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APPROXIMATING STEINER NETWORKS WITH NODE-WEIGHTS∗

ZEEV NUTOV†

Abstract. The (undirected) Steiner Network problem is as follows: given a graphG = (V, E) with
edge/node-weights and edge-connectivity requirements {r(u, v) : u, v ∈ U ⊆ V }, find a minimum-
weight subgraph H of G containing U so that the uv-edge-connectivity in H is at least r(u, v) for all
u, v ∈ U . The seminal paper of Jain [Combinatorica, 21 (2001), pp. 39–60], and numerous papers
preceding it, considered the Edge-Weighted Steiner Network problem, with weights on the edges
only, and developed novel tools for approximating minimum-weight edge-covers of several types
of set functions and families. However, for the Node-Weighted Steiner Network (NWSN) problem,
nontrivial approximation algorithms were known only for 0, 1 requirements. We make an attempt to
change this situation by giving the first nontrivial approximation algorithm for NWSN with arbitrary
requirements. Our approximation ratio for NWSN is rmax ·O(ln |U |), where rmax = maxu,v∈U r(u, v).
This generalizes the result of Klein and Ravi [J. Algorithms, 19 (1995), pp. 104–115] for the case
rmax = 1. We also give an O(ln |U |)-approximation algorithm for the node-connectivity variant of
NWSN (when the paths are required to be internally disjoint) for the case rmax = 2. Our results are
based on a much more general approximation algorithm for the problem of finding a minimum node-
weighted edge-cover of an uncrossable set-family. Finally, we give evidence that a polylogarithmic
approximation ratio for NWSN with large rmax might not exist even for |U | = 2 and unit weights.
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1. Introduction.

1.1. Motivation, problem definition, and previous work. Network design
problems require finding a minimum-weight (sub)network that satisfies prescribed
properties, often connectivity requirements. Classic examples with 0, 1 connectivity
requirements are Shortest Path, Minimum Spanning Tree, Minimum Steiner Tree/Forest,
and others. Examples of problems with high connectivity requirements are Min-Cost
k-Flow, k-Edge/Node-Connected Spanning Subgraph, Steiner Network, and others.

Two main types of weights are considered in the literature: the edge-weights and
the node-weights. We consider the latter, which are usually more general than the
former. For most undirected network design problems, a simple reduction transforms
edge-weights to node-weights, but the inverse is usually not true. The study of net-
work design problems with node-weights is well motivated and established from both
theoretical as well as practical considerations; cf. [18, 14, 23, 4, 21]. For example,
in telecommunication networks, expensive equipment, such as routers, switches, and
transmitters, is located at the nodes of the network, and thus it is natural to model
these problems by assigning weights to the nodes and/or to the edges, rather than to
the edges only.

In directed graphs, it is often possible to reduce the node-weights case to the edge-
weights case via an approximation ratio preserving reduction. However, this is usually
not so for undirected graphs, and an attempt to transform an undirected problem

∗Received by the editors July 9, 2008; accepted for publication (in revised form) March 23, 2010;
published electronically June 9, 2010. A preliminary version of this paper appeared as [25].

http://www.siam.org/journals/sicomp/39-7/72964.html
†Department of Computer Science, The Open University of Israel, Raanana 43107, Israel (nutov@

openu.ac.il).

3001



3002 ZEEV NUTOV

into a directed one typically results in a problem which is significantly harder to ap-
proximate. For example, on undirected graphs, for Steiner Forest a 2-approximation is
known for edge-weights [1], and an O(log n)-approximation is known for node-weights,
and this ratio is tight [18], while the directed variant does not admit a polylogarithmic
ratio unless NP⊆Quasi(P) [6]. In fact, the best known ratio for the directed variant
is much worse than this lower bound; see [9].

Let λH(u, v) denote the maximum number of edge-disjoint uv-paths in a graph
H . We consider the following fundamental problem on undirected graphs.

Node-Weighted Steiner Network (NWSN).
Instance: A graph G = (V,E) with node-weights {w(v) : v ∈ V } and edge-connec-

tivity requirements {r(u, v) : u, v ∈ U ⊆ V }.
Objective: Find a minimum-weight subgraph H of G containing U so that

λH(u, v) ≥ r(u, v) for all u, v ∈ U.(1)

Let rmax = maxu,v∈U r(u, v) be the maximum requirement. The Edge-Weighted
Steiner Network problem was studied extensively, starting from the first 2-approxima-
tion algorithm of Agrawal, Klein, and Ravi [1] for rmax = 1 (see Goemans and
Williamson [12] for a more general algorithm and simpler proof), continuing with
the 2rmax-approximation of Williamson et al. [30] and the O(ln rmax)-approximation
of Goemans et al. [11], and ending with the seminal 2-approximation of Jain [16]. See
surveys in [13, 17, 20] on approximation algorithms for various connectivity problems.

However, for the node-weighted version, NWSN, nontrivial approximation al-
gorithms were known only for rmax = 1. The first approximation algorithm for
NWSN with rmax = 1 due to Klein and Ravi [18] appeared in 1995, at the same
time as the 2-approximation of Agrawal, Klein, and Ravi [1] for the edge-weighted
case with rmax = 1. The Klein–Ravi [18] algorithm uses a greedy approach. Using
“spider-decomposition” of trees, they proved that iteratively adding spiders (subtrees
with at most one node of degree ≥ 3) that minimize a certain ratio (the weight
of the spider over the number of “minimal deficient sets” it connects minus 1) is a
2H(|U |)-approximation algorithm, where H(n) =

∑n
i=1 1/i = O(lnn) is the nth har-

monic number. The approximation ratio was improved by Guha and Khuller [14]
to (1.35 + ε)H(|U |) using a slight generalization of spiders. These ratios are nearly
tight, as the case rmax = 1 of NWSN generalizes the Set-Cover problem and thus has
a (1− ε) ln |U |-approximation threshold [7]. However, unlike the case of edge-weights,
for node-weights almost no progress has been made since the Klein–Ravi paper [18]:
no approximation algorithm was known for NWSN with rmax > 1, not even for the
case rmax = 2.

1.2. Our results. We give the first nontrivial algorithm for NWSN with arbi-
trary requirements.

Theorem 1.1. NWSN admits a 6rmax ·H(|U |)-approximation algorithm.
The approximation ratio in Theorem 1.1 is tight (up to a constant factor) if rmax is

“small” (usually, rmax ≤ 3 in practical networks), but may seem weak if rmax is large.
We give the first evidence that a polylogarithmic approximation algorithm for NWSN
may not exist even for very simple instances. Let the Node-Weighted k-Flow (NWkF)
problem be the restriction of NWSN to instances with U = {s, t} and r(s, t) = k. It
is not hard to see that a ρ-approximation for NWkF implies a ρ-approximation for
the Set-Cover problem, but this implies only an Ω(lnn)-approximation threshold. To
obtain evidence that NWkF, and thus also NWSN, may not admit a polylogarithmic
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approximation ratio, we give a reduction from the following extensively studied prob-
lem to unit weight NWkF. For an edge set E on V and X ⊆ V , let E(X) denote the
set of edges in E with both end-nodes in X .

Densest �-Subgraph.

Instance: A graph G = (V,E) and an integer �.
Objective: Find X ⊆ V with |X | ≤ � and |E(X)| maximum.

No polylogarithmic approximation ratio is known for the Densest �-Subgraph prob-
lem, although it has been studied extensively. The currently best known ratio for the
problem due to Bhaskara et al. [2] is O(|V |−1/4−ε) in time O(|V |1/ε) (see also [8] for
an earlier O(|V |−1/3) ratio). This is so even for the case of bipartite graphs, which
up to a constant factor is as hard to approximate as the general case. We prove the
following theorem.

Theorem 1.2. Suppose that NWkF admits a ρ-approximation algorithm. Then
the following hold:

• The Set-Cover problem admits a ρ-approximation algorithm.
• Densest �-Subgraph on bipartite graphs admits a 1/(2ρ2)-approximation algo-
rithm.

