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Abstract

Given a digraph D, the minimum integral dicycle cover problem (known also as the
minimum feedback arc set problem) is to find a minimum set of arcs that intersects
every dicycle; the mazimum integral dicycle packing problem is to find a maximum set
of pairwise arc disjoint dicycles. These two problems are NP-complete.

Assume D has a 2-vertex cut. We show how to derive a minimum dicycle cover
(a maximum dicycle packing) for D, by composing certain covers (packings) of the
corresponding pieces. The composition of the covers is simple and was partially con-
sidered in the literature before. The main contribution of this paper is to the packing
problem. Let 7 be the value of a minimum integral dicycle cover, and v* (v) the
value of a maximum (integral) dicycle packing. We show that if 7 = v then a simple
composition, similar to that of the covers, is valid for the packing problem. We use
these compositions to extend an O(n?) (resp., O(n*))algorithm for finding a minimum
integral dicycle cover (resp., packing) from planar digraphs to K3 3-free digraphs (i.e.,
digraphs not containing any subdivision of K3 3).

However, if 7 # v, then such a simple composition for the packing problem is not

valid. We show, that if the pieces satisfy, what we call, the stability property, then a



simple composition does work. We prove that if v = v* holds for each piece, then the
stability property holds as well. Further, we use the stability property to show that if

v = v* holds for each piece, then v = v* holds for D as well.

Key words: Graph, integral dicycle cover, integral dicycle packing, 3-connected com-

ponent, composition, K3 3-free digraph.

1 Introduction

Given a weighted digraph, with w : A — Z, a weight function, the minimum integral
dicycle cover problem (known also as the minimum feedback arc set problem) is to
find a minimum weight set of arcs that intersects every dicycle. This problem has attracted
a lot of attention and has many applications in areas such as economics, mathematical
psychology, scheduling problems, and VLSI [14, 23, 19, 6]. The minimum integral dicycle
cover problem is NP-complete in general [15]. The problem is polynomially solvable for some
classes of digraphs such as planar digraphs [21, 22, 16, 7, 11, 8], reducible flow graphs [26] and
weakly acyclic digraphs [10, 25]. For the general case, the best known approximation ratio
is O(min{log 7* loglog 7%, log |V'| loglog |V'|}), where 7* is the value of an optimal solution of

the linear relaxation of the problem [27, 5].

The dual problem to the minimum dicycle cover problem is the maximum dicycle
packing problem. Its integral version is the maximum integral dicycle packing prob-
lem, which is to find a maximum family of dicycles, such that each arc a occurs in at most
w(a) members of the family. As mentioned in [11], the maximum integral dicycle pack-
ing problem is NP-complete. The problem is polynomially solvable for the class of planar
digraphs [21, 22, 16, 7, 11].

Let 7 be the value of a minimum integral dicycle cover and v that of a maximum integral
dicycle packing. It is well known that in general 7 # v. It was proved by Lucchesi and
Younger [22] that 7 = v holds for planar digraphs (for a simpler proof see [20]). This result
was extended to Kj 3-free digraphs (i.e., digraphs not containing any subdivision of K3 3) [3],
see also [25]. For other extensions of results and algorithms from planar graphs to Kj s-free

ones, see, for example, [1, 2, 9, 18, 24, 28|.

For more complete exposition and for the comparison with the packing composition,
we present our results concerning the cover problem although these results are somewhat
marginal. Given a digraph D that has a separation pair, we show how to derive a minimum
integral dicycle cover in D by composing certain covers of its pieces. Our composition of

minimum integral dicycle covers uses some ideas from [3] and from [25]. We combine our



composition with a theorem of Wagner [29] (see also [12]) which states that each 3-connected
component of a K3 3-free graph is either planar or K3, to extend an O(n?) algorithm of Gabow
[8] for finding a minimum integral dicycle cover in planar graphs to Kj s-free digraphs. Our
algorithm is a combinatorial one, and is more efficient than the one presented in [10] which is
based on the ellipsoid method, the one presented in [25] which reduces the problem to a poly-
nomial size linear program, and the one presented in [3] which is based on a decomposition

of an appropriate polytope.

The main results of this paper concern the packing problem. We show that a simple
composition, similar to that of the covers, is in general not valid for the packing problem.
However, if each piece satisfies the stability property (defined below), then a simple compo-
sition does work. A packing consisting of dicycles and dipaths from a vertex u to a vertex
v in a digraph D is called a (u,v)-packing. A digraph D is said to be {u, v}-stable if
there is a maximum integral dicycle packing in D that can be extended to maximum (u,v)-
and (v, u)-packings. Let {u,v} be a separation pair of D. We show that if each piece of
D is {u,v}-stable, then a maximum integral dicycle packing of D can be derived by gluing
together certain packings of the pieces. We further show that if v = v* holds for each such
a piece, then D is {u,v}-stable. We also observe that if 7 = v holds for each piece of D,
then there is a simpler proof for the validity of the above composition. Combining this with
Wagner theorem [29] and Lucchesi-Younger theorem [22] we extend an O(n*) algorithm of
Frank [7] for finding a maximum integral dicycle packing in planar digraphs to Kj s-free di-
graphs. To the best of our knowledge, no polynomial time algorithm for finding a maximum

integral dicycle packing in K3 3-free digraphs was known before.

In [3] it was shown that if 7 = v holds for each piece, then 7 = v holds for D as well.
Here we prove a refinement of the above result. Namely, we show that if v = v* holds for
each piece of D, then v = v* holds for D as well. We note that our result is not obtained

from the results in [3].

