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Abstract

The known cactus tree model represents the minimum edge cuts of a graph in a clear
and compact way and is used in related studies. We generalize this model to represent
the minimum and minimum+1 edge cuts; for this purpose, we use new tools for modeling
connectivity structures. The obtained representations are different for A odd and even;
their size is linear in the number of vertices of the graph. Let A denote the cardinality
of a minimum edge cut. We suggest efficient algorithms for the maintenance of our
representations, and, thus, of the (A + 2)-connectivity classes of vertices (called also
“(A 4 2)-components”) in an arbitrary graph undergoing insertions of edges. The time
complexity of those algorithms, for A odd and even, is the same as achieved previously
for the cases A = 1 and 2, respectively. In this paper we consider the case of odd A > 3.
The case of even connectivity is considered in the companion paper (Part IT).

1 Introduction

Connectivity is a fundamental property of graphs, which has important applications in
network reliability analysis, in network design problems and in other applications. For many
connectivity problems, a clear and compact representation of minimum and near minimum
cuts of a graph is of much help. In this paper we consider only edge-connectivity and edge
cuts of an undirected multigraph (henceforth, we omit the prefix “edge” and say “graph”

instead of “multigraph”). Recently, connectivity augmentation problems and the problem
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Figure 1: Cactus-tree model of a 4-connected graph. (The gray blobs represent vertex classes of
5-connectivity. Some cuts of the graph and their representing cuts of the cactus tree are shown by
dashed lines.)

of maintaining the vertex classes of k-connectivity (called in literature also “k-components”)
of a dynamic undirected graph gave an impetus for development of connectivity models and
related algorithms. Some graph structures have been discovered [7, 25, 14, 16, 5, 6, 15, 26,
13, 12, 2]; most of them serve the incremental setting, i.e., they can be efficiently updated

when the graph undergoes edge insertions.

Let G = (V, E) be an undirected connected graph on n > 2 vertices. A set of edges
C C E is an (edge)-cut of G if there exists a bisection (partition into two nonempty parts)
of V such that C' is the set of edges having endnodes in distinct parts. In a connected
graph, there is a bijective correspondence between the cuts of the graph and the bisections
of its vertex set. Let A denote the minimum cardinality of a cut of G. When analyzing the
connectivity of G, the natural first “stratum” is the set of its minimum cuts (i.e., cuts of
cardinality \) and the set of vertex classes of (A + 1)-connectivity that V is “cut into” by
these cuts. Both these are represented, in a compact and simple way, by the (inclusion)
minimal cuts of the cactus tree model (H, ) [7]: H is a tree-of-edges-and-cycles, or cactus
tree, for short (i.e., a connected graph such that every its block is an edge or a cycle) and
© is a mapping from V to the node set of H (see Fig. 1 for an example). The minimal cuts
of a cactus tree have a simple structure: any such cut is either a bridge or a pair of edges

belonging to the same cycle. The cactus tree model has the following properties:

(i) For every node N of H, ¢ 1 (N) is either a (A + 1)-class of G or the empty set;

(i) The mapping ¢! takes the set of bisections corresponding to the minimal cuts of H

onto the set of bisections corresponding the set of minimum cuts of G.

(iii) The number of edges in # is linear in the number of (A + 1)-classes, i.e., is O(n).

For odd A, H is unique and has no cycles (i.e, is a tree), and this representation is
bijective. For even \, H is unique up to conversions of nodes N of degree 3 with ¢~} (N) = 0)

into cycles of length three and vice versa, and this representation is almost bijective (for a



formal proof and for the only case of nonbijectiveness, where a cut of G is represented by
two model cuts, see [23]). In this paper, we consider the unique version of H in which all

empty nodes of degree 3 are replaced by cycles.

There are several applications requiring the knowledge of all mincuts and the way they
are structured. Note that there can be (n?) mincuts, and thus the space required to list
all of them can be Q(n?) if every cut is described as a bisection of V, and Q(An?) if a
cut is described as a set of edges. The cactus tree-model represents the mincuts not only
in a compact way, but also establishes reductions for several connectivity problems from
arbitrary ) to the case A = 2, and, in the case of A odd, to A = 1. ! In particular, the cactus
tree model was used for incremental maintenance of the classes of 4-connectivity and of the
classes of (A + 1)-connectivity [13] and for the edge-connectivity augmentation problems
[22, 20, 1].

More general models were suggested by Gabow in [14, 15]. These models represent
minimum directed cuts in a directed graph, and have size O(n?). These representations
can be applied to represent minimum cuts of an undirected graph, via replacing every
edge by a pair of antiparallel arcs between its endvertices; they can also be converted to
the cactus-tree model. However, these models are more complicated than the cactus-tree
model, and we are not aware that they directly lead to the reductions mentioned above. An
algorithm for the construction of the cactus tree model with the best known time complexity
O(|E|+X2nlog(|E|/n)) is presented in [14] (see also algorithm [19] with complexity O(An?)).

Another related problem is representation and dynamic maintenance of the set of all
minimum S-cuts (i.e., cuts partitioning a subset S of V' that have the minimum cardinality
among such cuts) and vertex subsets that S is cut into by those cuts. Such a represen-
tation, called the connectivity carcass of S, and an efficient algorithm for its incremental
maintenance are suggested in [12]. This structure generalizes the cactus tree model (the
case S = V) and the representation [25] for the minimum cuts between two given vertices
(the case |S| = 2).

Recently, there has been a growing interest in analysis of near minimum cuts. The
following results were obtained for an arbitrary nonnegatively weighted graph. Karger [18]
proves that the number of cuts of weight within a\ is at most O(n?®). This bound was
improved for @ < 3 to (3) in [24] and for 3 < a < 2 to O(n?) in [17] (all these papers do not
provide any representation of such cuts). Benczur in [2] gives a geometric representation of

the cuts of weight less than %)\. This model is less compact in comparison with the cactus

!The companion paper [9] presents a concept of an “r-skeleton” that generalizes and formalizes these
reductions.



tree model: its size can be Q(n?).

