimum cut of G arises in this way. Under

2



certain minimality assumptions, H is unique, |U| = O(|V |), and this representation is almost

bijective, see [15]. For applications of the cactus tree model see, for example, [14, 13, 2, 8, 9].

Two naturally arising questions are:

(i) Is there a simple characterization of bisection families that can be modeled by a cactus

tree (similar to that of families that can be modeled by a tree)?

(ii) Can the tools used in [6] be extended to model near minimum cuts of graphs?

In this paper, we answer the first question by giving such a characterization of the

bisection families modeled by a cactus-tree as families with a simple pairwise relation on its

bisections. We note that a half year after our result was published in [7, Theorem 4.2] a

similar characterization was announced by Fleiner and Jordán, see [10, Theorem 3]. We also

note, that this particular result can be deduced from works of Cunningham and Edmonds,

see [4, 5]. Here we suggest more intuitive approach, and provide a short and direct proof.

In addition, generalizing modeling by a cactus-tree, we suggest a certain type of models

which we call plant models. These models help proving the above characterization and

are applied for modeling minimum and minimum+1 cuts of a multigraph in [7]; a similar

approach is applied for near minimum cuts in [3].

Here are some definitions and notation used in the paper. Let U be a finite groundset.

For a proper subset X of U , X̄ = U \X denotes the complementary set of X, and B(X) the

bisection {X, X̄}. Two distinct bisections B(X), B(Y ) cross (or B(X) crosses B(Y )) if they

are not parallel, i.e., if all the four corner sets X ∩ Y,X ∩ Ȳ , X̄ ∩ Y, X̄ ∩ Ȳ are nonempty. A

bisection defined by a nonempty corner set, is called a corner bisection. If B(X), B(Y ) cross,

the bisection B(X∆Y ) is called their diagonal bisection, where X∆Y = (X \ Y ) ∪ (Y \X)

denotes the symmetric difference betweenX and Y . It is easy to see that if B(X), B(Y ) cross,

then any bisection that crosses their corner bisection crosses at least one of B(X), B(Y ).

We say that a bisection {X, X̄} divides a subset S of U if both X ∩ S and X̄ ∩ S are

nonempty. The equivalence classes of the relation “x, y ∈ U , {x, y} is not divided by any

bisection in F” are called F -atoms.

When U is the vertex set of a connected graph G, similar definition are used for cuts

considering them as bisections of U . To shrink a subset S of U means to identify all elements

in S to a single new element s. When U is the vertex set of a graph G, shrinking implies

also deletion of all edges with both endpoints in S, and, for every edge with one endpoint in

S, replacing this endpoint by s; an edge of a new graph is identified with its corresponding
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edge of G. For a given partition of U , the quotient set (graph) is defined to be the result of

shrinking each its part; the corresponding mapping is called the quotient mapping.

We say that a graph is a tree of graphs of a certain type if every its block is of this type.

This paper is organized as follows. Section 2 describes plant modeling. In Section 3,

we introduce crossing and semicrossing bisection families and show that they are exactly

the families that can be modeled by a cactus-tree and by a tree-of-edges-and-cycles-and-

complete-graphs, respectively. Section 4 shows several applications.

2 Plant models

Let U be a groundset, and ψ : U → U a mapping. For a bisection B = {X , X̄ } of U we

define ψ−1(B) = {ψ−1(X ), ψ−1(X̄ )}, and for a family F of bisections of U let us denote

ψ−1(F) = {ψ−1(B) : B ∈ F}. Given a family F of bisections of U , we say that the triple

(U , ψ,F) is a model for F if ψ−1(F) = F . When U is the vertex set of a connected graph G,

F becomes a family of cuts of G. In this case, we call (G, ψ,F) a cut model and the members

of F modeling cuts.

We need a formal definition of the tree model to continue. Let T be a parallel family.