We turn now to introduce some preliminaries and definitions. Let A be a finite set, w a
non-negative integral weight function on the elements of A, and let A be a family of subsets
of A. If no weight function is given, then we assume that w(a) =1 foralla € A. For A’ C A
let w(A") =Y {w(a):a € A’} denote the weight of A’

An A-cover (resp., integral A-cover) is a function f : A — [0,1] (resp., [ : A —
{0,1}) such that for every A’ € A, >{f(a) : a € A’} > 1. The value of an .A-cover f
is Y {f(a)w(a) : a € A}. A minimum (resp., integral) A-cover is one with the smallest
value among all (resp., integral) A-covers. An A-packing (resp., integral A-packing) is
a function h : A" — Ry (resp., h: A — Z,,), where A" C A, such that for every a € A,
S{h(A") :ae€ A A" € A'} < w(a). The definition of h can be extended to A by defining



h(A") = 0 for every A" € A — A’. The value of an A-packing h is > {h(A") : A’ € A'}.
A maximum (resp., integral) A-packing is one with the largest value among all (resp.,
integral) A-packings. In what follows we identify an integral {0,1} A-cover f with its
corresponding subset F' = {a € A: f(a) =1} of A, and an integral {0,1} A-packing h with
its corresponding subfamily # = {A" € A: h(A') =1} of A.

Let A be the arc set of a loopless digraph D = (V| A) on a vertex set V, with [V]| =n
and |A| = m, and let w be a non-negative weight function on A. For u,v € V, a (u,v)-arc
(resp., (u,v)-dipath) is an arc (resp., dipath) from u to v. If A is the set of all the dicycles
in D, then an A-cover (resp., A-packing) is a dicycle cover (resp., dicycle packing). If A
is the set of all the dicycles and the (u,v)-dipaths in D, then an A-cover (resp., A-packing)
is called a (u,v)-cover (resp., (u,v)-packing). We denote by 7}, (resp., 7p) the value of a
minimum (resp., integral) dicycle cover in D, and by v}, (resp., vp) the value of a maximum
(resp., integral) dicycle packing in D. For (u,v), an ordered pair of distinct vertices of D,

*UV

*UV
s

resp., T enotes the value of a minimum (resp., integral) (u, v)-cover in D, and v
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(resp., v}) denotes the value of a maximum (resp., integral) (u,v)-packing in D. Also, let
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A complete graph on n nodes is denoted by K,. A Kjs-free graph is a graph not
containing K33 or any of its subdivision as a subgraph. A subset of k vertices of G is a
k-vertex-cut of G if its deletion results in a disconnected graph. We refer also to a 2-vertex
cut as a separation pair. A graph is k-vertex-connected if it is K, or if it has at least
k + 2 vertices and has no vertex-cut of cardinality less then k. Similar definitions are used
for digraphs by referring to their underlying graphs, e.g., we say that D is k-connected if its

underlying graph is k-connected.

In the rest of the paper we assume that D is 2-connected. The results extend naturally
to disconnected or 1-connected digraphs. For simplicity, some of the combinatorial results in
this paper are proved for the unweighted case. However, by elementary constructions (i.e.,
replacing a weighted (u,v)-arc a by w(a) unweighted (u, v)-arcs and vice versa) these proofs
can be generalized to any integral non-negative weight function w. These constructions are
used only in the proofs of the combinatorial results and they do not affect the running times

of our algorithms.

Let D = (V,A) be a 2-connected digraph and {u,v} a separation pair of D. Let
Dy, = (4, A1) and Dy = (V, As) be two {u, v}-separation digraphs obtained from D by
separating D at {u,v}. Namely, Dy, Dy are subgraphs of D such that

Vo= Viuly, VinVy={uv}
A = AJUA, AiNAy=0, |A, |4 >2



and there is no arc with one end in V; \ {u,v} and the other in V; \ {u,v}. Two {u,v}-
separation digraphs can be merged by identifying the copies of v and v in these digraphs
and the resulting digraph is termed a {u,v}-merged digraph (of D; and D,). In what
follows, we identify an arc of a separation digraph with its corresponding arc in D (similarly
we do for vertices, dicycles and dipaths etc.). A dicycle C' in D is said to be separated by
Dy and D, if both C'N A; and C' N A, are not empty. Let #; be an integral (u,v)-packing
in D, and Hs an integral (v, u)-packing in D,. Then, the union of the dicycles in H; and
Ho, together with a maximum set of separated dicycles, formed by the (u,v)-dipaths of H;
and the (v, u)-dipaths of #Hs is called a merged dicycle packing. For weighted digraphs, a
merged dicycle packing h can be recursively obtained from h; and hs in the following way. For
i =1,2, let P; be a dipath for which h;(P;) is maximum, and let ¢ = min{hy(P,), ho(P2)}. If
t = 0, then h is the natural extension of hy and hy. Otherwise, let C' = PyUP,, set h(C) = t,
reduce h;(P;) by t, and recursively apply the same process. For i = 1,2, let ¢; (resp., p;) be
the number of dicycles (resp., dipaths) in D; with h; > 0, and let ¢ = ¢; +¢; and p = p; + po.
Note that given hy, ho, such a merging can be executed in ¢ 4+ plogp time, using basic data
structures (e.g., a heap), and in the resulting packing, the number of dicycles with h(C) > 0

is at most ¢ + p.

Let D = (V, A) be a digraph and u,v € V. A digraph D is said to be a (u,v)-
augmented digraph of D if it is obtained from D by adding any number of (u, v)-arcs; D
is a {u, v}-augmented digraph if it is a (u,v)- or a (v, u)- augmented digraph. Assume
D has a decomposition into £ 3-connected components. The 3-connected components of
D are obtained by initially separating D at one of its separation pairs, then adding to each
separation digraph thus obtained a new arc between the vertices of this separation pair,
and recursively applying the same process to the remaining digraphs. Remove the newly
added arcs from each 3-connected component to obtain Dy = (Vi, Ey),..., Dy = (Vi, Eg). A
multiple—augmented digraph of D; is a digraph obtained from D; by adding any number
of parallel (u,v)- or (v, u)-arcs (or a single (u, v)- or (v,u)-arc of the corresponding integral

weight) for any separation pair {u, v} contained in V;.