In this paper for the case A odd and in the companion paper [9] for the case A even,
we suggest an extension of the cactus tree model, called the 2-level cactus tree model. Our
models represent the system of the A- and (A + 1)-cuts and of the vertex classes of (A + 2)-
connectivity of a graph; their sizes are O(n). We give an algorithm that constructs our
model in O(A?|V|?) time.

For comparison of the range of cut cardinalities covered by our models and by the
model of Benczur [2] for multigraphs, observe that: for A < 5 our model is stronger, since
A+1> gA; in the range 6 < A < 10 they represent the same cuts; starting from A = 11,
when A +2 < &), the model of [2] is stronger than our one.

Previous results are as follows: Galil and Italiano [16] and La Poutré et al. [21] suggested
a structure for the case A = 1, Dinitz [5] and Westbrook [26] suggested another structure
for the case A = 2. Our 2-level cactus tree models for the cases A odd and even are not of
the same kind: the odd case generalizes the model for the case A = 1 and the even case the

model for the case \ = 2.

The model of [16, 21] for 1- and 2-cuts is obtained by shrinking every 3-class of G into
a single node; the resulting graph is a cactus tree, possibly with cycles of length two. The
1-cuts of G correspond to the bridges of the model; the 2-cuts are modeled by a pair of edges
belonging to the same cycle or by a pair of bridges. Our model for A- and (A+1)-cuts, A > 3
odd, is almost as simple as this model for 1- and 2-cuts with the following main exception:
not every pair of bridges of the model corresponds to a (A + 1)-cut of G, and pairs that
do are specified in a compact way. In the case of A even, our model in [9] is a 2-connected

graph, with A-cuts being modeled by 2-cuts, and (A 4 1)-cuts by 3-cuts of the model.

Similarly to the way that the cactus-tree model represents the A-cuts of G, we rep-
resent the family of A- and (A + 1)-cuts of G by a model for the family of bisections of
V' corresponding to all those cuts. The paper [10] (see also [8]) provides a constructive
generic “2-level” approach for modeling bisection families of a set, and gives a simple char-
acterization of bisection families that can be modeled by the minimal cuts of a cactus tree
(extending and widely generalizing [7]). This approach is as follows. Two bisections are
called parallel if they collectively partition V' into 3 parts. Start by choosing a certain
subfamily F%* of F consisting of mutually parallel bisections; henceforth, let us call them
“basic”. Such a family can be always modeled by bridges of a tree. Then the bisections in
F\ F% are partitioned into two main groups: those that are parallel to all basic ones are
called “local”, and “global” otherwise. The local bisections are further decomposed w.r.t.

F%s into smaller subgroups, and for each subgroup a so called “local model” is constructed;



[8] shows a way to combine these models with tree model for the basic family into one model
that represents all basic and local bisections. The modeling family of this model can be
extended to represent also the global bisections, if F*?* is chosen such that the partition of
V by the basic and local bisections coincides with the partition of V' by the whole family
F. In general, choosing a basic family that allows “good” modeling of both local and global

bisections is nontrivial, or such a family may even not exist.

A bisection in F' is called F-separating if it does not cross any other bisection in F'. Let
F3°P denote all members in F' that are F-separating. For F' being the family of bisections
corresponding to mincuts, [7] chooses as the basic family the family F*°?. Clearly, this
family is parallel, and this choice implies that there are no global bisections. In the case of
A odd, there are also no local bisections. In the case of A even, the local models are cycles,
and combining these with the tree model for the basic family results in the cactus-tree

model.

For the family of A- and (A + 1)-cuts, all these steps are much more complicated than in
the prototype [7]: (i) the choice of an appropriate basic parallel family is not evident; (ii) the
local models are far not only cycles, as in [7]; in the case of A even, their construction goes
through reductions, while for A odd, we derive local models by using the aforementioned
characterization [8, 10] of bisection families that can be modeled by a cactus tree; (iii) there

exist global bisections, and these are compactly modeled by specific techniques.

As in [16, 21] (A = 1) and in [13] (A = 2), we use our models for the incremental
maintenance of the classes of (Ao + 2)-connectivity, A9 > 3, where g is the connectivity of
the initial graph. This means that we support our structure under a sequence of update

operations
Insert-Edge(z,y): Insert a new edge between the two given vertices z and y;
and at any time are able to answer the query

Same-(Ag + 2)-Class(z,y) ?: Return “true” if two given vertices x and y belong to the same
(Ao + 2)-class of G, and “false” otherwise.

In the case A odd, our 2-level cactus tree model has a structure similar to the one
suggested in [16] for the case \g = 1. Though there is no immediate reduction of the
incremental maintenance problem to the case \g = 1, we extend for this model the algorithm
of [16], preserving the complexity. For an arbitrary sequence of u updates Insert-Edge and
q queries Same-(Ag + 2)-Class(z,y) ¢, total time required is O((u + ¢+ n)a(u+q,n)), where

« is the inverse of the Ackerman function (which grows extremely slow, see, for example,

[4])-



This paper is organized as follows. Section 2 brings basic definitions and notations.
Section 3 introduces our tools: 2-level cut modeling. In Section 4 we give some properties
of A- and (A + 1)-cuts. Section 5 deals with both statics and dynamics for the case of odd

A. Section 6 contains concluding remarks.

The preliminary version of this and the companion papers is Extended Abstract [8].

2 Preliminaries and Notations

Let G = (V, E) be an undirected connected (multi)graph with vertex set V' and edge set F,
where |V| =n > 2, and |E| = m. For any graph H, let V(H) and E(H) denote the vertex
and edge sets of H, respectively.

To shrink a subset of vertices S C V means to replace all vertices in S by a single vertex
s, to delete all edges with both endvertices in S, and, for every edge with one endvertex in
S, to replace this endvertex by s; an edge of a new graph is identified with its corresponding
edge of G. For a given partition of V, the quotient graph is defined to be the result of

shrinking each part into a single node (a quotient set of a set is defined similarly).

For X, Y C V we denote by 6(X,Y) the set of edges with one end in X and the other
end in YV (clearly, 6(X,Y) = 6(Y, X)). For brevity, let us use the notations X = V \ X,
§(X) =6(X,X),d(X,Y)=|0(X,Y)], and d(X) = |[6(X)|; d(X) is called the degree of X.