Remark. It is shown in [15] that directed NWkF cannot be approximated within

O(2log
1−ε n) for any fixed ε > 0 unless NP ⊆ Quasi(P); for edge-weights, this case

is in P. On the other hand, the “augmentation” version of NWkF that seeks to find
a minimum node-weight augmenting edge-set to increase the st-edge-connectivity by
1 is reducible to the Shortest Path problem and thus is solvable in polynomial time;
see section 6. This implies a k-approximation algorithm for NWkF. Also, NWkF with
node-disjoint paths is easily reducible to the Min-Cost k-Flow problem and thus is
solvable in polynomial time.

We also consider the node-connectivity version of NWSN, when the paths are
required to be internally node-disjoint. The edge-weighted version with internally
disjoint paths is usually referred to as the Survivable Network Design (SND) problem.
SND does not admit a polylogarithmic approximation algorithm unless NP⊆Quasi(P)
[19], and this is so even if the input graph G is complete with edge-weights in {0, 1}
[26, 22]. However, Ravi and Williamson [29] showed that the {0, 1, 2}-SND, when
rmax ≤ 2, admits a 3-approximation algorithm using the primal-dual method; the ratio
was improved to 2 by Fleischer, Jain, and Williamson [10] using the iterative rounding
method. We consider the node-weighted version NWSND of SND, and specifically the
{0, 1, 2}-NWSND, and prove the following theorem.

Theorem 1.3. {0, 1, 2}-NWSND admits an O(lnn)-approximation algorithm.

Theorems 1.1 and 1.3 are just applications of a more general approximation algo-
rithm for finding a minimum “node-weighted” (edge-)cover of an extensively studied
type of set-family. We need some definitions to present this result. For a graph
H = (V, I) and X ⊆ V let degH(X) = degI(X) denote the degree of X , namely, the
number of edges in I with exactly one end-node in X . For an edge-set I on V , let
V (I) =

⋃
uv∈I{u, v} denote the set of end-nodes of the edges in I. Given node-weights

{w(v) : v ∈ V }, let w(I) = w(V (I)) be the node-weight of I.

Definition 1.1. Let F ⊆ 2V be a set-family of subsets of a ground-set V .

• F is uncrossable if X∩Y,X∪Y ∈ F or X−Y, Y −X ∈ F for any X,Y ∈ F .
• An edge set I on V covers F (or I is an F -cover) if degI(X) ≥ 1 for every
X ∈ F .

We consider the following general problem.
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Node-Weighted Set-Family (Edge-)Cover (NWSFC).
Instance: A set-family F , an edge-set E on V , and node-weights {w(v) : v ∈ V }.
Objective: Find a minimum node-weight F -cover I ⊆ E.

We give an O(ln |V |)-approximation algorithm for the problem of finding a mini-
mum node-weight cover of an uncrossable family F , but its polynomial implementa-
tion requires that certain queries related to F can be answered in polynomial time.
Given an edge-set I on V (I is a partial cover of F), the residual family FI of F
(w.r.t. I) consists of all members of F that are uncovered by the edges of I. It is well
known that if F is uncrossable, then so is FI for any I; cf. [16].

Definition 1.2. A set C ∈ F is an F -core, or simply a core if F is understood,
if C does not contain two disjoint members of F . An inclusion-minimal (inclusion-
maximal) F-core is a min-F -core (max-F -core). Let C(F) denote the family of min-
F-cores.

It is not hard to verify (see Fact 2.2) that, for an uncrossable F , if X ∈ F
intersects a min-core C ∈ C(F), then C ⊆ X . In particular, the members of C(F) are
pairwise disjoint, and every core X contains a unique min-core, is disjoint from all
other min-cores, and is contained in a unique max-core. For s ∈ V and C ∈ C(F), let

F(s, C) = {X : X is an F -core, X ⊇ C, s /∈ X}
be the family of F -cores containing the min-core C and not containing s. A set-family
is a ring-family if it has a unique inclusion-minimal set, and both X ∩ Y and X ∪ Y
belong to the family if X,Y belong to the family. Note that F(s, C) is a ring-family (if
F is uncrossable). For edge-weights, the problem of finding a minimum-weight cover
of a ring-family admits a polynomial time algorithm (under Assumption 1); cf. [5].
This easily implies a 2-approximation algorithm for the node-weighted version; see
section 3.

Make the following two assumptions.
Assumption 1. For any edge-set I on V , the family C(FI) of min-FI -cores can be

computed in polynomial time.
Assumption 2. For any edge-set I on V , given an edge-set E on V , s ∈ V ,

and a min-FI -core C, the problem of finding a minimum node-weight FI(s, C)-cover
contained in E admits an α-approximation algorithm.

In our applications Assumption 1 is implemented using the Ford–Fulkerson max-
flow algorithm. In section 3 we show that for uncrossable F , Assumption 1 implies
Assumption 2 with α = 2; however, in some specific applications, we might have lower
values of α.

Theorem 1.4. NWSFC with uncrossable F admits a 3αH(|C(F)|)-approximation
algorithm under Assumptions 1 and 2 (here 1 ≤ α ≤ 2 is the parameter in Assump-
tion 2).

Remark. A set-function f on V is weakly supermodular if f(X) + f(Y ) ≤ f(X ∩
Y )+f(X∪Y ) or f(X)+f(Y ) ≤ f(X−Y )+f(Y −X) for any X,Y ⊆ V . An edge-set
I covers f if degI(X) ≥ f(X) for all X ⊂ V . Uncrossable families correspond to 0, 1-
valued weakly supermodular set functions. For edge-weights, the 2-approximation of
[30] for uncrossable set-families was extended to arbitrary weakly supermodular set-
functions by Jain [16]. A natural question is whether Theorem 1.4 extends to weakly
supermodular set-functions. As NWkF is a particular case of the problem of finding
a minimum node-weight edge-cover of a weakly supermodular set-function, such an
extension is unlikely even for set functions arising from NWkF, due to our hardness
result given in Theorem 1.2. However, under certain assumptions, Theorem 1.4 can
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be used to derive a 6fmax ·H(|V |)-approximation algorithm for the problem of finding
a minimum node-weight edge-cover of a weakly supermodular set-function, where
fmax = maxX⊂V f(X).

The main tool used to prove Theorem 1.4 is a novel decomposition of edge-covers
of uncrossable families, generalizing the Klein–Ravi [18] decomposition of a forest
into spiders. As uncrossable families and spiders arise in various network design
problems (cf. [18, 14, 3, 24, 28, 21]), we believe that our decomposition can have
further applications (e.g., to extend these algorithms from 0, 1-requirements to more
general requirements). However, even extending properly the notions of “spider” and
“spider-decomposition” to set-families is already a nontrivial task. Unlike the authors
of [18], we cannot use graph properties to define and prove our decomposition, but can
rely only on properties of uncrossable families. To prove that such a decomposition
exists we use the method of laminar witness families [30, 11, 13], some ideas from [24],
and some new techniques. Note also that for NWSFC our ratio is 3αH(n) and not
2αH(n) as in [18]; for a reason for that, see Lemma 3.4. In addition, α = 1 in [18],
while we could establish only α = 2 in our more general setting.

This paper is organized as follows. Section 2 presents our main tool—a novel
decomposition of covers of uncrossable families. Applications—Theorems 1.4, 1.1,
and 1.3—are proved in sections 3, 4, and 5, respectively. The hardness of approxima-
tion result—Theorem 1.2—is proved in section 6.

2. Decomposition of covers of uncrossable families.

2.1. Spider-covers and decompositions. We start by describing the decom-
position of [18] of a tree (or of a forest) into spiders.

Definition 2.1. A spider is a tree with at least two leaves and with at most one
node of degree ≥ 3. A spider decomposition S of a tree T is a collection of node-
disjoint spiders, each of them a subgraph of T , such that every leaf of T belongs to
exactly one spider of S.

Lemma 2.1 (see [18]). Any tree T with at least two nodes admits a spider de-
composition.

Proof. Root T at an arbitrary leaf r. Proceed by induction on the number � of
leaves in T distinct from r. If � = 1 (T is a path), the statement is trivial. Otherwise,
T has a node s of degree ≥ 3 so that the subtree S that consists of s and all its
descendants is a spider with at least two leaves. If T is not a spider, s has an ancestor
s′ so that the degree of s′ is at least 3, but every node in the (possibly empty) set P
of the internal nodes of the s′s-path in T has degree 2. Let T ′ = T − (S ∪ P ). Note
that s′ is not a leaf of T ′; hence the sets of leaves of T ′ and S partition the set of
leaves of T . By the induction hypothesis, T ′ admits a spider-decomposition S ′. Thus
S ′ ∪ {S} is a spider-decomposition of T .