We say that two sets X1, X2 with B(X1), B(X2) ∈ T are neighbors if there is no bisection

{Y, Ȳ } ∈ T such that both X1 ⊂ Y and X2 ⊂ Ȳ , where “⊂” means proper inclusion. It is

not hard to see that the neighbor relation is an equivalence; we call its equivalence classes

neighbor groups. The nodes of the tree T are the neighbor groups. For every bisection

{X, X̄} ∈ T , we put a structural edge εX = εX̄ between the neighbor group containing X

and the neighbor group containing X̄. For a node N of T , τ−1(N ) is defined to be
⋂

X∈N X̄.

Such subsets, if nonempty, are just the T -atoms. The described construction implies the

following statement (proof is omitted).

Theorem 2.1 The model (T , τ, bridges of T ) as above is a bijective cut model for T .

Let F be an arbitrary bisection family, and assume that a parallel family T consisting

of bisections that do not cross any bisection in F is given (T and F might not be disjoint).

In this section, we consider a decomposition of F w.r.t. such family T ; provided that for

each part of this decomposition a cut model is given, we show how those models can be

“implanted” into T to obtain a cut model for the entire F . We decompose F relatively to

the nodes of T as follows: a bisection B ∈ F is assigned to a node N if it does not divide

any set belonging to the neighbor group N (see fig. 1a). Denote by FN the bisections in F

assigned to a node N . It is easy to see that every bisection in F \ T is assigned to exactly
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Figure 1: (a) decomposition w.r.t. a parallel family (shown by heavily dashed lines); (b) local

models and implanting; (c) plant model.

one node of T , while any bisection in F ∩ T is assigned to exactly two nodes (connected by

the edge modeling this bisection).

Let us define a local model at N as a cut model (GN , ψN ,FN ) for FN with the following

additional property: for every set X ∈ N , ψN (X) is a single node of GN (see Fig 1b).

Suppose that for every family FN with FN 6= ∅ a local model (GN , ψN ,FN ) is given. Under

this assumption, we can show how to construct a cut model for F . Let N be a node of T .

For X ∈ N , let εX be the edge modeling the bisection B(X). Implanting GN instead of N is

defined as follows: every edge εX , X ∈ N , is disattached from its endnode N , and attached

to the node ψN (X); then N is deleted (see Fig. 1c). Let G = (U , E) be the graph resulting

from implanting all the local models. The model mapping ψ : U → U takes the elements

in τ−1(N ) as the mapping ψN does in the case N has undergo implanting, and takes all of

them to N otherwise. Since the sets τ−1(N ) with τ−1(N ) 6= ∅ partition U , ψ is well defined.

Note that by the definition of implanting, E contains all the edges of the local models; the

additional edges in E are those of T . Assuming that a cut is represented by an edge set,

the modeling family F of cuts of G is naturally derived from those of the implanted local

models: F is the union of the families FN (see Fig. 1b,c).

Theorem 2.2 Let F and T be bisection families such that no bisection in T crosses a

bisection in F . Let T be a tree model for T , and suppose that for every node N of T

with FN 6= ∅ a local model (GN , ψN ,FN ) is given. Then the model (G, ψ,F) obtained by

implanting these local models into T is a cut model for F .

Proof: For simplicity, let us assume that every node N of T has undergo implanting; if for

some family FN no local model is given (so FN = ∅), then implanting the “trivial model”,

where GN consists of a single node, gives the same plant model.

It is sufficient to show that for any node N of T and any cut C of GN there exists a
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proper subset Y of U such that:

(A) Y defines C in G, and

(B) ψ−1(Y) = ψ−1

N (YN ), where YN defines C in GN .

Focus on a specific node M of T . Then, by the construction of G, every (connected)

component of G − GM is attached by a bridge to a unique node of GM. Thus every proper

subset YM of the nodes of GM naturally extends to a proper subset Y of nodes of G, where

Y is obtained by adding to YM every components of G − GM that is attached to a node in

YM. This implies that the cut defined by Y in G coincides with the cut defined by YM in

GM. This shows that (A) holds.