A partition of a set into two nonempty parts is called its bisection. For a proper subset
X of a set U, we denote by B(X) the bisection {X, X}; evidently, B(X) = B(X). Any
bisection {X, X} of V defines the edge cut C = §(X, X); each of X, X is called a side of
C (and, in fact, defines C'). The following statement shows that in a connected graph the
correspondence between the cuts of G and the bisections of V' is bijective (therefore, it is

legal to study cuts as vertex bisections).

Proposition 2.1 For every cut of a connected graph, there is a unique bisection of the

vertex set defining it.

Proof: Let C be a cut of a connected graph G = (V, E) defined by a bisection {X, X}.
Deletion of the edges of C partitions G into two nonempty sets of connected components:
components in the first set have all vertices in X, and in the other have all vertices in X.
Clearly, there are no edges of G between components belonging to the same set. Thus,
shrinking in G every component into a single node results in a connected bipartite graph
H, whose parts correspond to the above two sets. Observe that H is defined by C only,
independently of any bisection defining it. Thus, if C' is defined by another bisection of V,



then the connected graph H has two distinct bipartite representations, which is impossible.
Indeed, let us fix an arbitrary node v of H: evidently, all the nodes with even distance
from v must be on the side containing v, while all the other nodes—with odd distance from

v—must be on the other side of any bipartite representation of H. O

A cut C is said to be minimal if no its proper subset is a cut. It is well known that
C = §(X, X) is a minimal cut of a connected graph G if and only if each of the subgraphs
induced by X and X is connected. If |C| = k then C is said to be a k-cut; l-cuts are
referred also as bridges. The family of all k-cuts of G is denoted by F*.

We say that a cut C = §(X, X) divides a subset S of V (or that C is an S-cut) if
both X NS and X N S are nonempty. We say that a cut divides a subgraph if it divides
its vertex set. A subset S of V is called k-connected if there are no S-cuts of cardinality
less than k. The connectivity A(S) of a subset S of V is defined to be the maximum
k for which S is k-connected (equivalently: A(S) is the minimum number of edges in an
S-cut in G). The connectivity A of G is defined to be A(V'). It is easy to see that the
relation on vertices “{x,y} is k-connected” is an equivalence. Its equivalence classes are
called classes of k-connectivity, or, for simplicity, k-classes (they are often called in
literature “k-components”); let ng denote the number of k-classes. Obviously, the partition

of V into (k 4 1)-classes is a subdivision of its partition into k-classes.

For an edge e = (v,v’) of a tree, the branch that hangs on v via e is the connected
component of T'\ e not containing v. The bridge-tree of a graph is the model obtained
by shrinking every its 2-class into a single node. We call an ordered sequence of bridges of
a graph a bridge-path if it forms a path in its bridge-tree.

Following are some definitions concerning bisections and relations between them (see
Fig. 2). Two distinct bisections {X, X} and {Y,Y} of a set V are called crossing if all
the four corner sets X NY, X NY,XNY,XNY are nonempty, and parallel otherwise
(i.e., if exactly one of these sets is empty). For brevity, we denote these corner sets by
Ay, Ag, Az, Ay, respectively, if no ambiguity arises (see Fig. 2(a)). A bisection defined by
a nonempty corner set is called a corner bisection. For a pair of crossing bisections
{X, X} and {Y, Y}, the bisection B((XNY)U(X NY)) is called their diagonal bisection.
For simplicity of considerations, we always assume that for parallel bisections {X, X} and
{Y, Y} the set Ay = X NY is empty (as in Fig. 2(b) and Fig. 3(a)), if this does not lead to
contradictions. For such two bisections, a bisection {Z, Z} is said to be between them, if
XCZandY CZor X CZandY C Z (see Fig. 2(b)). For a family F of bisections of
V, the equivalence classes of the relation “z,y € V, {z,y} is not divided by any bisection

in F” are called F-atoms; let ny denote the number of F-atoms. Note that k-classes are
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Figure 3: (a) a pair of parallel cuts and their triangle. (b) a pair of crossing cuts and their square.

just F atoms for F' being the family of all [-cuts, [ < k — 1.

When V is the vertex set of a graph G, similar definitions are used for cuts, considering
them as bisections of V (see Fig. 3). For a pair {C, C'} of cuts, a cut defined by anyone of
their corner bisections is called a corner cut (for example see in Fig. 3(b) the cuts defined
by A; and Ay, of cardinality 6 and 7, respectively). The quotient graph defined by the
(nonempty) corner sets is called the {C, C'}-square, in the case C, C’ are crossing, and the
{C, C"}-triangle, in the case they are parallel. An edge of the square belonging to both
C and (' is called a diagonal edge (those are the edges in §(A1, A4) and (Ao, A3)); the
other edges of the square are called side edges. For brevity, we denote d;; = d(A;, A;),
d; = d(A4;) for i # j =1,...,4. Observe that for a pair of parallel cuts

di = |C"] + |C"] = 2da3, (1)

and for a pair of crossing cuts
di+dys = |Cl|—|—|C”| — 2do3 (2)
do+ds = |Cl|—|—|C”| — 2d14. (3)

Most of our definitions and results apply to cuts of an integrally weighted graph as well,
by replacing the cardinality of a set of edges by the sum of their weights. In fact, in what

follows we do not distinguish between a multigraph and its corresponding weighted simple



graph if this does not lead to misunderstanding (“the weight of an edge (z,y) is £” means
“d(xz,y) = k7, and vice versa). We say that a multigraph is a cycle if its corresponding
weighted simple graph is a cycle, and call it l-uniform if the weight of every edge in the

latter is [.

3 Modeling tools??

In this Section, we introduce the hierarchic 2-level approach of [8, 10] to the construction

of cut models for families of bisections.

The following concept of a model, applying to cuts of a connected graph as to bisections
of its vertex set, has been used in connectivity studies since [7]. Following [10], we present
this concept abstractly, for bisections of an arbitrary set (one reason for this decision is to
emphasize that edges of original graph play no role in modeling, the other is that illustrating

figures are much more clear without such edges).