In this section we suggest our analogue of spiders for covers of set-families and
state our main result. We need some definitions and simple facts. We will often use
the following property of cores.

Fact 2.2. Let F be an uncrossable family. If X ∈ F intersects a min-core
C ∈ C(F), then C ⊆ X. Thus the min-F-cores are pairwise disjoint, and every F-core
contains a unique min-F-core and is disjoint from all other min-cores. Furthermore,
for any two cores X,Y ,

• X ∩ Y,X ∪ Y ∈ F if and only if X,Y contain the same min-core;
• X − Y, Y −X ∈ F if and only if X,Y contain distinct min-cores.

Proof. Clearly, the min-cores are just the inclusion-minimal members of F . If
X ∈ F intersects a min-core C ∈ C(F), then C ∩ X ∈ F or C −X ∈ F , since F is
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(c)(a) (b)

ss C

Fig. 1. Examples of spider-covers; min-cores are shown by dark gray circles, max-cores by
large light gray circles. (a) Note that there are several possible choices of s and that s can belong
to several max-cores. (b) The case C = {C}: all cores containing C must be covered. (c) An edge
connecting two min-cores is also a spider-cover; then s belongs to one of the min-cores, say C, and
the corresponding family F(s, C) and the F(s,C)-cover PC are both empty.

uncrossable. As C is a min-core, we must have C ∩ X = C or C − X = C, which
implies C ⊆ X . Hence every core contains a unique min-core and is disjoint from all
other min-cores. If two coresX,Y intersect, then X∩Y ∈ F orX−Y, Y −X ∈ F . It is
easy to see that the former can happen if and only if X,Y contain the same min-core,
and that the latter can happen if and only if X,Y contain distinct min-cores.

Another possible proof of Lemma 2.1 is as follows. Let U be the set of leaves of
T . Consider the set-family F = {X ⊂ V : X ∩ U 
= ∅, X − U 
= ∅}. It is easy to
verify that F is uncrossable and that its set of cores is {X ⊂ V : |X ∩ U | = 1}; the
family C(F) consists of singletons in U . It can be shown that any inclusion-minimal
cover I ⊆ T of the family of F -cores is a collection S of pairwise node-disjoint spiders;
consequently, S is a spider decomposition of T . Note that a spider with a node s of
degree ≥ 3 and leaf set U ′ covers all F -cores (in fact, all members of F) that contain
a node from U ′ and do not contain s. Motivated by the latter observation, we suggest
the following analogue of spiders for covers of set-families.

Definition 2.2. Let F be an uncrossable set-family on V and let C ⊆ C(F). An
edge-set S on V is an F(s, C)-spider-cover if (see Figures 1 and 2) s ∈ V (S) and if
the following hold:

• S can be partitioned into F(s, C)-covers {PC : C ∈ C} such that the node-sets
{V (PC)− {s} : C ∈ C} are pairwise disjoint;

• if |C| = 1, say C = {C}, then s does not belong to any F-core containing C.
We say that S is an F(C)-spider-cover if there exists s so that S is an F(s, C)-spider-
cover, and we call any such s a center of S. We will sometimes just say that S is a
spider-cover if C is clear from the context.

Equivalently, for |C| ≥ 2, an F(C)-spider-cover S with center s ∈ V (S) is a union
of F(s, C)-covers {PC : C ∈ C} so that only s can be a common end-node of two
of them. For C = {C}, S is an F(C)-spider-cover if and only if S covers all cores
containing C; the center s of S can be chosen as an appropriate end-node of any edge
covering the max-core containing C. Note that there might be (at most one) C ∈ C
so that PC does not cover C. This may happen if |C| ≥ 2 and s ∈ C for some C ∈ C;
then F(s, C) = ∅ and PC = ∅ is an F(s, C)-cover, although no edge in PC covers C
itself. Finally, note that spider-covers are much more complex objects than spiders
used in [18]; e.g., they are not even connected graphs.

Our definition of “spider-cover decomposition” of covers of set-families is the
following.
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(a) (b)

uvuv

z z
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Fig. 2. Example of an uncrossable family and a spider-cover arising from an NWSN instance.
Let H be the graph formed by solid edges. The uncrossable family F = Fu∪Fv∪Fz is a union of three
ring-families of cuts of H: the family Fu = {X ⊂ V : degH (X) = 2, |X ∩ {s, u}| = 1} of cuts of size
2 that separate between s and u, the family Fv = {X ⊂ V : degH(X) = 2, |X∩{s, v}| = 1} of cuts of
size 2 that separate between s and v, and the family Fz = {X ⊂ V : degH (X) = 0, |X∩{s, z}| = 0} of
cuts of size 0 that separate between s and z. (a) Dashed edges form an inclusion-minimal cover of F ,
which is also a spider-cover. (b) Ellipses show the max-cores of F (the min-cores are {u}, {v}, {z}).

Definition 2.3. Let I be a cover of an uncrossable family F on V . A spider-
cover decomposition of I is a collection of F(Ci)-spider-covers {S1, . . . , Sq} contained
in I such that V (S1), . . . , V (Sq) are pairwise disjoint and {C1, . . . , Cq} is a partition
of C(F).

The main result of this section is the following theorem.
Theorem 2.3 (the spider-cover decomposition theorem). Any cover I of an

uncrossable family F admits a spider-cover decomposition.
Remark. In [24], a variant of Theorem 2.3 was proved for a directed cover of an

intersecting family, when X,Y ∈ F and X ∩Y 
= ∅ implies X ∩Y,X ∪Y ∈ F , and for
every X ∈ F there should be an edge in I entering X . The definition of spider-cover
in [24] was slightly different from the one here. For this case, in [24] it is proved that
there exists a subpartition of I into Ci-spider-covers that are pairwise tail-disjoint,
so that the union of Ci contains at least 2|C(F)|/3 min-F -cores (in the setting of
[24], this bound is the best possible). The proof of this result is easier than that of
Theorem 2.3: in the case of intersecting families, the max-cores are pairwise disjoint,
and, because the edges are directed, every edge with head in some max-core can cover
only cores contained in this max-core. Hence any such edge is assigned to a unique
max-core. This enables us to apply some arguments as in the proof of Lemma 2.1.
However, for undirected covers of uncrossable families, the situation is more involved;
the max-cores may not be disjoint, many edges may cover the same max-core M , and
edges contained in M may cover cores contained in other max-cores.

In what follows we prove Theorem 2.3; let F be an intersecting family, and let I
be an inclusion-minimal F -cover.

2.2. Laminar witness families. We need to establish some properties of I.
By the minimality of I, for every e ∈ I there exists We ∈ F such that e is the
unique edge in I that covers We; we call such We a witness set for e; note that e
might have several distinct witness sets. A family W ⊆ F is a witness family for I
if W = {We : e ∈ I,We is a witness set for e}, namely, if |W| = |I| and every e ∈ I
has a (unique) witness set We ∈ W . Two sets X,Y ⊆ V cross if each one of the
sets X ∩ Y , X − Y , Y − X is nonempty. A set-family L is laminar if its members
are pairwise noncrossing, namely, if for any intersecting X,Y ∈ L either X ⊂ Y or
Y ⊂ X holds. Clearly, any inclusion-minimal cover I of an arbitrary set-family F
has a witness family. The following statement has been implicitly proved in several
papers; cf. [1, 30, 16].
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Proposition 2.4. Let I be an inclusion-minimal cover of an uncrossable family
F . Then there exists a witness family L for I that is laminar.

Proof. By the minimality of I there exists a witness family L ⊆ F for I. We prove
that there exists such laminar L. Among all I ′ ⊆ I that have a laminar witness family
L′, let I ′ be an inclusion-maximal one. We claim that I ′ = I. Suppose to the contrary
that there is e ∈ I − I ′. Among all witness sets for e, let We be one that crosses a
minimal number of sets in L′. There is Wf ∈ L′ so that We,Wf cross, as otherwise
L′ ∪{We} is a laminar witness family for I ′ ∪{e}, contradicting the maximality of I ′.
We claim that then at least one of the following holds:

(i) If We ∩Wf ,We ∪Wf ∈ F , then one of We∩Wf ,We ∪Wf is a witness for one
of e, f , and the other is a witness for the other.