To prove that (B) holds for Y as above, it is sufficient to show that for any u ∈ U either

(B1) ψ(u) = ψM(u) (if u ∈ τ−1(M)), or

(B2) ψ(u) belongs to a component of G − GM attached to ψM(u).

Then, by the definition of Y , we would have ψ−1

M (YM) = ψ−1(Y), as required.

Note that by the construction of G and the definition of ψ we have:

Claim: Let N be an arbitrary node of T . Then:

(i) For any u ∈ U holds: ψ(u) = ψN (u) if, and only if, u ∈ τ−1(N ); in particular, ψ(u) is a

node of GN if, and only if, u ∈ τ−1(N ).

(ii) If N belongs to a component of T −M attached to M by ε, then all nodes of GN belong

to the component of G − GM that is attached to GM by ε.

Let u ∈ U be arbitrary. Claim (i) above implies immediately that if u ∈ τ−1(M) then

ψ(u) = ψM(u); thus (B1) holds. Henceforth assume that ψ(u) /∈ τ−1(M). Then u ∈ X

for some X ∈ M. Consider the component X attached to GM by the bridge εX . By the

construction of the plant model and the definition of a local model, the endnode of εX in

GM is ψM(X) = ψM(u). We claim that ψ(u) ∈ X . By the definition of the tree model T ,

N = τ(u) belongs to the component of T −M that is connected to M by εX . By Claim (i)

above, ψ(u) is a node of GN . By Claim (ii) above, all the nodes of GN belong to X . In

particular, ψ(u) ∈ X , and (B2) holds as well. 2

Theorem 2.2 provides decomposition/composition tools for modeling bisection or cut

families. The reader may wonder what is the advantage of the construction above, as the

totality of the models GN already represents the entire family F . We can see two. First, note

that the space required for the totality of the model mappings ψN can be Ω(|U |2), while the

model mapping of their plant model needs only O(|U |) space. Second, for graphs, several

connectivity problems can be reduced to a corresponding problem for a cut model, see, for

example, [2, 3, 7, 9, 13, 14].
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3 Crossing Families

Henceforth, we say that a family of bisections is modeled by a graph G, implicitly meaning

that the model mapping is given, and that the modeling family is the family of (inclusion)

minimal cuts of G.

Definition 3.1 A bisection family F is called crossing if for any pair of crossing bisections

in F holds:

(C1) their four corner bisections are in F ;

(C2) the diagonal bisection is not in F .

When only (C1) holds always, the family is called semicrossing.

Theorem 3.1 A bisection family F is modeled by

(i) a cactus tree if and only if F is a crossing family;

(ii) a tree of edges, cycles, and complete graphs if and only if F is a semicrossing family.

Proof: The “only if” part.

Let B(X), B(Y ) be a pair of crossing bisections in F . Let CX , CY be an arbitrary pair of

cuts modeling B(X), B(Y ), respectively. Note that the following holds for an arbitrary cut

model: if CX , CY are cuts modeling B(X), B(Y ) respectively, and if B(X), B(Y ) cross then:

(a) CX , CY cross, and (b) the corner cuts and the diagonal cut of CX , CY model the corner

bisections and the diagonal bisection of B(X), B(Y ), respectively. It is well known, and easy

to prove, that a cut of a graph is minimal if and only if it is a cut of a (unique) block of the

graph. Since two cuts that do not divide the same block are parallel, CX , CY are cuts of the

same block L, which must be either a cycle, or a complete graph, on at least 4 nodes.

Assume that L is a cycle. Then CX consists of two edges of L. Deletion of CX partitions

the remaining edges of L into two parts. Since CX , CY cross, CY consists of two edges

belonging to distinct parts. One can easily verify that for CX , CY : (1) their corner cuts are

the four cut pairs {{ε′, ε′′} : ε′ ∈ CX , ε
′′ ∈ CY }, and thus each one of them belongs to the

modeling family, and (2) their diagonal cut is CX ∪ CY , and thus it does not belong to the

modeling family. Thus for B(X), B(Y ), each one of their corner cuts belongs to F , and their

diagonal cut does not belong to F .