A cut model for a set V (or, for short, a model) is a pair (G,1)), where G = (V, &) is
a connected graph and ¢ : V — V is a mapping;? we sometimes abbreviate this notion by
G, if 1 is understood. We call 9 a model mapping and G a structural graph; vertices
of G are called nodes and its edges structural edges. A node N of V is called empty
if y~1(N) = (). Observe that, for any cut model, shrinking a subset of nodes of G implies
naturally a new model: its mapping is the composition of the original mapping and the
quotient one.

We say that a cut C = (X, X) of G ap-induces the bisection ¢p~1(C) = {1 (X), 1 (X)}
of V if both ¢~ 1(X),4 ' (X) are nonempty. Any bisection of V that is 1/-induced by a cut
of G is said to be compatible with G (or with V). For a family of cuts F of G, we denote
Y~ H(F) = {4p~1(C) : C € F}. For a subgraph G’ of G with node set V', 4)=1(G") is defined
to be ¢y (V).

Let F be a family of bisections of V. Then a triple (G,,F), where (G, 1) is a model
for V and F is a family of cuts of G, is said to be a cut model for F if )=!(F) = F; then
F is called a modeling family (for F') and its members are called modeling cuts. For
any two models: (G,1,F) for F and (G',¢', F') for F, the triple (G', 1 o ', F') is, clearly,

a model for F'; it is called the composition of the former models.

For short, we say that F' is modeled by a graph G if there is a cut model, whose

structural graph is G and modeling family is the family of all minimal cuts of G. A cut

2In this paper, objects related to a model, which is not a quotient graph, are usually denoted by letters
in their calligraphic form, for example C, F, G, V(G).



model (G,, F) is called condensed if, for every node N of G, ¢~'(N) is an F-atom or
the empty set. It is easy to see that a sufficient condition for a cut model to be condensed

is that each F-atom is a singleton.

In order to describe the modeling family in a compact way, we allow an indirect de-
scription of some of its parts by “bunches” (generalizing [7] and following [10]). For
&1,...,& C &, the bunch generated by &1,...,& is {{e1,...,6/} : & € & and g; #
gj for 1 <4 # j <1}. For example, in the cactus tree model, each bunch is generated by
&1,&, where & = & = L and L is a cycle of the cactus tree. In our model for A odd, we
have additional type of bunches: each bunch is generated by £1,&s, where & = & = P is
a bridge path. Note that the space required to describe a bunch is |&1| + - - - +|&| (or even
less if for identical sets we just specify their multiplicity), while the number of elements in
a bunch can be |£1| x -+ x |&].

The size of a model (G, v, F) is the sum of sizes of its three parts: (i) of G = (V, &),
that is |V| + |£], (ii) of 4, that is O(]V]), and (iii) of the description of F. Observe that
describing F by bunches instead of a trivial listing of all members in F, the size of a model
can be much less than the number of bisections (or cuts) in F'. Notice that the number of
F-atoms np can serve, instead of |V|, as a natural parameter for measuring the size of a
condensed model, excluding the size of the modeling mapping; for simplicity, we say that
a model is linear in np if all its parts, except for the model mapping, have size linear in
ng. As an example, the cactus tree model is linear in the number ny,; of (A + 1)-classes of

V, while there can be Q((ny41)?) modeling cuts.

Let us consider an important simple case of a cut model. A family F? of bisections of
V is called parallel if its members are pairwise parallel. By [19], |FP| = O(|V]) (in fact,
|FP| < 2|V| —3). Following [7], we represent such a family by the naturally defined tree
model (77,4P, 1-cuts of TP), where TP is a tree (see Fig. 4, for a formal definition see
[13, 10])). This model is condensed and is bijective, i.e., every bisection in F? is 1P-induced
by a unique 1-cut (i.e., by a structural edge) of 7P. For a node N of TP, the family of
bisections Fk, = {(¢?)"!(e) : e = (M, N”) € TP} is called the neighbor group at A (for
example, in Fig. 4, {C1,Cy,C3,Cy} is a neighbor group at Z). Note that two bisections
belong to the same neighbor group if and only if there is no other bisection in FP between
them. Indeed, if C',C" € FP are vP-induced by €', &”, respectively, then C' € F? is between
C' and C” if and only if the structural edge 9P-inducing C belongs to the unique path
between & and €’ in TP; thus no bisection in F? is between C; and Cs if and only if ¢/, ¢’

are incident to the same node of T7.

Given a parallel bisection family, we use the following classification of bisections w.r.t.

10
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Figure 4: A parallel family and its tree model. (The nodes whose preimages are empty are shown
white. Bisections and cuts are shown by dashed lines.)

that family (see Fig. 5(a)). We call that family and its members basic, and in what follows
denote it by F%* and its tree model by (7%, 4%, Fba5) A nonbasic bisection is called

local if it is not crossing with any member of F%* and global otherwise.

The local bisections are decomposed relatively to the nodes of 7% by means of the
following model. (see Fig. 5(a,b,c)). The component V), at a node N of T%%* is a quotient
set Vv of V' (or a quotient graph Gy of G, in the case of a cut family F ) as follows: for
every branch B hanging at A/ in 7%, shrink the subset (4**)~!(B) into a single halo
element (resp., halo node); the corresponding quotient mapping is denoted by z/A)N. The

following are some simple properties of components.

Lemma 3.1 ([10]) (i) Any bisection compatible with a component is either local or ba-
sic. Moreover, every local bisection C is compatible with exactly one component, and
every basic bisection is compatible with ezxactly two components (at the endnodes of
the structural edge defining it in T°*) and are defined by single halo nodes in these

components.

(ii) Any two crossing local bisections, as well as their corner bisections, are compatible

with the same component.