This paper is organized as follows. Section 2 studies composition of dicycle covers as well
as efficient algorithms for the dicycle cover and the dicycle packing problems in Kj 3-free
digraphs. Section 3 is devoted to stability and composition of dicycle packings. Section 4 is
dedicated to the connection between integrality and stability. Section 5 contains conclusions

and open problems.



2 Integral Dicycle Covers and K3 3-Free Digraphs

Herein we show a simple method for constructing minimum integral dicycle covers by gluing
together the covers in the separation digraphs. We note that Lemma 2.2 and Theorem 2.5 to
follow, were stated in [3] in terms of acyclic subdigraphs and appropriate polytopes. However,
for more a complete exposition, for the results concerning Kj s-free digraphs, and for the
comparison with the packing problem, we present these results here as well in combinatorial

graph terms.

Observation 2.1 Let Dy and D, be two {u,v}-separation digraphs of D. An arc set F is
an integral dicycle cover in D if and only if F is a union of integral (u,v)- or (v,u)-covers

in Dy and in Dy. Thus, Tp = min{7p’ + 750, 75" + 11 }.

Lemma 2.2 below, which is the basis of our recursive algorithm for the cover problem, can
be derived from Theorem 4.2 in [3]. Recall that A7}’ := 73" — 75" indicates the additional
weight (which might be negative) of a minimum integral (u, v)-cover over a minimum integral
(v, u)-cover. Note that if A77” > 0 and one wishes to construct a minimum integral dicycle
cover in D as a union of minimum integral (u, v)-covers rather than (v, u)-covers, then one
has an overhead of A7f? over 77! relative to D;. We transfer this overhead to D, by adding
a (u,v)-arc of a weight AT3” to Ds. In fact, to have an indicator for the case A7y’ = 0, we
augment D, by a (u,v)-arc of the weight A7{” 41 and a single (v, u)-arc. Also, note that
one can calculate a minimum (u, v)-cover in D by calculating a minimum integral dicycle
cover in a (v, u)-augmented digraph of D obtained by adding a large number, say |A| + 1, of
(v,u)-arcs (or a (v, u)-arc of weight w(A) + 1).

Lemma 2.2 ([3]) Let Dy and Dy be {u,v}-separation digraphs of D, and assume that
ATt > 0. Let Dy be obtained from Dy by adding a set A of two arcs: a (u,v)-arc of
weight ATH +1 and a (v,u)-arc of weight 1. Let Fy be a minimum integral dicycle cover in
D,. If Fy contains the newly added (v,u)-arc, then Fy\ A together with any minimum inte-
gral (v, u)-cover of Dy is a minimum integral dicycle cover in D; otherwise, Fy \ A together
with any minimum integral (u, v)-cover of D is the one.

Lemma 2.2 suggests the following theorem.

Theorem 2.3 Let Dy,..., Dy be a decomposition of D into k 3-connected components. If
there is a polynomaial time algorithm for finding a minimum integral dicycle cover in each
multiple augmented digraph of D;, i = 1,...,k, then there is a polynomial time algorithm

for finding a minimum integral dicycle cover in D.



Proof: The algorithm contains two phases. First, decompose D into its 3-connected compo-
nents using Hopcroft and Tarjan O(n+m) algorithm [13]. Second, find recursively minimum
integral dicycle covers in the modified pieces by using the following method. Let D; be a 3-
connected component from the above decomposition containing exactly one separation pair,
say {u,v}, and let Dy be the remaining separation digraph of D. Theorem 2.3 is clearly
true if D is 3-connected, thus we assume that such D; exists. Assume 77’ > 75" (the case
7' < 7' can be treated similarly), and set D, and F} to be as in Lemma 2.2. Now, using
Lemma 2.2, one can solve recursively the minimum integral dicycle cover problem in Ds.
Clearly, one has to calculate O(k) times a minimum integral dicycle cover, each time in a
digraph of a total weight of at most 2w(D) + 1, and the proof is complete. We note that
in the theorem, one can use strongly polynomial time algorithm instead of polynomial time

algorithm and the theorem will be still valid. O

We turn now to consider Kjs-free graphs. In particular, if 7 = v holds for every mul-
tiple augmented 3-connected component, then we can make use of our results on the cover
problem to obtain similar results for the packing one. Then we use the obtained results to
derive an O(n?) algorithm for the minimum integral dicycle cover problem, and an O(n*)
algorithm for the maximum integral dicycle packing problem in Kj s3-free digraphs. However,
as demonstrated in Section 3, if the requirement 7 = v does not hold, then a simple compo-
sition, similar to the cover one, does not necessarily hold for the packing problem. Theorem
4.7 in Section 4 is a generalization of Lemma 2.4 below. As the proof of Lemma 2.4 is much

simpler than the proof of the theorem, we have chosen to present here a sketch of the proof.

Lemma 2.4 Let Dy and Dy be two {u,v}-separation digraphs of D. Assume that T = v
holds for any {u,v}-augmented digraph of Dy and of D, and that A = Avy’ > 0. Let D,
(resp., Dy ) be the digraph obtained from Dy (resp., Dy) by adding A (v, u)-arcs (resp., (u,v)-
arcs). Let H; be a mazimum integral dicycle packing in D;, and let H; be its counterpart
packing of dicycles and dipaths in D;, 1 = 1,2. Then any merged dicycle packing H of Hq

and Ho, is a mazimum integral dicycle packing in D.

Sketch of the proof: Let D be the {u,v}-merged digraph of D; and Ds, and let H be a
merged dicycle packing of #, and H. Clearly, [H| > |H| — A and |[H| > vy, + vp,. This
together with the assumption that vy = 75,7 =1,2, imply that

|H| Z TD1 +TE2 - A

Now, the equations

TD:TB_A:TE1+TB2_A



follow from Observation 2.1 stated for D. Also, the fact that A = 7'%11) — Tgi > 0 implies that
uv

T =Th In addition, one can verify that for any digraph D and any pair of vertices {u, v},
mp = min{7p", 7p'}. Thus, 7 = min{rf’ + 75, 7' +75'} = 75 +min{rf 7'} = 75 +75,.
Hence, |H| > 7p, and by LP-duality #H is a maximum integral dicycle packing in D. O

We need the following theorem due to Barahona, Fonlupt and Mahjoub [3] (see also [25]).