7



If L is a complete graph on at least 4 nodes, one can use similar arguments to show

that the corner and the diagonal bisections of B(X), B(Y ) belong to F . In this case, F is

semicrossing, but cannot be a crossing family.

The “if” part.

Let T be the family of all bisections in F that do not cross any other bisection in F .

Clearly, T is parallel. Consider the family FN of all bisections in F assigned to some node

N of the tree model T for T . Let F̂N = FN \ {B(X) : X ∈ N}. By Theorem 2.2, to finish

the proof of our Theorem, it is sufficient to show that, if F̂N 6= ∅, there exists a local model

at N which is a cycle, for the case (i), and a cycle or a complete graph, for the case (ii).

Let N be a node with F̂N 6= ∅. In what follows, note the following: (a) if B(X), B(Y ) ∈

FN cross, then each one the conditions (C1),(C2) holds for B(X), B(Y ) and F if and only

if it holds for ψN (B(X)), ψN (B(Y )) and FN ; (b) for any B(X) ∈ F̂N , there is B(Y ) ∈ F̂N

crossing B(X).

Among all the subfamilies of FN for which exists a quotient cut model of the type as in

the Theorem, let F ′ be one with the maximal number t′ of atoms. Observe, that F ′ is well

defined and t′ ≥ 4. This is since there exists at least one model of this kind, as follows. By

the assumption, F̂N 6= ∅, so there is a pair of bisections in F̂N that cross. Moreover, in the

case FN is not a crossing family, among crossing pairs in F̂N there is at least one that does

not fulfill (C2), i.e., its diagonal bisection belongs to FN . The family of the desired type is

this pair of crossing bisections, their corner bisections, and, if FN is not a crossing family,

their diagonal bisection.

Let (G ′, ψ′,F ′) be a model as above for F ′. First, let us prove that if C is a cut of G ′

such that ψ′−1(C) ∈ FN , then C ∈ F ′. If FN is not a crossing family, then F ′ is the complete

set of cuts (bisections), and this is evident. If FN is a crossing family, then G ′ is a cycle of

length at least 4, and F ′ consists of its edge pairs. Assume, in negation, that there is a cut

of G ′ such that ψ′−1(C) ∈ FN , but C /∈ F ′. Let B(X ) be the bisection of the node set of the

cycle G ′ that defines C ′. Let us assign the black color to the nodes in X and the white color

to the nodes in X̄ . By the assumption, there are at least two inclusion-maximal black paths

in the cycle G. Let A1, A0, and A2 denote a triple of consequent black, white, and black

inclusion-maximal paths of G ′. Observe that B(A1 ∪ A2) either coincides with B, or is one

of the corner bisections of the pair B and B(A1 ∪ A0 ∪ A2), and thus belongs to F ′. The

two paths A1 ∪A0 and A2 ∪A0 define bisections in F ′; they are crossing, and their diagonal

bisection B(A1 ∪ A2) belongs to F ′, a contradiction to (C2).
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Figure 2: Illustration for the proof for a crossing family.

In order to complete the proof, we will show that the number t of FN -atoms equals t′.

Let us denote a node of G ′ by bV if ψ′−1(bV ) = V . Notice that, for each such V , B(V ) ∈ FN .

Assume, in negation, that t′ < t. Then, there is a node bX of G ′, such that B(X) /∈ N .

Thus, by assumptions of the Lemma, there is a bisection B ∈ F̂N crossing with B(X); let B

divide X into X1 and X2. By (C1), B(X1), B(X2) ∈ FN .

Let us examine first the case (i) of our Theorem, when FN is a crossing family and G ′ is

a cycle on at least 4 nodes. Let bY and bZ be the two nodes adjacent to bX in G ′ (see Fig. 2).