(ii) If We −Wf ,Wf −We ∈ F , then one of We −Wf ,Wf −We is a witness for
one of e, f , and the other is a witness for the other.

Consequently, at least one of the sets We ∩ Wf ,We ∪ Wf ,We − Wf ,Wf − We is a
witness set for e. However, it is known (cf. [16]) that each of these sets crosses fewer
sets in L′ than We, contradicting the choice of We.

We now prove that (i) or (ii) must hold. Suppose that We ∩Wf ,We ∪Wf ∈ F .
Note that then there is an edge in I coveringWe∩Wf and there is an edge in I covering
We∪Wf . However, if for arbitrary sets X,Y an edge covers one of X ∩Y,X∪Y , then
it covers one of X,Y , and if some edge covers both X ∩ Y and X ∪ Y , then it covers
both X and Y . Thus no edge in I − {e, f} can cover We ∩Wf or We ∪Wf , so one of
e, f covers We ∩Wf , and thus the other must cover We ∪Wf . The proof of the case
We −Wf ,Wf −We ∈ F is similar.

Let L ⊆ F be a laminar witness family for a minimal F -cover I. The following
two simple reductions enable us to simplify the exposition.

Reduction 1. A set-family F is simple if every member of F is a core. It would be
sufficient to prove Theorem 2.3 for simple families. This is since Definitions 2.2 and 2.3
consider covers of F -cores only. Thus we may replace F by the family of F -cores; the
latter is uncrossable if F is, by Fact 2.2. Note that in the Node-Weighted Steiner Tree
problem, F = {X ⊆ V : X ∩ U, (V −X) ∩ U 
= ∅}; the spider-decomposition covers
the family {X ⊆ V : |X ∩U | = 1} of F -cores, but may not cover the entire family F .

Reduction 2. We may assume that the minimal members of L are the minimal F -
cores, namely, that C(L) = C(F). Otherwise (assuming F is simple, by Reduction 1),
apply the following transformation to obtain V ′,F ′, I ′,L′. For every C ∈ C(F) do
the following:

V ′ — add to V the new node vC ;
F ′ — replace every X ∈ F containing C by X ∪ {vC} and add {vC} to F ;
I ′ — add to I an edge uCvC , where uC ∈ C arbitrary;
L′ — replace every X ∈ L containing C by X ∪ {vC} and add {vC} to L.

This transformation is an analogue of “moving terminals to leaves” used in [18] for
the Node-Weighted Steiner Tree problem. It is easy to see that {{vC} : C ∈ C(F)} is
the set of min-cores of both F ′ and L′; hence C(F ′) = C(L′), as desired. It is not hard
to verify that the following hold:

• The new family F ′ is simple and uncrossable if F is.
• I covers F if and only if I ′ = I ∪ {uCvC : C ∈ C(F)} covers F ′.
• L′ is a laminar witness family for I ′, where {vC} is the witness set for uCvC .
• For any s ∈ V (so s 
= {vC} for every C ∈ C(F)) and C ⊆ C(F), the following
holds: S ⊆ I is an F(s, C)-spider-cover if and only if S′ = S∪{uCvC : C ∈ C}
is an F ′(s, C′)-spider-cover, where C′ = {{vC} : C ∈ C}.
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Fig. 3. Illustration of Definition 2.4 (the set LC , the edge eC = sCvC , and the edge-set PC)
and Definition 2.5 (the set MC).

Thus proving Theorem 2.3 for F ′, I ′ implies Theorem 2.3 for F , I, provided that every
spider-cover in the decomposition derived for F ′, I ′ has a choice of the center that
belongs to V (namely, not in {vC : C ∈ C(F)}). More generally, relying on the
property that there exists a laminar witness family L′ ⊆ F ′ for I ′ so that C(L′) =
C(F ′), we will construct a spider-cover decomposition for I ′ so that every spider-cover
in the decomposition has a center that does not belong to a min-core.

2.3. Proof of Theorem 2.3. In this section we finish the proof of Theorem 2.3.
Assume that Reductions 1 and 2 are implemented, namely, that F is simple and that
C(L) = C(F). To derive our decomposition, we will study the inclusion-maximal
members of L and the way I covers the members of F contained in these sets.

Definition 2.4. For every C ∈ C(F) define (see Figure 3) the following:

• LC is the maximal set in L containing C (LC exists and is a core, by Reduc-
tions 1 and 2).

• eC = sCvC is the (unique, since LC ∈ L) edge in I covering LC, where
vC ∈ LC.

• PC is the set of edges in I with both endpoints in LC plus eC .

The following statement gives some properties of the sets LC , PC in the above
definition.

Lemma 2.5.

(i) The sets {LC : C ∈ C(F)} are pairwise disjoint.
(ii) For every e = uv ∈ I there is a unique C ∈ C(F) such that {u, v} ∩ LC 
= ∅;

thus PC = {uv ∈ I : {u, v} ∩ LC 
= ∅}, and the edge sets {PC : C ∈ C(F)}
partition I.

(iii) PC covers all cores contained in LC for every C ∈ C(F).

Proof.

(i) Part (i) follows from the laminarity of L and the maximality of LC .
(ii) Let We ∈ L be the witness set for e ∈ I. By the laminarity of L and the

maximality of the sets LC , We ⊆ LC for some C ∈ C(F). Consequently, e
has at least one end-node in LC . Furthermore, e has exactly one end-node in
LC if and only if e = eC ; in this case, LC is the witness set for e, and thus e
cannot have an end-node in LC′ for C′ ∈ C(F) − {C}, since every edge in I
covers exactly one set in L.

(iii) Part (iii) follows from part (ii) and the simple observation that if an edge e
covers a set contained in LC , then it has at least one end-node in LC .
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A family L′ is nested if there exists an ordering X1, . . . , Xk of the members of
L′ so that X1 ⊂ X2 ⊂ · · · ⊂ Xk. Note that L is a disjoint union of nested families,
whose inclusion-maximal members are the sets LC .

By Lemma 2.5(ii), any partition C1, . . . , Cq of C(F) induces the partition S1, . . . , Sq

of I, where Si = ∪{PC : C ∈ Ci}. We obtain a spider-cover decomposition of I as
a decomposition induced by a certain partition of C(F). Note that the edge-set
{eC : C ∈ C(F)} is a collection of pairwise node-disjoint stars, by Lemma 2.5(i).
A natural partition of C(F) is by the partition induced by these stars. As we show
later, every star with at least two edges induces an F(s, C)-spider-cover, where s is the
center of the star and C is the part corresponding to the edges of the star. However,
this naive approach fails because for a star consisting of a single edge eC = sCvC , the
edge-set PC may not cover all cores containing C, e.g., if there is a coreMC containing
LC ∪{sC} (see Figure 3). We will handle this difficulty by defining a partition of such
“dangerous” cores, showing that every part of size at least 2 induces a spider-cover and
joining every singleton part to a “nondangerous” star. This motivates the following
definition.

Definition 2.5. A min-core C is dangerous if there exists a core in F containing
LC ∪ {sC}. Let D denote the set of dangerous min-cores. For C ∈ D, let MC be the
(unique, by Fact 2.2) inclusion-minimal core among the cores containing LC ∪{sC}.

The following statement gives some properties of the sets MC that we use.
Lemma 2.6. For every C ∈ D the following hold:
(i) MC ∩ LC′ = ∅ for any C′ ∈ C(F)− {C}.
(ii) If e ∈ I covers MC, then e = eC′ for some C′ ∈ C(F) − {C} and sC′ ∈

MC − LC.
(iii) If MC ∩MC′ 
= ∅ for C′ ∈ D, then sC , sC′ ∈ MC ∩MC′ .
Proof.
(i) Assume to the contrary that MC ∩ LC′ 
= ∅ for some C′ ∈ C(F) − {C}. By

Fact 2.2, MC − LC′ ∈ F . By Lemma 2.5(i), LC ⊆ MC − LC′ . If sC ∈
MC −LC′, then LC ∪{sC} ⊆ MC−LC′ , contradicting the minimality of MC .
Otherwise, sC ∈ MC ∩ LC′ ; but then eC covers LC′ , contradicting that LC′

is a witness set for eC′ .
(ii) Let e be an edge covering MC . By Lemma 2.5(ii) the edge-sets {PC : C ∈

C(F)} partition I; hence e ∈ PC′ for some C′ ∈ C(F). All edges in PC

have both their end-nodes in MC ; hence C′ 
= C. For C′ 
= C, all edges in
PC′ − {eC′} have both their end-nodes in V −MC , by part (i) of the lemma.
Part (ii) follows.