Theorem 2.5 ([3]) Let Dy, ..., Dy be a decomposition of D into k 3-connected components.
If T = v holds for each multiple augmented digraph of D;, i =1,...,k, then Tp = vp as well.

Now, using similar recursive method as in the cover case, together with Lemma 2.4,
Theorem 2.5 and the method for merging dicycle packings, as defined in Section 2, we
obtain the following theorem.

Theorem 2.6 Let Dy,..., Dy be a decomposition of D into k 3-connected components, and
suppose that for any multiple augmented digraph D; of D;, i = 1,...,k, the following holds:
(i) 75, = vp,, and (ii) there is a polynomial time algorithm for finding a mazimum integral
dicycle packing in D;. Then there is a polynomial time algorithm for finding a mazimum

integral dicycle packing in D.

Theorems 2.7-2.11 to follow, imply that K3 3-free digraphs satisfy the conditions of The-

orems 2.3 and 2.6.

Theorem 2.7 ([29]) Let G be a K;3-free graph. Then each 3-connected component of G is
either a planar graph or Ks.

Theorem 2.8 ([22]) 7 = v holds for any integral weighted planar digraph.
Theorem 2.9 ([3]) 7 = v holds for any integral weighted digraph on 5 vertices.

Theorem 2.10 ([8]) A minimum integral dicycle cover in a weighted planar digraph can be

found in O(n?) time.

Theorem 2.11 ([7]) In a weighted planar digraph, a mazimum integral dicycle packing of
O(n) dicycles, can be found in O(n?) time.



Observe that based on Theorem 2.7, one can check in linear time if a given digraph D is
K3 3-free. This is done by decomposing D into its 3-connected components using Hopcroft
and Tarjan O(n + m) algorithm [13], and then checking each component for being Kj, or
being planar by using Booth and Lueker planarity testing O(n) algorithm [4].

Now, let us consider the remaining time complexity of our algorithms. Let Dq,..., Dy
be the 3-connected components of D with |V;| = n; and with 3¢ n; = n +2(k — 1) < 3n.
Assume our algorithm is of time complexity of O(n,!) for each D;. Then the overall time
complexity of the algorithm in D, excluding the packing merging procedure, is O(3%_, n;!) <
O((3n)"). In a similar way, one can verify that the number of dicycles in the packing in D and
in the D;s, is of the same order. It is not hard to see that finding a minimum integral dicycle
cover or a maximum integral dicycle packing in a digraph on 5 vertices, can be done in O(1)

time. Also, the overall time required for all the mergings is O(XF_, n;logn;) < O(nlogn).

Thus, the above observations together with Theorems 2.3, 2.6, as well as Theorems 2.7—
2.11 imply Theorem 2.12.

Theorem 2.12 Let D be a Ks3-free weighted digraph. Then a minimum integral dicycle
cover in D can be found in O(n3) time, and a maximum integral dicycle packing of O(n)

dicycles, in O(n*) time.

3 Stability and Composition of Dicycle Packings

As mentioned before, Lemma 2.2 suggests a simple method for constructing an optimal
dicycle cover by gluing together two covers in the separation digraphs. Unfortunately, as
shown below, a similar approach does not work in general for the packing case. In this

section we show that under the stability condition a similar approach does work.

Recall that Lemma 2.2 indicates that if D is a {u,v}-merged digraph of D; and Ds,
then every minimum integral dicycle cover in D is a union of minimum integral (u,v)- or
(v,u)-covers in D; and in Dy. One would hope that a similar result would hold for the
packing case, namely, that a maximum integral dicycle packing in D can be constructed
by merging a maximum integral (u,v)-packing in D; (or in Ds) with a maximum integral
(v, u)-packing in Dy (or in D;). Unfortunately, this is not always true, as demonstrated by
the example below. Let D be a {u, v}-merged digraph of D; and Dy, where D; and D, are
as in Figure 1. The unique maximum (u, v)-packing in D; is a set of 5 disjoint (u, v)-dipaths,
and the unique maximum (v, u)-packing in D, is a set of 6 disjoint (v, u)-dipaths. Merging
these two packings results in a dicycle packing of value 5, while the maximum dicycle packing

in D consists of C4, C5,Cy and 3 separated dicycles, and is of value 6.
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Figure 1: Dy and D5 are two separation digraphs of a {u,v}-merged digraph D, where the heavily

lined dicycles form the maximum sets of disjoint dicycles in each digraph.

As an alternative approach, one may suggest merging the following two packings. Let v;
be the value of a maximum integral dicycle packing in D;, i = 1,2. Among all the (u,v)- and
(v, u)-packings in D; with v; dicycles i = 1,2, let us consider those with the largest value.
One would hope to obtain a maximum integral dicycle packing in D by merging such a
(u, v)-packing either in D; or in Dy, with such a (v, u)-packing in the other subgraph. Fig. 1
also shows that this approach does not work as well. Indeed, {C,C3} (resp., {Cs,Cy, C5})
is the unique maximum integral dicycle packing in D; (resp., Ds), and there is no (u, v)- and
no (v, u)-dipath disjoint to these dicycles. However, merging these two packings results in a

packing of value 5, which is again, not an optimal one.

As we have just shown, simple composition methods for the packing problem do not
seem to work for the general case. On the other hand, as shown in Lemma 2.4, such a
method exists, provided 7 = v hold for the appropriate digraphs. Here we show further
sufficient conditions, in fact weaker ones (as is shown in Section 4), under which the simple
composition mentioned in Lemma 4.1 for the packing problem holds. For that we need the

following definition which was motivated by the previous discussion.