Assume now that we are looking for a cut model for a bisection family F' of a set V.
Let F'® C F, and let F"¢ and F9 denote the corresponding subfamilies of F of local
and global bisections, respectively. (Recall that here and everywhere in this section similar
definitions are implicitly made for a cut family F', considering cuts as vertex bisections.) By
Lemma 3.1(i), F'°¢ falls into parts F{%° corresponding to nodes N of 7% (via compatibility
with VN) Following [10], our general approach is to represent the parts Ff\?c separately, and
then to synthesize the entire representation for F®es ) Flo¢. Let us define the appropriate
type of such separate representations. Observe that, for any node A, the neighbor group

Ff\’}‘s is exactly the set of basic bisections (cuts) compatible with V.

11



Figure 5: (a) decomposition of a bisection family w.r.t. a basic family (basic bisections are shown
by thick dashed lines, local bisections by thin dashed lines, and global bisections by dotted lines);
(b) the basic tree; (¢) node sets of components at A’ and at A’ (halo nodes are shown gray), and
the decomposition of F'°¢; (d) local models; (e) implanting and the plant model H?2.

Definition 3.2 Let N be a node of T*%. A cut model (Gn,ihn, Frr) for Fy is called a
local model at N if the following holds (see Fig. 5(d)):

(i) Fi¢° C F\, C FCU Fpps;

(ii) for every branch B of T hanging at N, its preimage (4**)~1(B) is mapped by Pnr
into a single node Ng of Gnr.

Let F; be as in Definition 3.2(i). Let (g'AC, z/A)jv,Af/’v) be a cut model for ¢y (FL). Tt is
not hard to verify that the composition (G, s 0 ¢\, F)r) of Vr and G is a local model
at A. 3 Hence, in applications to cut families, we can obtain a local model at N via the
component Gy by constructing a cut model for a family z/A;N(F/’v) of cuts of G

Assume now that there is given a local model (Gar,1nr, Far) for each node N of 7%
with F}¢ # (). Those local models can be naturally “implanted” into 7% instead of the
corresponding nodes to obtain a united cut model (G2, 2, F?) for Flo¢U F®* as follows (for

illustration see Fig. 5(e)).

3Moreover, it can be shown (see [10]), that a model Gy is a local model at A if and only if it is a
composition of Vr and a cut mode G), as above.
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Let N be a node of 7%, For any structural edge ¢ of 7% incident to N, let B¢
denote the branch hanging at N on e. The structural graph Gy is implanted into 7%
by replacing the endpoint N of every structural edge ¢ incident to A/ by the node Ng: =
Y ((4%2%)~1(B%)) of Gur, and then deleting A'. The structural graph G2 is obtained by

simultaneously implanting into 7°%* each structural graph G, instead of the corresponding
node N.

We will now define the model mapping ¢? and the modeling family F2. Note that, by
the construction of QQ, the node set V2 of G2 is a disjoint union of the node sets of the local
models implanted, and the nodes of 7% that did not undergo implanting. Similarly, the
edge set £2 of G? is a disjoint union of the edge sets of the local models implanted, and the
edges of 745,

The model mapping ¢? is defined as follows. For v € V, let N, = 9***(v). Then

2(y) = Pn, (v)  if M, undergo implanting
v T N otherwise.

We now define the modeling family F2. Let us consider the modeling cuts in Fy and
in Fb% as edge sets. By [10], each such edge set is a cut of G2. The modeling family F?2
is a union of the modeling cuts of the basic tree and of the implanted local models, i.e.,
F? = (U{Fy : there is a local model Gr}) | FPo.

Theorem 3.3 ([10]) (G2,42, F?) is a cut model for F*|JF¢ and (4?)~' takes Fb*

onto Fs.

The model (G%,4?, F?) is called the plant model based on 7%* and the set of local
models {Gxr}. Note that a possibility to obtain a set of simple local models, needed for the
construction of a simple plant model, depends much on an appropriate choice of a basic

parallel family.

Remark: To be able to refer graphs serving as structural for plant models, let us introduce
a way to define new types of graphs. We say that a graph is a tree of graphs of type
M if every its block is a graph of the type M. In this sense, cactus trees may be referred
as trees of edges and cycles. Clearly, if all local models are 2-vertex connected and are of
a certain type M, then the structural graph of the corresponding plant model is a tree of

edges and graphs of type M.

The following Lemma, shows several properties that are expanded from local models to
their plant model. (Recall that a cut is called minimal if it is inclusion minimal, i.e., if no

proper subset of its edges is a cut.)
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Lemma 3.4 ([10]) (i) If all modeling cuts of the local models are minimal, then all
modeling cuts of the plant model are minimal; moreover, if all modeling families of
the local models are the sets of their minimal cuts, then the modeling family of the

plant model is the set of its minimal cuts.
(ii) If all the local models are condensed, then the plant model is also condensed.

(iii) If each local model at a node N is of size linear in the number of (Ff\?c U Ff\’}“)—atoms,
then the plant model is linear in the number of (F U F%%)-atoms.

(iv) Any bisection in F'°° is represented in a plant model the same number of times as it
was represented in the corresponding local model. Any bisection in F®** is represented
ezactly once by an edge inherited from T, and, in addition, the same number of
times as it is represented in the (at most two) local models at the nodes incident to

this edge.

Let us now discuss extension to modeling also F9!. We suggest an approach that allows to
keep the structural graph G2 and extend only the modeling family F2. For this purpose, let
us restrict ourselves to choices of F*?* for which no global bisection divides any (F'¢U F%@$)-
atom (in Fig. 5(a), one of the shown global bisections is of this kind, while the other is not).
Under this condition, any global bisection is compatible with any model for (F'o¢ U Ftas),
and in particular, with the plant model (G2,4?, F2). Therefore, for any global bisection
there exists a cut of G? which )2-induces it (notice that such a cut is always nonminimal,
see Fig. 5(e)). In such a way, it is possible to model also the global cuts, by extending F2

with certain nonminimal cuts of G2, and thus obtain a model for the entire F.

4 Some properties of A- and (A + 1)-cuts

In several proofs, we use the following simple statements (the proof is omitted, for illustra-
tion see Fig. 6(a)).

Lemma 4.1 (i) If the triangle of two parallel A-cuts has a corner (X + 1)-cut, then X is

odd and the triangle has the two edges incident to this corner of the weight % and

. . A—
the third edge of the weight Tl

(ii) If the triangle of two parallel (X + 1)-cuts has a corner \-cut, then X is even and the
triangle has the two edges incident to this corner of the weight % and the third edge
of the weight % + 1.