(iii) Assume to the contrary that sC ∈ MC −MC′ ; the case sC′ ∈ MC′ −MC is
identical. By Fact 2.2, MC −MC′ ∈ F . By part (i), LC ⊂ MC −MC′ . Hence
LC ∪ {sC} ⊆ MC −MC′ , contradicting the minimality of MC .

Corollary 2.7. The relation R = {(C,C′) ∈ D × D : MC ∩ MC′ 
= ∅} is an
equivalence.

Proof. Clearly,R is symmetric and reflexive; transitivity is by Lemma 2.6(iii).
Lemma 2.8. If X ∈ F contains C ∈ C(F) and is not covered by PC , then

sC ∈ X.
Proof. By Fact 2.2, X ∩LC ∈ F . Hence X ∩LC is covered by some edge e ∈ PC ,

by Lemma 2.5(iii). Note that if an edge covers the intersection of two sets, then it
covers one of the sets. This implies that e covers X or LC , but as PC does not cover
X and e ∈ PC , e covers LC . One can easily verify that we must have e = eC (since
eC is the only edge in I that covers LC), vc ∈ X ∩LC (since eC covers X ∩LC), and
sC ∈ X − LC (since eC does not cover X).



APPROXIMATING STEINER NETWORKS WITH NODE-WEIGHTS 3011

C

CL

M

eC

MCeC’

C

L

(b)(a)

s

i

i

s

Fig. 4. (a) Ci is an equivalence class of the relation R = {(C,C′) ∈ D × D : MC ∩MC′ �= ∅}.
(b) Ci is obtained from a part corresponding to a star with center si by joining a core C ∈ D with
si ∈ MC .

Corollary 2.9. If C ∈ C(F)−D, then PC covers any X ∈ F containing C.

Proof. Suppose to the contrary that there is X ∈ F containing C that is not
covered by PC . By Lemma 2.8, sC ∈ X . But then the set X ∪ LC belongs to F , by
Fact 2.2, and contains LC ∪ sC . This contradicts the assumption C /∈ D.

Corollary 2.10. If C ∈ D, then PC is an F(s, C)-cover for any s ∈ MC−LC .

Proof. Suppose to the contrary that there is X ∈ F(s, C) that is not covered
by PC . By Lemma 2.8, sC ∈ X . By Fact 2.2, Y = (LC ∪ X) ∩ MC ∈ F . Also,
LC ∪ {sC} ⊆ Y and Y ⊆ MC − {s}. This contradicts the minimality of MC .

Recall that, by Lemma 2.5(ii), any partition Π of C(F) induces a partition of I,
where for a part C ∈ Π corresponds the edge-set S = ∪{PC : C ∈ C}. We obtain a
spider-cover decomposition of I as a decomposition induced by a partition C1, . . . , Cq
of C(F), where for each part Ci we will also assign a node si as a center. This is done
in several steps, as follows.

Let A = {C : C ∈ D and degI(sC) = 1}. Let Π′ be the subpartition of A into
equivalence classes of size at least 2 of the relation R from Corollary 2.7. The node
si assigned to a part Ci ∈ Π′ is any sC so that C ∈ Ci (see Figure 4(a)); thus, there
are exactly |Ci| distinct choices of si, and we fix one of them. Let C′ be the union of
the parts of Π′, and note that we may have A − C′ 
= ∅ because the singleton classes
of R are not included in Π′.

Let Π′′ be a partition of C′′ = C(F)−C′ defined as follows. First, partition C′′−A
according to stars of the graph formed by the edges eC ; namely, the parts are the
equivalence classes of the relation {(C,C′) : sC = sC′} on C′′ − A. A star might
consist of a single edge eC , and in this case the node sC is the center of the star. The
node si assigned to part Ci is the center of the corresponding star. Second, join every
C ∈ A∩C′′ to some part of C′′−A as follows (see Figure 4(b)). By Lemma 2.6(ii) and
the definition of R and Π′, there exists C′ ∈ C′′−A so that eC′ covers MC , namely, so
that sC′ ∈ MC − LC ; we join C to the part containing C′. Note that indeed C′ /∈ A,
as otherwise C,C′ would belong to a part of Π′.

Let Π′ ∪ Π′′ = {C1, . . . , Cq} be the partition of C(F) obtained, let {S1, . . . , Sq}
be the partition of I induced by Π, and for each i let si be the center assigned to
Ci. By the construction and Lemma 2.5(ii), the node-sets V (Si) are pairwise disjoint.
To finish the proof of Theorem 2.3, it is sufficient to prove that (see Definitions 2.2
and 2.3) the following lemma holds.

Lemma 2.11. Every Si is a F(si, Ci)-spider-cover.
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Proof. By the construction, si ∈ V (Si) for all i. Also by the construction, if Ci =
{C}, then C is not dangerous; hence PC covers all cores containing C in this case by
Corollary 2.9. Suppose therefore that |Ci| ≥ 2. The node sets {V (PC)−{si} : C ∈ Ci}
are pairwise disjoint by Lemma 2.5. We claim that PC is a F(si, C)-cover for every
C ∈ Ci. There are two cases: Ci ∈ Π′ and Ci ∈ Π′′.

If Ci ∈ Π′, then si belongs to the intersection of the sets {MC − LC : C ∈ Ci} by
the construction and Lemma 2.6. In this case PC is a F(si, C)-cover for every C ∈ Ci
by Corollary 2.10.

If Ci ∈ Π′′, there are two subcases to consider: C ∈ C′′ −A and C ∈ A ∩ C′′. In
the former subcase, our claim follows from Corollary 2.9. In the latter subcase, we
have si ∈ MC − LC by the construction and Lemma 2.6, and our claim follows from
Corollary 2.10.

The proof of Theorem 2.3 is complete.

3. Covering uncrossable families (proof of Theorem 1.4). We use a greedy
algorithm for the following type of problems.

Covering Problem.
Instance: A ground-set E and integral functions ν, w on 2E , where ν(E) = 0.
Objective: Find I ⊆ E with ν(I) = 0 and with w(I) minimized.

In the Covering Problem, the instance functions ν, w may be given by an evaluation
oracle: ν is the deficiency function that measures how far I is from being a feasible
solution, and w is the weight function. Let ρ > 1 and let opt be the optimal solution
value for the Covering Problem. The ρ-greedy algorithm starts with I = ∅, and, as
long as ν(I) ≥ 1, it adds to I a set S ⊆ E − I so that

w(S)

ν(I)− ν(I + S)
≤ ρ · opt

ν(I)
.(2)

The following statement is known; we provide a simple proof of a slightly weaker
statement for completeness of exposition.

Theorem 3.1. For any Covering Problem so that ν is decreasing and w is increas-
ing and subadditive, the ρ-greedy algorithm computes a solution I so that w(I) ≤
ρH(ν(∅)) · opt.

Proof. We prove a slightly weaker result, namely, w(I) ≤ ρ(1 + ln ν(∅)) · opt. Let
Ij be the partial solution at the end of iteration j, where I0 = ∅, and let Fj be the set
added at iteration j; thus Ij = Ij−1 ∪ Fj , j = 1, . . . , �. Let νj = ν(Ij); in particular,
ν0 = ν(∅). Since ν is decreasing, then by (2) we have

w(Fj)

ν(Ij−1)− ν(Ij)
≤ ρ · opt

ν(Ij−1)
.

Thus

νj ≤ νj−1

(
1− w(Fj)

ρ · opt
)
.

We have ν� = 0, while ν�−1 ≥ 1. Unraveling the last inequality, we obtain

ν�−1

ν0
≤

�−1∏
j=1

(
1− w(Fj)

ρ · opt
)
.
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Taking natural logarithms from both sides and using the inequality ln(1+ x) ≤ x, we
obtain

ρ · opt · ln
(

ν0
ν�−1

)
≥

�−1∑
j=1

w(Fj).