Definition 3.1 A mazimum integral dicycle packing is said to be (u,v)-stable if it can
be extended to a mazimum integral (u,v)-packing by adding to it a (possibly empty) set of
(u, v)-dipaths; it is {u, v}-stable if it is both (u,v)- and (v,u)-stable. A digraph D is said to
be (u,v)-stable (resp., {u,v}-stable) if it has a (u,v)-stable (resp., {u,v}-stable) dicycle
packing.

In general, the fact that D is (u,v)- and (v, u)-stable does not imply that D is {u,v}-
stable. This is since {u,v}-stability requires the existence of a maximum dicycle packing
which is (u,v)-stable as well as (v, u)-stable. Such a situation is demonstrated in Fig. 2.

In this example, C; together with the simple (u,v)-dipath is the unique maximum integral

10



Figure 2: An example of a digraph which is (u,v)- and (v, u)-stable, but not {u, v}-stable.

(u, v)-packing, and C; together with the simple (v, u)-dipath is the unique maximum integral
(v, u)-packing, but the dicycle sets of these two packings are distinct. The following lemma
gives a necessary and sufficient condition for (u,v)- and (v,u)-stability to imply {u,v}-
stability.

Lemma 3.1 A digraph D is {u,v}-stable if and only if it is (u,v)- (or (v,u)-)stable and

vt =vp (or vl =vp).

Proof: Clearly, if D is {u,v}-stable, then it is both (u,v)- and (v, u)-stable. Assume on
the contrary that v, v}}* > vp. Let H be a {u,v}-stable packing in D. Our assumption
implies that there is a (u,v)-dipath and a (v, u)-dipath in D, both disjoint to every dicycle
in H. Since the union of these two dipaths contains a dicycle we derive a contradiction to

the maximality of H.

Now, assume D is (u, v)-stable and that v}3* = v, (the other case can be treated similarly).
Let H be a (u, v)-stable packing. Then the fact that v%}* = vp implies that H is also a (v, u)-
stable packing, and thus a {u,v}-stable packing. O

Lemma 3.2 Let D be a digraph, and let D be a (v, u)-augmented digraph obtained from D

by adding k = v}’ —vp (v,u)-arcs. Then D is (u,v)-stable if and only if v}y = vp.

Proof: If D is (u,v)-stable, then clearly vy = vp + (V)Y —vp) = v}¥. Assume now that
vy = vj, and let # be a maximum packing in D. Let H be the packing formed by those
dicycles of H not containing any of the k added arcs, and let H* be the (u,v)-packing
induced by H in D. Clearly,

H| > [H|—k=vp— k=Y — (VY —vp) = vp.

11



Thus H is a maximum dicycle packing in D. Also, |H*| = |H| = v = v%’. Hence, H™
is a maximum (u, v)-packing in D. Now, as the dicycles of H and of H"¥ coincide, the proof

is complete. O

The following lemma is the basis of our recursive algorithm. Note that the only difference
between Lemma 2.4 and Lemma 3.3 is in the sufficient conditions where Lemma 2.4 requires
that 7 = v holds for any {u, v}-augmented separation digraph while Lemma 3.3 requires the
{u, v}-stability for at least one of the separation digraphs. In what follows, note that if D is

{u,v} stable, and if AY = v¥’ — v} > 0, then (by Lemma 3.1) A% = v} — vp.

Lemma 3.3 Let Dy and Dy be two {u,v}-separation digraphs of D and suppose that Dy is
{u, v}-stable and that A = AY >0 (hence, vp, = v} ). Let Hy be a mazimum (u,v)-packing
in Dy with vp, dicycles. Let D, be the digraph obtained from Dy by adding A (u,v)-ares, s
a mazimum integral dicycle packing in Do, and let Ho be its counterpart packing of dicycles
and dipaths in Dy. Then any merged dicycle packing H, of Hi and Hs, has a value of

Up, + Vp,, and H 1s a mazimum integral dicycle packing in D.

Proof: Obviously, |H| = vp, + vp,. We will prove that H is a maximum packing in D.
Among all maximum packings in D, let 2 be the one with a minimum number of separated
dicycles. Clearly, the number of dicycles in # that are contained in D is at most vp,. Let
Hy be a family of dicycles in #H which are not contained in D, (i.e., the separated ones
and the ones contained in D,). We will show that |[H,| < vj,- Note that, by the above
minimality assumption, any separated dicycle in 7, is a union of a (u, v)-dipath in D; and
a (v,u)-dipath in Dy. This implies that the number of separated dicycles in H, is at most
A. Using the natural correspondence between separated dicycles in #, and dicycles in D

containing (u, v)-arcs, we conclude that |?:[2| < vp,, and the proof is complete. O

Remark: Note that Lemmas 3.1 and 3.2 imply that one can check if a digraph D is {u, v}-
stable by calculating v in its {u,v}-augmented digraphs in the following way. Let M >
w(D)+1 be an integer and let D be a (u, v)-augmented digraph obtained from D by adding
a (u,v)-arc of weight M. Then v}}' = vj. Clearly, v}y can be calculated in a similar way.
Now, if V%%, v%* # vp, then, by Lemma 3.1, D is not {u, v}-stable. Otherwise, assume that
V¥ = vp (the other case can be treated similarly), and let D be the (v, u)-augmented digraph
obtained from D by adding a (v, u)-arc of weight Av¥’. Then, by Lemmas 3.1 and 3.2, D is
{u, v}-stable if and only if v = v%’. Moreover, if H is a maximum integral dicycle packing
in D, then its counterpart of dicycles and dipaths in D is a maximum (u, v)-packing, and its