Case 1: B = B(Y ∪X1) (see Fig. 2a). Let us define a new quotient model (G ′′, ψ′′,F ′′)

as follows. The cycle G ′′ with t′ + 1 nodes is obtained from G ′ by splitting bX into two new

nodes bX1
and bX2

, connected by a structural edge εX , and replacing the edges (bX , bY ) and

(bX , bZ) by the edges (bX1
, bY ) and (bX2

, bZ), respectively. The mapping ψ′′ is the natural

refinement of ψ′ defined by (ψ′′)−1(bXi
) = Xi, i = 1, 2, and F ′′ is the set of minimal cuts of

G ′′. To obtain a contradiction, it suffices to show that (ψ ′′)−1(F ′′) ⊆ FN .

Let C ∈ F ′′. If εX /∈ C, the claim follows from the assumption on G ′. Assume now that

εX ∈ C, and let ε be the other edge of C. Note that B(X1), B(X2) ∈ FN , since they are corner

bisections of B,B(X). Thus, if ε is incident to one of bX1
, bX2

, the claim follows. Else, let b

be the endnode of ε which is closer to bX1
. Let C ′ = {(bX1

, bY ), ε}, and let B ′ = (ψ′′)−1(C ′).

Note that B′ ∈ FN . Clearly, B,B ′ cross. One of their corner bisections is (ψ′′)−1(C); by

(C1), it belongs to FN .

Case 2: B does not divide at least one of Y and Z (see Fig. 2b). We assume, w.l.o.g.,

that B = B(V ) where Y,X1 ⊂ V . By the definition of G ′, the bisection B(X ∪ Y ) belongs

to F ′. If we are not in Case 1, B forms a crossing pair with B(X ∪ Y ). Then, by (C1),

B(Y ∪X1) belongs to F ′ as a corner bisection of their square, and we arrive at Case 1.

Case 3: B divides both Y and Z. (see Fig. 2c). Bisections B and B(X ∪ Z) form a

crossing pair. The corner set of their square that contains X2 defines a bisection which
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Figure 3: Illustration for the proof for a semicrossing family which is not crossing.

belongs to F̂ , crosses B, and does not divide Y . We arrive at Case 2.

This is the end of examining (i).

Let us now examine the case (ii), when G ′ is a complete graph on at least 4 nodes (see

Fig. 3).

Case 1: B = B(Y ∪X1), where bY 6= bX is a node of G (see Fig. 3a,b,c). Let us define a

new quotient model (G ′′, ψ′′,F ′′) similarly to the proof of the case (i): we form the complete

graph G ′′ with t′ + 1 nodes by splitting the node bX into two nodes bX1
and bX2

, adjusting

the set of structural edges, and defining ψ′′ and F ′′ appropriately. Let B(W ) be a bisection

of U such that for any node bV of G ′′, W does not divide V . To obtain a contradiction,

it is sufficient to show that if Y ⊆ W , W properly contains exactly one of X1, X2, and

B(W ) 6= B, then B(W ) ∈ FN .

Let us consider, first, the case X1 ⊂ W (see Fig. 3a). Let W ′ = W \ (X1 ∪ Y ). Since

B(W ) 6= B, W ′ 6= ∅. The bisections B and B(Y ∪W ′) are crossing and both belong to FN :

the former by the assumption of the case, and the latter since for any node bV of G ′′, W does

not divide V . Since B(W ) is their corner bisection, by (C1) it belongs to FN .

Second, let us consider the case X2 ⊂ W (see Fig. 3b). Assume, first, that W 6= X2 ∪ Y ,

i.e., there exists a node bZ of G ′ such that Z ⊂ W (see Fig. 3c). Let us consider crossing

bisections B(W \ X2) and B(W \ Y ). Note that both of them belong to FN . Thus B(W )

belongs to FN as their corner bisection. It remains to show that B(X2 ∪ Y ) also belongs to

FN . Since G ′′ has at least five nodes, there are two nodes bZ1
and bZ2

distinct from bX1
, bX2

,

and bY . Using similar considerations as previously, we deduce that the crossing bisections

B(X ∪ Y ) and B(Z1 ∪ X2 ∪ Y ) belong to FN ; by (C1), their corner bisection B(X2 ∪ Y )

belongs to FN as well.