Consequently, using the subadditivity of w and observing that w(F�) ≤ ρ · opt and
ν�−1 ≥ 1, we get

w(I) = w

(
�⋃

j=1

Fj

)
≤ w(F�)+

�−1∑
j=1

w(Fj) ≤ ρ·opt+ρ·opt·ln ν0 = ρ(1+lnν0)·opt.

For I ⊆ E define ν(I) = |C(FI)| and w(I) = w(V (I)). Clearly, ν is decreasing,
and w is increasing and subadditive. Theorem 1.4 will be proved if we prove the
following lemma.

Lemma 3.2. For ν(I) = |C(FI)| and w(I) = w(V (I)), an edge-set S ⊆ E − I
satisfying (2) with ρ = 3α can be found in polynomial time under Assumptions 1 and
2.

For simplicity of exposition, let us revise our notation and use F instead of FI ,
and let ν = ν(∅). We assume that E is a feasible solution; thus ν(E) = 0. Then we
need to show that under Assumptions 1 and 2 one can find in polynomial time an
edge-set S ⊆ E (may not be a spider-cover) so that

w(S)

ν − ν(S)
≤ 3 · opt

ν
.(3)

Proposition 3.3. There exists an F(C)-spider-cover S so that w(S)/|C| ≤
opt/ν.

Proof. The statement follows from Theorem 2.3 by a simple averaging argu-
ment. Let S1, . . . , Sq be a spider-cover decomposition of an optimal F -cover I, and
let {C1, . . . , Cq} be the corresponding partition of C(F) as in Definition 2.3. We have∑q

i=1 w(Si) ≤ w(I) = opt and
∑q

i=1 |Ci| = ν. Thus∑q
i=1 w(Si)∑q
i=1 |Ci|

≤ opt

ν
.

Consequently, there must be an index i so that w(Si)/|Ci| ≤ opt/ν.
After establishing that a spider-cover satisfying w(Si)/|Ci| ≤ opt/ν exists, we show

how to find an edge-set S (may not be a spider-cover) satisfying (3) in polynomial
time, under Assumptions 1 and 2. The key observation is the following.

Lemma 3.4. Let F be an uncrossable set-family on V , and let C ⊆ C(F). Let S
be an edge-set on V such that the following hold:

• If |C| ≥ 2, then there is s ∈ V such that S is an F(s, C)-cover for every
C ∈ C.

• If |C| = 1, say C = {C}, then S covers all F-cores containing C.
Then ν − ν(S) ≥ max{�(|C| − 1)/2
, 1} ≥ |C|/3.

Proof. The min-FS-cores are pairwise disjoint, and each of them contains some
min-F -core. Let t be the number of min-FS-cores that contain exactly one min-F -
core. Any other min-FS-core contains at least two min-F -cores. Thus ν − ν(S) ≥
�(ν − t)/2
.
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Fig. 5. Example showing that the bound in Lemma 3.4 is tight for |C| = 3.

We upper bound t as follows. By the definition of S, any FS-core C
′ that contains

some min-core C ∈ C contains s or contains some other min-F -core distinct from C.
Furthermore, if C = {C}, then the latter must hold. As the min-FS-cores are pairwise
disjoint, s belongs to at most one of them. Thus t ≤ ν − (|C| − 1) if |C| ≥ 2, and
t ≤ ν − 1 if |C| = 1. The statement follows.

Remark. The bound on ν−ν(S) given in Lemma 3.4 is tight even for laminar set-
families and any |C|; see Figure 5 for an example with |C| = 3 and ν−ν(S) = 3−2 = 1.
Here

V = {s, u0, u1, u2, v1, v2},
F = {{u0}, {u1}, {u2}, {s, u0}, {u1, u2, v1, v2}} ,
C = {{u0}, {u1}, {u2}} .

The edge-set S = {su0, v1u1, v2u2} is an F(s, C)-cover for every C ∈ C, and the
FS-cores are {s, u0} and {u1, u2, v1, v2}. This example extends for any |C| ≥ 2. For
|C| = 2k + 1 odd, make k copies of the set {u1, u2, v1, v2} together with the sets and
edges contained in it. Then, to get an example for |C| = 2k even, delete u0 together
with the sets containing it and edges incident to it. This is the reason our ratio is
3αH(n), and not 2αH(n) as in [18]. One might think that a better definition of a
spider-cover is an edge-set that covers all members of F separating s and some C ∈ C.
However, then there are examples showing that an appropriate decomposition as in
Theorem 2.3 does not exist.

Lemma 3.5. Given C ∈ C(F) and v ∈ V , checking whether v belongs to the
max-F-core M containing C can be done in polynomial time under Assumption 1.

Proof. Our decision procedure is as follows. We fix some u ∈ C. The proce-
dure accepts v if |C(F{uv})| = |C(F)|. This can be checked in polynomial time by
Assumption 1. Note that if v ∈ M , then the procedure accepts v, since M is dis-
joint from all min-F -cores distinct from C, by Fact 2.2. Otherwise, if v ∈ V − M ,
then either there is no min-F{uv}-core that contains C (if v does not belong to any
min-F -core distinct from C) or any min-F{uv}-core that contains C must contain an
F -core distinct from C (if v belongs to some min-F -core distinct from C); in both
cases |C(F{uv})| = |C(F)| − 1, and v is rejected.

Fix v ∈ V and compute an edge-set Sv ⊆ E as follows. Temporarily set the weight
of v to zero. For every C ∈ C(F), let W (C) be the weight of an F(v, C)-cover P (C)
computed by the α-approximation algorithm as in Assumption 2. Sort the members
of C(F) by increasing weight, say W (C1) ≤ W (C2) ≤ · · · ≤ W (Cq). Let σj be defined
as follows:

• σ1 = w(v) + min{W (Ci) : v is not in the max-core containing Ci} if v does
not belong to some max-core, and σ1 = ∞ otherwise.

• σj = Wj/j, where Wj = w(v) +
∑j

i=1 W (Ci), j = 2, . . . , q.
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Note that σj ≤ α · w(S)
j for any F(v, C)-spider-cover S with |C| = j if such exists.

We find the index j for which σj is minimum, which determines the corresponding
edge-set Sv and the set of min-cores Cv. Specifically, if j = 1, then Sv = P (Ci) and
Cv = {Ci}, where i is the index for which the minimum is attained in the definition of

σ1. If j ≥ 2, then Sv = ∪j
i=1P (Ci) and Cv = {C1, . . . , Cj}. Thus w(Sv)

|Cv| ≤ α · w(S)
|C| for

any F(v, C)-spider-cover S. We compute such Sv for every v ∈ V and then, among the

edge-sets {Sv : v ∈ V } computed, choose one with w(Sv)
|Cv | minimum. For this choice

of v we have w(Sv)
|Cv| ≤ α · w(S)

|C| for any F(C)-spider-cover S. In particular, if S is as in

Proposition 3.3, then w(Sv)
|Cv| ≤ α· w(S)

|C| ≤ α· optν . On the other hand, w(Sv)
ν−ν(Sv)

≤ 3·w(Sv)
|Cv | ,

by Lemma 3.4. Consequently, w(Sv)
ν−ν(Sv)

≤ 3 · w(Sv)
|Cv | ≤ 3α · opt

ν , as required.

The time complexity is the time required to compute the family C(F) (polynomial
by Assumption 1) plus n|C(F)| times the time required to check whether a given
node v belongs to the max-F -core M containing a given min-core C (polynomial
by Assumption 1 and Lemma 3.5) plus n|C(F)| times the time required to find an
approximately minimum-weight F(s, C)-cover (polynomial by Assumption 2).

The proof of Lemma 3.2, and thus also of Theorem 1.4, is complete.
Finally, we will show that for uncrossable F , Assumption 1 implies Assumption 2

with α = 2. For that, we prove the following.
Lemma 3.6. NWSFC with a ring-family F admits a 2-approximation algorithm,

provided that for any edge-set I the (unique) min-FI-core can be computed in polyno-
mial time.

Proof. We reduce the problem with a loss of a factor of 2 in the ratio to its
version with edge-weights. It is well known that the edge-weighted version admits
a polynomial time primal-dual/local-ratio algorithm under the assumption of the
lemma. The reduction is as follows: for every edge uv ∈ E, we set its weight to
be w(uv) = max{w(u), w(v)} and then remove the weights from the nodes. Then we
compute an F -cover F ⊆ E of minimum edge-weight. The ratio of 2 now follows from
the following known fact, which is easily deduced from Proposition 2.4 (the proof is
omitted).