restriction to the dicycle packing in D, is of value vp.
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Lemma 3.3 together with the above remark suggest the following algorithm. Decompose
D into its 3-connected components, using Hopcroft and Tarjan O(n + m) algorithm [13].
Assume that there is a polynomial time algorithm for finding a maximum integral dicycle
packing in each multiple augmented 3-connected component of D. If D is 3-connected,
we are done. Otherwise, there are at least two 3-connected component in this decompo-
sition containing exactly one separation pair. We check whether at least one of them is
{u,v}-stable, as described above. If so, let D; be a separation digraph corresponding to
this 3-connected component, {u,v} the separation pair contained in it, and D, the second
separation digraph. Recall that by Lemma 3.1 either v}}! = vp, or v}y = vp,. Assume that
vjt = vp,, s0 A =AY > 0 (the other case can be treated similarly), and let D, be the
digraph obtained from Dy by adding a (u, v)-arc of weight A. So D is as in Lemma 3.3, and
by the remark above, computing a maximum (u, v)-packing as in Lemma 3.3, can be done
by computing a maximum dicycle packing in Dy. Now, by Lemma 3.3, a maximum integral
dicycle packing in D can be derived from maximum integral dicycle packings in D; and D,
(using the merging procedure described in the introduction). Using the same method as
before, we recursively find either a maximum integral dicycle packing in Ds, or observe that
the corresponding digraph is not {u, v}-stable. Note that the total weight of any augmented
digraph obtained by the algorithm is bounded by 2w(D) + 1. Observe further, that in the
process described above, if D is a {u, v}-merged digraph of D; and Ds, then for the packing
algorithm to hold, it is sufficient that at least one of Dy, Dy is {u,v}-stable. Thus, in the

following theorem, the {u, v}-stability is required for all components, except of one.

Theorem 3.4 Let D.,...,D; be a decomposition of D into k 3-connected components of
D. If for every i =1,...,k, except of may be one, any multiple augmented digraph of D; is
{u,v}-stable for every separation pair {u,v} that belongs to D;, and if there is a polynomial
time algorithm for finding a maximum integral dicycle packing in each multiple augmented
digraph of D;, i = 1,...,k, then there is a polynomial time algorithm for finding a marimum

integral dicycle packing in D.

Note that in the two algorithms, the one for the cover problem and the one for the packing
problem, the desired sets can be found simultaneously in all the 3-connected components

containing a single separation pair.

4 Integrality and Stability

The main results of this section are Theorems 4.4 and 4.7. Theorem 4.4 is similar to Theo-

rem 2.6, where the sufficient condition 7 = v is replaced by a weaker one, namely, v = v*.
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The second result, Theorem 4.7, states that if v = v* holds for each multiple augmented
3-connected component of D, then v}, = vp as well. This result is a refinement of a result
of [3], stating that if 7 = v holds for each multiple augmented 3-connected component of a
digraph D, then 7, = v as well (see also [25]). It should be noted that our result can not
be obtained from the results of [3] and [25].

Recall that the two conditions, the {u, v}-stability and the requirement that 7 = v in any
{u, v}-augmented digraphs, enable us to derive a simple composition method for the packing
problem. The following example and Theorem 4.3 to follow, show that the first condition is

strictly weaker than the second one.

Example: Let D be the graph of Fig. 3. Here D is a digraph on 2k vertices, k > 3,
where each arc has a weight (i.e., multiplicity) of £ — 1. Set u = s, and v = t3. Let
D be a (u,v) augmented digraph obtained from D by adding a weighted (u,v)-arc. Let
us define a set of dicycles in D as follows: for i = 2,....k, C; = (si,t;, s;,11,51), and
C = (to, 2,13, 83, « -+, by, Sk, t2). If w(u,v) > k — 1, then

1 it C=C; i=2,....k
hC)={ k-2 if C=C

0 otherwise

is an integral dicycle packing in D of value 2k — 3. Note that this packing is optimal since

R % if a = (tl,Sl)
fla)=4 & if a=t,s) i=2,...k
0 otherwise

is a dicycle cover in D of the same value. Now, for every a € C'\ (u,v), {a,(t,s1)} is an
integral dicycle cover in D of value 2k — 2 and it is an optimal one since no single arc of D
intersects all the dicycles in D. Thus 2k — 3 = v = 7* < 7 = 2k — 2 holds for D. Note that
this gap can be made arbitrarily large by multiplying the weight of every arc of D by some
integral r, since then 7(2k —3) = v =71* <7 =7r(2k — 2), implying v — 7 = 7.

Now, we show that D is {u, v}-stable. Let h (resp., h*") be the integral dicycle packing
(resp., (v,u)-packing) induced by h on D. Then h is an integral dicycle packing in D of
value £ — 1; it is an optimal dicycle packing as well as an optimal (u, v)-packing in D since
{(t1, s1)} is an integral (u, v)-cover of the same value. Now, since h*" is a maximum integral
(v, u)-packing in D, and its restriction to the dicycles coincides with h, we obtain that D is
{u,v}-stable.

14



Figure 3: An example of a {u,v}-stable digraph with a {u, v}-augmented digraph for which v < 7.

Observe however that v = v* holds for any {u, v}-augmented digraph of D. For a (u,v)-
augmented digraph with w(u,v) > k — 1 this was already indicated above. One can verify
from Fig. 3 that if w(u,v) < k — 2, then 7 = v = w(u,v) + k — 1 holds for any (u,v)-
augmented digraph of D, while for any (v, u)-augmented digraph of it 7 = v = k — 1 holds.
This motivates Lemma 4.1 to follow, which is the basis for the results presented in this

section.

Lemma 4.1 Let D be a digraph satisfying v = v* for every (v,u)-augmented digraph of it.
Then D is (u,v)-stable.

Proof: Assume on the contrary that D is not (u,v)-stable. Among all the integral (u,v)-
packings with vp dicycles let H' be one of maximum value. Our assumption implies that
there is an integral (u,v)-packing of value greater than that of #'. Among those packings
let H" be one with the maximum number of dicycles. Let p’ and ¢ (resp., p” and ¢”) be
the number of (u,v)-dipaths and dicycles in H' (resp., H"), respectively. Let r = ¢ — (.
Clearly, by our assumption, » > 1 and p"” > p' +r + 1.