Case 2: There is a node bY of G ′, such that B does not divide Y (see Fig. 3d). We

assume, w.l.o.g., that B = B(V ), where Y,X1 ⊂ V . By the definition of G ′, the bisection

B(X ∪Y ) belongs to F ′. If we are not in Case 1, then B,B(X ∪Y ) is a crossing pair. Then,
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B(Y ∪X1) belongs to FN as their corner bisection, and we arrive at Case 1.

Case 3: for every node bV of G ′ B divides V . (see Fig. 3e). Let bY , bZ 6= bX be nodes of

G ′. Bisections B and B(X ∪Z) crossing, and the corner set of their square that contains X2

defines a bisection which belongs to FN , crosses B(X), and does not divide Y . We arrive at

Case 2.

This is the end of examining (ii). 2

Remark: Note that the number of nodes in the model for a bisection family F as in

Theorem 3.1 is linear in |U |. Hence the total size of the model (that is, the number of nodes

and edges in G) for any crossing family is O(|U |). The model for a semicrossing family can be

implemented also in linear space, if we eliminate real implanting of complete graphs. Indeed,

without loss of information, it is sufficient to mark, by a special sign, every node such that

a complete graph should be implanted instead of it.

4 Related results and applications

4.1 Cactus and circumference models

It is easy to show that the minimum cuts of a graph obey conditions (C1),(C2), see [6]. Thus

the main result of [6] — the cactus tree model for the family of minimum cuts of a graph —

is an immediate consequence from Theorem 3.1(i).

Let a circumference model for a family F of bisections of U be a cut model where the

structural graph is a cycle and every modeling cut is minimal (in geometrical terms: a

mapping of U into a circumference such that every bisection in F is defined by a division

of the circumference into exactly two arcs). Circumference Theorem [6], which establishes a

circumference model for the minimum cuts of a graph, can be generalized as follows.

Theorem 4.1 (Circumference Theorem) A family F of bisections has a circumference

model if and only if it is a subfamily of a crossing family.

Proof: The “only if” part. Let a circumference model for a family F of bisections of U

be given. Let ψ be the model mapping, and let F ′ be the family of all minimal cuts of the

structural graph. Then F ′ = ψ−1(F ′) is a crossing family (by Theorem 3.1(i)), and, clearly,

F ⊆ F ′.

The “if” part. Clearly, it is sufficient to prove it for any crossing family. By Theorem 3.1,

it is sufficient to prove that the set of minimal cuts of any cactus tree has a circumference
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model. Such a proof coincides, in fact, with the proof of Circumference Theorem [6]. 2

Corollary 4.2 Let F be a crossing family of bisections of a set U . Then |F | ≤ |U |(|U |−1)/2.

4.2 Ring families

Now, let G be a weighted graph and S be its distinguished vertex subset. Among all the

cuts of G dividing S, let us consider those of the minimum weight; we call them minimum

S-cuts and denote their weight by λ(S). D. Naor and J. Westbrook stated independently

that the family of bisections of S induced by the minimum S-cuts is modeled by a cactus

tree, generalizing [6]. However, neither D. Naor, nor J. Westbrook presented any proof for

their statement. We do not see for it any immediate generalization of the proof given in [6]

and present a proof based on our characterization of families modeled by a cactus tree. In

fact, we prove a more general result, stated in pure bisection terms.

Let S be a distinguished subset of a groundset U . ForX ⊂ U , let BS(X) = {X∩S, X̄∩S}.

If BS(X) is a bisection of S we say that B(X) is an S-bisection. For a family F of S-

bisections, let FS = {BS(X) : B(X) ∈ F} denote the family of bisections of S induced by

the bisections in F . Two bisections of U are called S-crossing if they partition S into 4 parts.