If F is an inclusion-minimal cover of a ring-family F , then degF (v) ≤ 2 for all
v ∈ V .

4. Algorithm for NWSN (proof of Theorem 1.1). The algorithm has rmax

iterations. Iteration k starts with a partial solution H satisfying

λH(u, v) ≥ min{r(u, v), k − 1} for all u, v ∈ V(4)

and returns an edge-set I ⊆ E − E(H) of node-weight w(I) ≤ 3H(|U |) · opt so that

λH+F (u, v) ≥ min{r(u, v), k} for all u, v ∈ V.(5)

Hence after rmax iterations, a feasible solution of weight at most 3rmax ·H(|U |) · opt
is found.

For X ⊆ V , let r(X) = max{r(u, v) : |{u, v} ∩ X | = 1}. By Menger’s theorem,
computing an augmenting edge-set I satisfying (5) is equivalent to finding a cover of
the family

F = {X ⊂ V : r(X) ≥ k, degH(X) = k − 1}.(6)

The family F defined by (6) is uncrossable, provided that H satisfies (4); cf. [30]. To
apply Theorem 1.4, we need to show that Assumption 1 holds for F ; note that this
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Fig. 6. Examples of spider-covers arising from NWSN instances. Solid edges are already in
the partial solution H, and round nodes have cost zero; dashed edges are edges of some inclusion-
minimal solution. The sets LC and MC are shown by dark and light ellipses, respectively. (a) Here
k = 1, and r(z, u) = r(z, v) = 1. (b) Here k = 2, and r(s, a) = r(s, b) = r(u, v) = 2. (c) Here k = 3,
and r(s, t) = 2.

implies Assumption 2 with α = 2, by Lemma 3.6. As any edge-set I added at some
previous step of iteration k can be included in H , it is sufficient to prove the following
lemma.

Lemma 4.1. Let H satisfy (4). Then Assumption 1 holds for F defined by (6).
Proof. The minimal F -cores can be computed using |U |(|U |−1)/2 max-flow com-

putations as follows. For every pair {u, v} ⊆ U with r(u, v) ≥ k, compute a maximum
uv-flow in H . If the flow value is k − 1, then in the corresponding residual directed
network the set of nodes Xuv = {x ∈ V : x is reachable from u} is the inclusion-
minimal set in F that contains u and does not contain v, and thus is a candidate to
be the minimal core containing u; similarly, Xvu = {x ∈ V : v is reachable from x}
is the inclusion-minimal member of FI that contains v and does not contain u. The
inclusion-minimal sets among all such sets, two for every pair {u, v} ⊆ V so that
r(u, v) ≥ k and λH(u, v) = k − 1, are the min-F -cores.

The proof of Theorem 1.1 is complete.
Examples. Figure 6 illustrates spider-covers arising from real NWSN instances.

In the proof of Theorem 2.3 we considered two types of spider-covers in our de-
composition. An example for a spider-cover formed by equivalence classes of R as in
Figure 4(a) is given in Figure 6(a). In fact, it can be shown that for edge-connectivity,
this type of spider-cover cannot occur for k ≥ 2. However, this type of spider-cover
occurs for k = 2 in the next section, where node-connectivity is considered, and in a
related paper [27] by the author for so-called element-connectivity. The example in
Figure 4(b) shows that (for edge-connectivity) spider-covers of the second type as in
Figure 4(b) can occur for k = 2, even for laminar set-families. Finally, note that in
these examples, and even in the much simpler example in Figure 6(c) of an NWkF
augmentation instance, the spider-covers are not connected graphs.

5. Algorithm for {0, 1, 2}-NWSND (proof of Theorem 1.3). Let E0 be the
solution computed by the Klein–Ravi [18] (or the Guha–Khuller [14]) algorithm with
the 0, 1-requirement function min{r(u, v), 1}; then w(V (E0)) = O(lnn) · opt. After
resetting the weight of nodes in V (E0) to 0, we get the following “residual” problem.

Instance: Disjoint edge-sets E0, E on a node-set V , node-weights {w(v) : v ∈ V } with
w(V (E0)) = 0, and a set D of node-pairs, so that every pair belongs to the
same component of (V,E0).

Objective: Find a minimum node-weight edge-set I ⊆ E so that the graph (V,E0+ I)
contains two internally disjoint uv-paths for every pair {u, v} ∈ D.
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Fig. 7. Modification of the instance H0 = (V,E0), E. Some edges in E are shown by
dashed lines. The set of original cut-nodes is Q = {a, b, c}, and the added nodes are a1, a2, a3, a4,
b1, b2, b3, c1, c2.

We reduce the latter problem to NWSFC with uncrossable F and show that As-
sumption 1 holds for this F . We start by modifying the instanceH0 = (V,E0), E, w,D
(see Figure 7). A node a is a cut-node of H0 if H0 − a has more (connected) compo-
nents than H0. The components of H0−a that are not components of H0 are the sides
of a. Let Q be the set of cut-nodes of H0; if H0 is a forest, the cut-nodes are exactly
the internal (nonleaf) nodes of the trees forming H0. For every a ∈ Q with sides
A1, . . . , Ak do the following (see Figure 7): add new nodes a1, . . . , ak each of weight
0, add the edges aa1, . . . , aak to E0, and for every edge ua ∈ E0 ∪ E with u ∈ Ai

replace its end-node a by ai; the set D of demand pairs remains the same. Clearly,
the construction is polynomial. Note that only edges in E that are incident to a node
in Q and have both end-nodes in the same component of H0 are affected. Also note
that all nodes in V (E0) have weight 0. Thus for subsets of E the transformation is
weight preserving, since all original nodes keep their weights, while the added nodes
and the nodes in Q have weight 0. It is also easy to see that I ⊆ E is a feasible
solution to the original instance if and only if (the image of) I is a feasible solution to
the modified instance; the node-weight of I is the same in both instances. Henceforth
H0 = (V,E0), E, w,D is the modified instance, and Q is the set of original cut-nodes.
We now define our family F on this modified instance.

Definition 5.1. A set-pair is a partition {X,X ′} of V − a for some a ∈ Q so
that no edge in E0 connects X and X ′. A set-pair {X,X ′} is violated if there is a
demand pair {x, x′} ∈ D so that x ∈ X and x′ ∈ X ′. A set X ⊆ V is violated if
it is a part of some violated set-pair. Let F+ be the family of all violated sets, let
F− = {V −X : X ∈ F+}, and let F = F+ ∪ F−.

Note that X ∈ F+ if and only if V − X ∈ F−. Thus F is symmetric; that is,
X ∈ F implies V − X ∈ F . It is routine to show that I ⊆ E is a feasible solution
for the modified instance if and only if I covers F . Lemmas 5.1 and 5.2 to follow,
together with Theorem 1.4, imply Theorem 1.3.

Lemma 5.1. The family F in Definition 5.1 is uncrossable.
Proof. LetX,Y ∈ F . We need to show thatX∩Y,X∪Y ∈ F orX−Y, Y −X ∈ F .

The following assumptions simplify the case analysis. Note that F is symmetric and
closed under complement. Thus we may assume that the sets X ∩ Y,X − Y, Y −X,
V − (X ∪Y ) are all nonempty, as otherwise the statement is trivial. Also, it is enough
to consider the case X,Y ∈ F+, since the sets in F− are complements of the sets in
F+, and since F is symmetric.

Let {X,X ′}, a, {x, x′} be as in Definition 5.1, and let {Y, Y ′}, b, {y, y′} be
similarly defined. Let A1 = X ∩ Y , A2 = X ∩ Y ′, A3 = Y ′ ∩ X ′, and A4 = X ′ ∩ Y
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Fig. 8. Illustration of the proof of Lemma 5.1.

(see Figure 8). An ordered pair (s, t) of nodes is an (Ai, Aj)-pair if s ∈ Ai and t ∈ Aj .
We split the proof into two cases: a = b and a 
= b.