Let D be a (v, u)-augmented digraph obtained from D by adding ¢ (v, u)-arcs, where
t=p + 5] +1. Let # be any integral dicycle packing in D and let H be the integral (u, v)-
packing obtained from H by deleting the newly added (v, u)-arcs; the dicycles in #H are the
dicycles of # not containing any added arc, and the (u,v)-dipaths in # are the remainders
of the other dicycles of H. Let p and ¢ be the number of (u,v)-dipaths and dicycles in H,
respectively. Clearly, |H| = |H| = ¢+ p.
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Observe that |7:(| < max{c + p', " + t}, since if |7:[| > 4+ p', then ¢+ p > ¢ 4+ p' which
by the definition of #” implies ¢ < ¢’. Therefore, [H| =c+p < ¢+t < ¢’ +t. Now, using
the fact that » > 1, one obtains that

vy < max{c'+p',c"+p'+ EJ +1}:

= max{c'+p',c'+p'— (7“— EJ —1)}:c'+p'.

Note that if a digraph has a collection of 2k +1 dicycles, not necessarily distinct, but such
that any arc is contained in at most two dicycles of the collection, then this digraph has a
dicycle packing of value k+1/2. We now build such a collection Cin D withk = +p > V-

This will give a contradiction, since then v} > vy +1/2 > vp.

We form the above collection € from two families of colored dicycles in D Let us merge
H' with p’ newly added (v,u)-arcs. We thus obtain a family of blue dicycles. A family of
red dicycles is a union of two families: the first is obtained by merging H” with all the newly
added (v, u)-arcs, and the second is obtained by merging the remaining (u, v)-dipaths in H"

with those newly added (v, u)-arcs which are not contained in any blue dicycle.

Note that, by the construction, the blue dicycles are disjoint. Also, an arc is contained
in at most two red dicycles, and if an arc is contained in two red dicycles, then this arc is a
newly added one that is not contained in any blue dicycle. Thus, an arc is contained in at

most two dicycles of the collection.

We now calculate the number of the dicycles in C. Clearly, the number of blue dicycles
is |[H'| = ¢ +p', and the number of red dicycles is (¢” +t) + min{t — p',p"} = " + 2t — p'.
Thus

~

IC| = c'—l—c"+2t:c'—|—c"—|—2(p'—|—LgJ—I—l)z
> d+d"+2p+r+1=2(C+p)+1=2vy+1.

This implies v} > vp + %, which contradicts our assumption that v} = vp. O

Lemma 4.2 Assume v = v* holds for D. If D is (u,v)- as well as (v,u)-stable, then D is
{u,v}-stable.

Proof: Let H" (resp., H") be a maximum integral (u, v)-packing (resp., (v, u)-packing) in

D containing vp dicycles. If there are no dipaths in H"" or in ‘H"*, then the statement is

trivial. So, let C' be a merged dicycle which is composed by a (u, v)-dipath from H"" with
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a (v, u)-dipath from H"*. Set h to be

if C e HwnH™
if Ce[H™UH™\[H™NH"] or C=C"

otherwise.

h(C) =

(e N

Then h is a dicycle packing in D of value vp + % Hence vy, > vp + % > vp, contradicting

our assumption that vp = v7,. a

Now, combining Lemmas 4.1 and 4.2 we obtain

Theorem 4.3 If v = v* holds for every {u,v}-augmented digraph of D, then D is {u,v}-
stable.

Note that the inverse is usually not true. Indeed, let us take any digraph satisfying
v < v* and add to it a new vertex u together with an arc (u,v), where v is any vertex of
the digraph. Then, clearly, the resulting digraph is {u, v}-stable, but for any of its {u, v}-
augmented digraph v < v* holds. Theorems 3.4 and 4.3 imply the following theorem.

Theorem 4.4 Let Dy,..., Dy be a decomposition of D into k 3-connected components. If
vp, = vp, for all i = 1,....k, except for may be one, and if there is a polynomial time
algorithm for finding a mazximum integral dicycle packing in each multiple-augmented digraph
of D;, 1 =1,...,k, then there is a polynomial time algorithm for finding a mazximum integral
dicycle packing in D.

We further use Theorem 4.3 to show that if v = v* holds for every multiple augmented

3-connected component of a digraph D, then v = v* holds for D as well.

Lemma 4.5 If v = v* holds for every (v, u)-augmented digraph of D, then v** = v*** holds
as well.

Proof: Assume on the contrary that v*’ < p"*

in D. Let h be a maximum (u, v)-packing
in D. Consider the (v, u)-augmented digraph D obtained from D by adding [py] (v,u)-
arcs, where py, is the value of the restriction of h to the (u,v)-dipaths. One can verify

uv*

that vy = vp"* > v’ = vp, contradicting our assumption that v = v* holds for every

(v, u)-augmented digraph of D. O

Lemma 4.6 Let Dy and Do be two {u,v}-separation digraphs of D. If v = v* holds for
every {u, v}-augmented digraph of Dy and of Do, then v = v* holds for D as well.
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Proof: Clearly,
vp < max{min{vp, " + v}, vp,""" + vy }, min{vp, " + v, vp,""" +vp T
By Theorem 4.3, D; and D, are both {u, v}-stable, implying

vp = max{min{vy’ + vp,,vp, + vp, }, min{vy + vp,,vp, + vp, }}.

v Uv *

Now, by our assumption, vp, = vy, , and thus by Lemma 4.5, vp,*" = vp,""* and vp,”" =

vp,"** for + = 1,2. Combining all these we obtain v}, < vp, which implies vp = v7},. O

Lemma 4.6 suggests the following theorem.

Theorem 4.7 If v = v* holds for every multiple augmented 3-connected component of D,
then v = v* holds for D as well.

5 Conclusions

In this paper we addressed some structural and computational aspects of the minimum
(integral) dicycle cover problem and the maximum (integral) dicycle packing one. Our
main contribution is to the packing problem. Assume D has a 2-vertex cut, thus D is a
2-sum of some pieces. We derived a simple procedure for composing a minimum cover in D
from the covers of its pieces. We also derived an efficient algorithm for finding maximum
packings in K3 s3-free digraphs. We demonstrated however that, in general, there is no simple
procedure for computing a maximum packing from packings of the pieces. Nevertheless, we
have shown that the stability property is suffice for the existence of a simple composition.
We also exposed the connection between stability and integrality in the packing case, and

showed that this connection plays a major role in our compositions.