Clearly, validity of the condition (C1) for every pair of S-crossing bisections in F implies

that FS is a semicrossing family. However, validity of conditions (C1),(C2) for every such

pair, does not imply, in general, that FS is a crossing family. Let us call F an S-ring family

if for every x, y ∈ S holds: if B(X), B(Y ) ∈ F is a pair of {x, y}-bisections with x ∈ X and

y ∈ Y then B(X̄ ∩ Y ), B(Ȳ ∩X) ∈ F . It is immediate to show that if F is an S-ring family,

then FS satisfies the condition (C1), i.e., FS is a semicrossing family; the following Theorem

gives a necessary and sufficient condition for FS to be a crossing family.

Theorem 4.3 Let S be a subset of U , and F an S-ring family of bisections of U . Then FS

is a crossing family if and only if every pair of S-crossing bisections in F satisfies (C2).

Proof: As stated above, FS is a semicrossing family. We will show that (C2) holds for every

crossing pair in FS if and only if it holds for every pair of S-crossing bisections in F , and

thus obtain validity of the statement via Theorem 3.1 (i).

Note that if B(X), B(Y ) is a pair of S-crossing bisections, then BS(X∆Y ) is the diagonal

bisection of the pair BS(X), BS(Y ). Thus, if (C2) does not hold for an S-crossing pair

B(X), B(Y ) ∈ F , it does not hold for BS(X), BS(Y ) as well.

Let us now show that if (C2) holds for every pair of S-crossing bisections in F , then it

holds for every crossing pair in FS. Consider an arbitrary crossing pair BS(X), BS(Y ) ∈ FS,
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where B(X), B(Y ) ∈ F . Let Z = X∆Y , and let B(W ) ∈ F be such that WS = ZS. We

claim that B(W \ Z̄) ∈ F . Let W ′ = W \ (X ∩ Y ). The bisections B(W ) and B(X ∩ Y )

S-cross and both belong to F . One of their corner bisections is B(W ′); thus it belongs to

F . Let now W ′′ = W ′ \ (X̄ ∩ Ȳ ). By a similar argument, B(W ′′) ∈ F . Since Z̄ is a disjoint

union of X ∩ Y and X̄ ∩ Ȳ , the claim follows.

Now, assume that (C2) holds for every pair of S-crossing bisections in F , and let X,Y, Z

be as above. By the assumption, B(Z) /∈ F . If condition (C2) does not hold for the pair

BS(X), BS(Y ) and FS, then there is B(W ) ∈ F such that WS = ZS. Let R = W \ Z̄. By

the claim above, B(R) ∈ F , and thus also B(R̄ \Z) ∈ F . A contradiction to the assumption

that B(Z) /∈ F , since R̄ \ Z = Z̄. 2

The following simple Lemma shows that for a graph G and its vertex subset S, the family

of minimum S-cuts satisfies the conditions of Theorem 4.3.

Lemma 4.4 Let G = (U,E) be a graph, and let S be a subset of U . Then the family of

minimum S-cuts is an S-ring family, and the diagonal bisection of every pair of S-crossing

minimum S-cuts is not a minimum S-cut.

Proof: Let x, y ∈ S and let B(X), B(Y ) be a pair of minimum S-cuts separating x from y,

where x ∈ X and y ∈ Y . For a subset Z, let us denote by w(Z) the weight of the cut B(Z). A

straightforward computation shows that w(X̄∩Y )+w(Ȳ ∩X) ≤ w(X)+w(Y ) = 2λ(S). Since

clearly both B(X̄ ∩Y ), B(Ȳ ∩X) are S-cuts, it must be that w(X̄ ∩Y ) = w(Ȳ ∩X) = λ(S),

which implies that the family of minimum S-cuts is an S-ring family.

Let nowB(X), B(Y ) be a pair of bisections S-crossing cuts. The corner cuts ofB(X), B(Y )

divide S, by the assumption. Simple computations, similar to those for proving Crossing

Lemma [6], imply that the weight of B(X∆Y ) is 2λ(S) 6= λ(S), which finishes the proof. 2

Corollary 4.5 For a graph and its vertex subset S, the family of bisections of S induced by

the minimum S-cuts is a crossing family.
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