Assume that a = b (see Figure 8(a)). Then at least one of the following holds:
(i) (x, x′) or (y, y′) is an (A1, A3)-pair;
(ii) (x, x′) or (y, y′) is an (A2, A4)-pair;
(iii) (x, y′) is an (A1, A3)-pair and x′, y ∈ A4, or (y, x′) is an (A1, A3)-pair and

x, y′ ∈ A2;
(iv) (x, y) is an (A2, A4)-pair and x′, y′ ∈ A3, or (y′, x′) is an (A2, A4)-pair and

x, y ∈ A1.
One can easily verify that if (i) or (iii) holds, then X ∩ Y,X ∪ Y ∈ F+, and if (ii) or
(iv) holds, then X − Y, Y −X ∈ F+. Hence the statement is true if a = b.

Assume that a 
= b. Then we must have a ∈ Y ∪ Y ′ and b ∈ X ∪X ′, say a ∈ Y
and b ∈ X (see Figure 8(b)). Note that in H0 there is no edge between any two of
the sets A1, A2, A3, A4, so any path between any two of them, if any, goes through a
and/or b. In particular, x, a, x′ belong to the same component of H0; y, b, y

′ belong
to the same component of H0; and A3 does not intersect the component containing a
or b. Consequently, none of x, x′, y, y′ belongs to A3. Eliminating from cases (i)–(iv)
all the cases when one of x, x′, y, y′ belongs to A3, we get that either case (ii) holds,
namely, one of (x, x′), (y, y′) is an (A2, A4)-pair, or (y′, x′) is an (A2, A4)-pair and
x, y ∈ A1. In both cases, A2, A4 ∈ F+. The corresponding violated set-pairs are
{A2, V − b−A2} and {A4, V −a−A4}, so V − b−A2, V −a−A4 ∈ F+. However, the
complement of V − b− A2 is A2 ∪ {b} = X − Y , and the complement of V − a−A4

is A4 ∪ {a} = Y −X . Hence X − Y, Y −X ∈ F− ⊆ F .
Lemma 5.2. Assumption 1 holds for F in Definition 5.1.
Proof. Without loss of generality we may consider the case I = ∅. The family

C(F) can be computed as follows. For every a ∈ Q and for each side A of a we check
whether A or A∪{a} is a violated set. Among the violated sets found, we output the
inclusion-minimal ones.

The proof of Theorem 1.3 is complete.

6. Hardness of NWkF (proof of Theorem 1.2). It is easy to see that NWkF
is “Set-Cover hard.” Indeed, the Set-Cover problem can be formulated as follows.
Given a bipartite graph J = (A + B,E), find minimum size subset S ⊆ A such that
every node in B has a neighbor in S. Construct an instance of NWkF by adding new
nodes {s, t} and edges {sa : a ∈ A} ∪ {bt : b ∈ B}, and setting w(v) = 1 if v ∈ A and
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w(v) = 0 otherwise. Then replace every edge not incident to t by |B| parallel edges.
For k = |B|, it is easy to see that S is a solution to the Set-Cover instance if and only
if the subgraph induced by S ∪B ∪ {s, t} is a feasible solution to the obtained NWkF
instance.

We now prove that the existence of a ρ-approximation algorithm for NWkF implies
the existence of a 1/(2ρ2)-approximation algorithm for bipartite Densest �-Subgraph.
We need the following statement.

Lemma 6.1. There exists a polynomial time algorithm that, given a graph G =
(V,E) and an integer 1 ≤ � ≤ n = |V |, finds a subgraph G′ = (V ′, E′) of G such that

|V ′| = � and |E′| ≥ |E| · �(�−1)
n(n−1) .

Proof. While G has more than � nodes, repeatedly delete the minimum-degree
node from G. At the beginning of iteration i + 1, G has ni = n − i nodes and mi

edges, where n0 = n and m0 = m. The average degree is 2mi/ni; thus after iteration
i+ 1 the number mi+1 of edges in G is at least

mi+1 ≥ mi − 2mi

ni
= mi · n− i− 2

n− i
.

The statement follows since the above recursive formula implies that after i = n− �
iterations

mi

m
≥ (n− 2) · · · (n− i+ 1)(n− i)(n− i− 1)

n(n− 1)(n− 2) · · · (n− i+ 1)
=

(n− i)(n− i − 1)

n(n− 1)
=

�(�− 1)

n(n− 1)
.

Given an instance J = (A + B,E) and � of bipartite Densest �-Subgraph, define
an instance of unit-weight NWkF by adding new nodes {s, t} and edges {sa : a ∈ A}∪
{bt : b ∈ B} of multiplicity |A| + |B| each, and setting w(v) = 1 for all v ∈ A ∪ B.
Note that any edge-set I ⊆ E determines |I| edge-disjoint st-paths. Thus for any
integer k ∈ {1, . . . , |E|} we have a ρ-approximation algorithm for

min{|X | : X ⊆ A+B, |E(X)| ≥ k}.

We show that this implies a 1/(2ρ2)-approximation algorithm for the Densest �-
Subgraph problem, which is

max{|E(X)| : X ⊆ A+B, |X | ≤ �}.

For every k = 1, . . . , |E|, use the ρ-approximation algorithm for NWkF to compute
a subset Xk ⊆ A + B so that |E(Xk)| ≥ k, or to determine that no such Xk exists.
Now, let X = Xk, where k is the largest integer so that |Xk| ≤ min{�ρ · ��, |A|+ |B|}
and |E(Xk)| ≥ k. Let X∗ be an optimal solution for Densest �-Subgraph. Note that

|E(X)| ≥ |E(X∗)| and that �(�−1)
|X|(|X|−1) ≥ 1/(2ρ2). By Lemma 6.1 we can find in

polynomial time X ′ ⊆ X so that |X ′| = � and

|E(X ′)| ≥ |E(X)| · �(�− 1)

|X |(|X | − 1)
≥ |E(X∗)| · 1

(2ρ2)
.

Thus X ′ is a 1/(2ρ2)-approximation for the bipartite Densest �-Subgraph.

The proof of Theorem 1.2 is complete.
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Finally, we will give a polynomial time algorithm for the following “augmentation
version” of NWkF.

Node-Weighted k-Flow Augmentation (NWkFA).
Instance: A graph G = (V,E) with node weights {w(v) : v ∈ V }, s, t ∈ V , an in-

teger k, and a subgraph G0 = (V,E0) of G so that λG0(s, t) = k − 1 and
w(V (E0)) = 0.

Objective: Find F ⊆ E − E0 so that λG0+F (s, t) = k and w(V (F )) is minimum.

Proposition 6.2. NWkFA can be solved using one shortest-path computation.
Proof. It would be convenient to describe the algorithm using “mixed” graphs that

contain both directed and undirected edges. Given such a mixed graph with weights
on the nodes, the problem of finding a minimum-weight st-path can be reduced to
its edge-weighted version in a directed graph by elementary constructions (replacing
every undirected edge by two opposite directed edges and converting node-weights to
edge-weights). The following algorithm computes an optimal solution to NWkFA.

1. Let I0 be an inclusion-minimal edge-set in G0 that contains k − 1 pairwise
edge-disjoint st-paths. Construct a mixed graph D by directing these paths
from t to s.

2. Compute a minimum node-weight st-path P in D. Return P − E0.
We now explain why the algorithm is correct. Let D0 be the set of directed edges

in D corresponding to I0. From the correctness of the Ford–Fulkerson algorithm for
augmenting a (k − 1)-flow to a k-flow and the flow decomposition theorem (cf. [5]),
we have the following:

For F ⊆ E − I0, λI0+F (s, t) ≥ k if and only if (V,D0 + F ) contains an st-path P .

Note that since w(V (E0)) = 0, only edges in P − E0 contribute to the node-weight
of P . Thus NWkFA is equivalent to computing a minimum node-weight st-path P in
D. As this can be implemented using one shortest-path computation, the statement
follows.

7. Open problems. We suggest the following open problems:
• Does NWSN admit an approximation ratio sublinear in rmax? Even for NWkF,
the best known ratio is k, while the reduction to Densest �-Subgraph in The-
orem 1.2 shows only an approximation threshold of |V |1/8, unless for Densest
�-Subgraph a better algorithm than the one in [2] can be found.

• In this paper we derived a 6H(|U |)·rmax-approximation algorithm for NWSN.
Can the constant 6 be improved?

• Does NWSFC with ring-family F admit a polynomial time algorithm (under
appropriate assumptions)?

Note that we recently extended the results of this paper from edge-connectivity
to so-called element-connectivity; see [27].
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