We have demonstrated some {u, v }-stable digraphs for which the min-max relation, 7 = v,
does not hold. It will be interesting to classify some classes of graphs for which the stability

property holds, but the min-max relation does not.

The study presented in the literature on the cover problem yields the min-max relation
in some classes of graphs. The study presented here yields some integrality results concern-
ing the packing problem. In particular, we have shown that if v = v* for every multiple
augmented 3-connected component of D, then vp = v},. Although we have tried to tackle
the issue of whether a similar result holds for dicycle covers, namely, whether 7 = 7* for
every multiple augmented 3-connected component of D implies 7p = 77, it remains an open

problem.
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Another interesting direction for generalizing the study presented in this paper, is to
extend some of the results introduced here, from digraphs that are 2-sum of some pieces, to

the ones that are 3-sum.

Acknowledgments: Partial support was received from the fund for the promotion of re-

search at the Technion. The authors are indebted to the referees for their valuable comments.

References

[1] F.Barahona and A. R. Mahjoub, “Composition of graphs and polyhedra ii: stable sets”,
SIAM J. Discrete Math., 7, (3), 1994, 359-371.

(2] F. Barahona and A. R. Mahjoub, “Composition of graphs and polyhedra iii: graphs
with no Wy minor”, STAM J. Discrete Math., 7, (3), 1994, 372-389.

[3] F. Barahona, J. Foulupt and A. R. Mahjoub, “Composition of graphs and polyhedra
iv: acyclic spanning subgraphs”, SIAM J. Discrete Math., 7, (3), 1994, 390-402.

[4] K. S. Booth and G. S. Lueker, “Testing for the consecutive ones property, interval
graphs, and graph planarity using PQ-tree algorithms”, J. Comp. Sys. Sci. 13, 1976,
335-379.

[5] G. Even, J. Naor, S. Rao and B. Shieber, “Divide-and-conquer approximation algo-
rithms via spreading metrics”, Proc. 36th FOCS, 1995, 62-71.

(6] M. M. Flood, ”Exact and heuristic algorithms for the weighted feedback arc set problem:
A special case of the skew-symmetric quadratic assignment problem”, Networks 20,
1990, 1-23.

[7] A. Frank, “How to make a digraph strongly connected”, Combinatorica 1, 1981, 145—
153.

[8] H. N. Gabow, “A representation for crossing set families with application to submodular
flow problems”, Proc. jth Annual ACM-SIAM Symp. on Discrete Algorithms, 1993,
202-211.

9] A. Galluccio and M. Loebl, “Even directed cycles in H-free graphs”, TASI T.R. # 410,
July, 1995.

19



[10]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

22]

23]

M. Grotschel, M. Jiinger and G. Reinelt, “Acyclic subdigraphs and linear orderings:
Polytopes, facets, and a cutting plane algorithm”, I. Rival (ed.) Graphs and Orders, D.
Reidel Publishing Company, 1985, 217-264.

M. Grotschel, L. Lovasz and Schrijver, Geometric Algorithms and Combinatorial Opti-
mization, Springer-Verlag, Berlin, 1988.

D. W. Hall, “A note on primitive skew curves”, Bull. Amer. Math. Soc. 49, 1943,
935-937.

J. E. Hopcroft and R. E. Tarjan, “Dividing a Graph into Triconnected Components”,
SIAM J. Comput. 2, 1973, 135-158.

M. Jiinger, Polyhedral Combinatorics and the Acyclic Subdigraph Problem, Heldermann
Verlag, 1985.

R. M. Karp, “Reducibility among combinatorial problems”, in R. E. Miller and J.
W. Thatcher (eds.) Complezity of Computer computations, Plemum Press, New—York,
1972, 85-103.

A. Karzanov, “On the minimal number of arcs of a digraph meeting all its directed
cutsets”, abstract, Graph Theory Newsletters 8, 1979.

A. K. Kelmans, “Graph planarity and related topics”, Contemporary Math., 147, 1991,
635-667.

S. Khuller, “Extended planar graph algorithms to K3 s3—free graphs”, Information and
Computation 84, 1990, 13-25.

H. W. Lenstra, Jr. “The acyclic subgraph problem”, Report BW26, Mathematisch Cen-
trum (Amsterdam), 1973.

L. Lovasz, “On two minimax theorems in graph theory”, .J. Combinatorial Theory (B)
21, 1976, 96-103.

C. L. Lucchesi, “A minimax equality for directed graphs”, Ph.D. Dissertation, University
of Waterloo, Waterloo, Ontario, 1976.

C. L. Lucchesi and D. H. Younger, “A minimax relation for directed graphs”, J. London
Math. Soc. 17 (2), 1978, 369-374.

J. F. Mascotorchino and P. Michand, “Optimisation en analyse ordinale des données”
Masson,Paris, 1979.

20



[24] R. Manor and M. Penn, “An extended planar algorithm for maximum integral two-flow”,
Networks, 32, 1998, 67-76.

[25] Z. Nutov and M. Penn, “On the integral dicycle packings and covers and the Linear
Ordering Polytope”, Discrete Applied Mathematics, 60, 1995, 293-309.

[26] V. Ramachandran, “Finding a minimum feedback arc set in reducible flow graphs”, J.
of Algorithms, 9, 1998, 299-313.

[27] P. Seymour, “Packing directed circuits fractionally”, Combinatorica, 15, 1995, 281-288.

[28] V. V. Vazirani, “NC algorithms for computing the number of perfect matchings in K 3—
free graphs and related problems”, Information and Computation 80, 1989, 152—-164.

[29] K. Wagner, “Uber eine Erweiterung eines Satzes von Kuratowski”, D. Math., 1937,
280-285.

21