14



(b)

|
A1 i
| 2 N2 !

A2+1

Figure 7: Tlustration to the proof of Corollary 4.3.

The possible squares of crossing A- and (A + 1)-cuts are given in the following Lemma

(see for illustration Fig. 6(b)).

Lemma 4.2 Let C be a (A+1)-cut and R a A-cut crossing with it. Then the {R, C'}-square

has no diagonal edges (so, it is a cycle) and:
(i) If X is odd, then it has one edge of weight % and three edges of weight %

(ii) If X is even, then it has one edge of weight % + 1 and three edges of weight %

Proof: Since each corner cut of the { R, C'}-square is of cardinality at least A, the equations
(2) and (3) (see Section 2) imply that doz = d14 = 0 and that two adjacent corner cuts are
A-cuts, while the other two are (A + 1)-cuts. Assume, w.l.o.g., that d; = A. This implies
di3 = X — d12, dog = dia (since |R| = dy), dsa = A — dog + 1 (since dy = A + 1), and thus
dy = 2d19. Now, if dy = A + 1 then dis = % which implies A odd and part (i) of the
Lemma, and if do = X then dio = % which implies A even and part (ii) of the Lemma. O

Lemma 4.3 Any (A + 1)-cut divides at most one (X + 1)-class.* More exactly:

4This statement has the following generalization: Any k-cut divides at most one k-class.
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(1) If X is odd, then any (A+1)-cut that crosses a A-cut does not divide any (A+1)-class.
Moreover, it is p-induced by a (nonminimal) 2-cut of T; thus one of its sides can be

partitioned into two sets of degree A each.

(ii) If X is even, then any (A + 1)-cut divides ezxactly one (A + 1)-class.

Proof: Assume, in negation, that there is a (A+1)-cut C that divides two distinct (A +1)-
classes, say S1 and Sy (see Fig. 7(a)). Let R be any A-cut separating S from S;. Observe
that R and C are crossing, and that each corner cut of their square divides either S; or Ss.
By Lemma 4.2, the {R, C'}-square has a corner cut of cardinality A, contradicting that S;
and Sy are (A + 1)-classes.

We now prove (i) (see Fig. 7(b)). Assume that A is odd. Let C' be a (A + 1)-cut, and
let R be a A-cut crossing with C'. By Lemma 4.2, C' is defined by a set which is the union
of two disjoint sets of degree \ each. Let e; and €5 be the two structural edges of 7 that
correspond to the A-cuts defined by these sets. It follows that C' is p-induced by the 2-cut
{e1,e2} of T, which finishes the proof of (i).

In order to prove (ii), it is sufficient to show that, for the case A even, each (A + 1)-cut
divides at least one (A + 1)-class. Let us first show that if X is even, then the degree of any
(A+1)-class S of G is even. Let By, B ..., B, be the branches hanging on the corresponding
node Ng = ¢(S) in T (see Fig. 7(c)). Observe that, by the definition of 77, for each branch
B hanging on a node A in 7? holds d(¢~'(B)) = . Let 8 be the number of edges with

endpoints in preimages of distinct branches. Since
r
d(s) = Y d(p™ (Bi) — 26 = rA— 28,
i=1

d(S) is even.
Suppose now, in negation, that there is a (A + 1)-cut C' which does not divide any
(A + 1)-class. Then C is defined by J!_, S;, where S;,i = 1,...,t are (X + 1)-classes of G.

Let v be the number of edges with one end in S; and the other end in S, i,5 = 1,... ¢,

i # j. Now
t t

ICl=d( i) =D_d(Si) — 2y

which implies that |C'| = A 4+ 1 is even, a contradiction. O
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5 The odd case

Recall that A is the cardinality of a minimum cut of the graph G under consideration; thus,
F? denotes the family of minimum cuts of G. Let the cube graph be the graph of the
vertices and edges of the 3-dimensional cube. We prove, in a constructive way, the following

Theorem (for an example see Fig. 13 at the end of this section):

Theorem 5.1 In the case A > 3 odd, for F* U FA there exists a condensed cut model

(H2, 02, F?) of size O(n) (moreover, linear in nyyo), with the following properties:

(i) The structural graph H?

e for A\ > 3, is a cactus tree,

e for A =3, is a tree of edges, cycles, and cube graphs, such that each node of each

cube graph is empty and is incident to exactly one bridge;
(ii) The modeling family F? consists of:

e the 1-cuts (bridges),

e the minimal 2-cuts (which are all pairs of edges of any block of H? that is a
cycle),
e in the case A\ = 3, for any block of H? that is a cube graph, the three cuts

consisting each of four its pairwise nonadjacent edges (see the cuts in Fig. 12(e));

e for a certain set Il of bridge paths such that any two of them have at most one

edge in common, the (nonminimal) 2-cuts {{e',e"} : ',e" € P, P € I1}.

(iii) The mapping (¢?)~"! takes the set of 1-cuts bijectively onto F* (thus the bridge-tree
of H? is a model isomorphic to T*) and the set of other cuts in F? onto FAT1.

We call any model that satisfies properties (i-iii) in Theorem 5.1 2-level cactus tree
model (assuming A odd). Any model for a subfamily of FA*!, such that the bridge-tree
of its structural graph is a model isomorphic to 7» and whose modeling family consists of

nonminimal 2-cuts as in Theorem 5.1, is called a TI-model.

As the basic family for modeling the family F*» U FA1, we choose its subfamily (F*)%¢P
of all FA-separating cuts (i.e., the A-cuts that do not cross any other A-cut), and henceforth

use the notation “local” and “global” cuts w.r.t. this family.
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Throughout this section, it is assumed that A > 3 is odd. Note that then, the family
(FA)%€P coincides with F*. Let 7* denote the tree modeling it. Recall that ¢~1(N), for
any nonempty node N of T2, is a (A + 1)-class of G.

A (A1)-cut which is ¢-induced by a 2-cut of 7? is called degenerate; by Lemma 4.3(i),
the family of degenerate cuts contains the family of global (A + 1)-cuts. Note that a A-cut
¢-induced by € crosses a degenerate cut p-induced by {£’,e"} if and only if € belongs to the
path between (but not including) &’ and ¢” in 7*. Thus, a degenerate cut is local if and

only if the two structural edges of 7 defining it are adjacent.

In Sect. 5.1, we show existence of a II-model, with the structural graph 7*, for the
degenerate cuts; recall that those include all global (A 4 1)-cuts. In Sect. 5.2, we show that
the nondegenerate and a certain subset of local degenerate (A + 1)-cuts can be modeled by
a cactus tree, for A > 3, and by a tree of edges, cycles, and cube graphs, for A = 3, in
the way described in Theorem 5.1. Further, in Sect. 5.3, we merge the two above models
into a 2-level cactus model and show that the constructed model is condensed and is linear
in ny12, thus finishing to prove Theorem 5.1. Finally, in Sect. 5.4, we show how, using
a 2-level cactus tree model, to maintain efficiently the (Ao + 2)-classes under insertions of
edges into G; for this purpose, we extend the algorithm for the case Ao = 1 [16], preserving

its complexity.

5.1 Modeling of degenerate cuts

For a 2-cut C = {¢,&"} of 77, let P(C) denote the path consisting of &', ", and the edges
of the path between them in 7.

Lemma 5.2 Let C = {€',€"} be a 2-cut of T* which p-induces a (A + 1)-cut C of G, and
let P(C) = N1, No, ..., N;. Let us remove the edges of P(C), and denote by B; the resulting
connected component containing N and by X; its preimage ¢~ (B;), i = 1,...,r. Then

the subsets X; partition V, and the quotient graph G¢ of this partition is a cycle with one

A+1
2

connected by the edge of weight % in Ge defines C. (For illustration see Fig. 8.)

edge of weight % and all the other edges of weight where the union of the two parts

Proof: In order to prove this Lemma, it is sufficient to show that d(Xi,X,) = 251,

2
d(X;, Xiy1) = 25 fori=1,...,r — 1, and d(X;, X;) = 0 otherwise.
Observe that the cut defined by each of X7 and X, is a A-cut, and the cut defined by

X1UX, is a (A + 1)-cut. Thus, by Lemma 4.1(i), d(X1, X,) = 252
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Figure 8: Tlustration to the proof of Lemma 5.2.

Suppose in negation that there are 7 and j, 1 <7 <r —2, 14+ 2 < j < r, such that

d(X;, X;) > 0. Then we obtain a contradiction, since

i T 1 r
>\<d(Xi+1) :d(U Xl)+d( U Xl)_2d(U X, U Xl) <
=1 =142 =1 =142

A—1
2\ — 2(T +d(X1',Xj)) =A+1- 2d(X1',Xj) <A

Thus d(X;, Xiy1) = A —d(X1, X,) =A—-252 =2 fori=1,...,r—1. O
Corollary 5.3 Let C be a 2-cut of T* which g-induces a (A + 1)-cut of G. Then any two
edges of P(C) form a cut of T*, which -induces a (A + 1)-cut of G.

Let us consider the set of paths P(C), for all 2-cuts C of 7> that ¢-induce (X + 1)-cuts

of G. We call such a path generating if it is inclusion-maximal among those paths.
Lemma 5.4 Two generating paths have at most one edge in common.

Proof: Suppose, in negation, that two generating paths P’ and P” have at least two
structural edges in common. Then their intersection is a path of length at least two, say
P'NP" = (No,...,Ng), ¢ > 2.

Let us first show that 7’ and P" are not contained both in a path of 7*. By maximality,
P' ¢ P" and P" ¢ P'. Assume, in negation, that P’ UP” is a path and, w.l.o.g., that N
is the endnode of P" and N is the endnode of P”; let eg = (N, N1), e4 = (Ng—1,Ny) (see
Fig. 9(a)). We show that the two terminal structural edges ¢’,&"” of P’ UP", where &' € P,
" € P", form a 2-cut of 77 that ¢-induces a (A4 1)-cut of G, contradicting the maximality
of P’ and of P”. Observe that the cuts ¢’ = ¢ 1({¢’,g,}) and C" = ¢ 1({e",&0}) form a
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Figure 9: Impossibility of a long intersection of two global paths.

pair of crossing (A + 1)-cuts of G. One of the corner cuts of their square is ¢-induced by the
2-cut {&’,&"}. By Corollary 5.3, the other three corner cuts are all (A+ 1)-cuts, since each of
them is ¢-induced by a 2-cut of 7 that consists of two edges belonging both to P’ or both
to P"”. One can easily verify that this, together with the equations (2) and (3), imply that

all the corner cuts in the C', C"-square are (X + 1)-cuts, which finishes the current proof.

Now, since P’ and P" are not contained both in any path of 72, at least one of Ny, N,
say Np, has two adjacent nodes N/, N/, where N/ € P'\ P” and N € P"\ P'. Let B,
be the branch hanging on N,_; and containing N, and let B’ (resp., B”) be the branch
hanging on Ny and containing N (resp., N') (see Fig. 9(b)); these branches are disjoint.
Then, by Lemma 4.1,

dp (B0 (B) = dlg (By). o M (B") = 2. (4)

Let X; = ¢~ (B;), where B; is the connected component containing N; in
TA\ {(No, V1), (N1,N2)}, 4 = 0,1,2. Observe that {Xg, X1, X5} is a partition of V, and
that d(Xo) = d(X2) = A. By (4), d(Xo, X2) > A — 1, and thus we have

d(X1) = d(Xo) + d(X2) — 2d(Xo, X2) = 2X — 2d(Xo, X9) < 2,
a contradiction since A > 3. O

By this Lemma and Corollary 5.3, the set of generating paths is a II-model.

Remark: The suggested representation of the degenerate cuts is almost bijective. The only
case of a double representation can occur for two disjoint pairs of edges incident to an empty
node of degree 4 in T*. Recall that for A odd, no two A-cuts cross. Thus, if C = §(X, X) is
a degenerate (X 4 1)-cut, and X has a partition into two sets X1, Xy of degree A each, then
this partition is unique. Thus, a double representation can occur only if also X has also a
(unique) partition into two sets X|, X5 of degree A each. Simple computations show that

the quotient graph of the partition {X;, X2, X|, X4} is a square with weights as follows:
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each diagonal edge of weight 1 < a < )‘ , two opposite side edges of weight 21 while the
other two side edges of weight % — Q. In particular, there is no A-cut between any two
of the four corners. Thus the corner cuts form a neighbor group which corresponds to an

empty node of T of degree 4.

We now establish linearity of this II-model in ny 9. Recall that the size of 77 is
O(nas1) = O(nyy2); therefore, it is sufficient to prove linearity in [V(T7)|.

Lemma 5.5 A structural edge belongs to at most four paths of Il if X > 3, and to at most
three paths of I1 if A = 3.

Proof: Let ¢ be a structural edge of 7%, and let R the A-cut of G y-induced by . Let
P = (No, Ny, ... ,./\fq) be a path in II containing e, and let C; be the cut ¢-induced by
Ni—1,Ny), i = ,¢. By Lemma 4.1(i), |C1 N Cy| = % Observe that, for any 7 =
1,....q, C1 N Cy C C;. In particular, the set C; N Cy, of 21 edges is contained in R. By
the maximality of the paths in II, for two distinct paths in H such sets are distinct (but not
necessarily disjoint). For A = 3 holds % = 1, which implies that those sets are disjoint.

Hence, if A = 3 then there can be at most three paths in II containing e.

Assume now that A > 3, and let e = (N, N"). Since any two paths in II containing
have no other structural edge in common, it is sufficient to show that there are at most 4
structural edges incident to € such that each of them belongs to some path of IT containing
¢. For this purpose, we prove that each of N7, N is incident to at most two such edges.

We give a proof for N (the proof for A is similar).

Suppose, in negation, that this is not so. Then there are three structural edges, say,

= (N, N;), i = 1,2,3, such that each cut {e,&;}, 1 = 1,2,3, p-induces a (A + 1)-cut of
G. Let T',T",T1, T2, Tz be the connected components of T*\ {e,e1,€2,e3}, where N € T,
N" e T" and N; € T;, i = 1,2,3 (see Fig. 10). Since d(o (T")) = d(¢ (7)) = X and
d(e~ (T"UT;)) = A+1, then, by Lemma 4.1(i), d(¢~1(T"), =1 (T7)) = 252, i = 1,2,3. But
then

w
>

|
—_

A=l (T) 2 Sde (T () =375

a contradiction, since A > 3. O

The examples in Fig. 10(a,b) show that the bounds in Lemma 5.5 are tight.

Corollary 5.6 The total length of the paths in II is at most 4(|[V(TM)| — 1); hence, their
number is at most 2(|V(T)| — 1).
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Figure 10: (a) Hlustration to the proof of Lemma 5.5; (b,c) examples showing that the bounds in
Lemma 5.5 are tight: (b) A >3, (¢) A= 3.

5.2 Modeling of nondegenerate cuts

We now turn to study nondegenerate (A 4 1)-cuts. Let us call a (A 4 1)-cut essential if it
is nondegenerate or is a degenerate corner cut in the square of two crossing nondegenerate
(A + 1)-cuts. Although the latter are already modeled in the TI-model, we add them to the
nondegenerate cuts, since, as we show, the obtained family of essential cuts is modeled by
a cactus tree if A > 3, and by only a slightly more complicated model if A = 3. The family

of nondegenerate cuts only, does not have, in general, such models.

Note that any essential cut is local. Indeed, by Lemma 4.3(i), any nondegenerate cut is
local; thus, by Lemma 3.1, any corner cut in a square of a pair of crossing nondegenerate
cuts is also local. Clearly, any model for the essential cuts plus a II-model for the degenerate
cuts represent, together, all the (A + 1)-cuts. Let us denote by F the family of essential
(A + 1)-cuts. Observe that the (F' U F*)-atoms are just the (A + 2)-classes of G, since no

degenerate cut divides a (A 4 1)-class.

In what follows, we construct a model for F U F* as a plant model based on 7. The
components w.r.t. 7> are called (A 4+ 1)-components of G (this is a generalization of the
concept of a 3-component suggested in [13] for A = 2). The following important statement

is straightforward.

Lemma 5.7 (i) Any (A + 1)-component is a A\-connected graph.

(ii) The A-cuts of a (A + 1)-component are cuts defined by a single halo node, and vice

versa.

Let N be an arbitrary node of 77, and let (CA}N,Q/A)N) be the corresponding (A + 1)-
component. Let Fy be the family of essential cuts compatible with Gy Recall that to
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Figure 11: Conditions (C1), (C2) for a pair of crossing bisections.

obtain a local model at N, it is sufficient to construct a cut model for the family Q,ZSN(FN) of
cuts of G . Tt is not hard to see, that this family coincides with the family of essential cuts
of Gy Henceforth, let us study this family, denoting it for simplicity by F, instead of
Y (Fr). In this section, we show that any such family can be modeled by a cactus tree (i.e.,
by the minimal cuts of a cactus tree), except for one specific case of a (A + 1)-component,
which can occur for A = 3 only. For this purpose, we use the following characterization (see
Fig. 11).

Theorem 5.8 ([10]) A bisection family F is modeled by a cactus tree if and only if for

any pair of crossing bisections in F' holds:

(C1) the four corner bisections are in F;

(C2) the diagonal bisection is not in F.

Moreover, for any family satisfying conditions (C1), (C2), there exists a cactus tree model

of size linear in the number of F-atoms, which represents each bisection at most twice.

Note that since any nondegenerate cut is local, then, by Lemma 3.1(ii), any two crossing
nondegenerate cuts are compatible with the same component. In order to establish the
cactus tree structure of the nondegenerate cuts, the following analog of Crossing Lemma

[3, 7] is crucial.

Lemma 5.9 Let C',C" be a pair of crossing nondegenerate (A + 1)-cuts. Then all the
corner cuts of their square are (A + 1)-cuts; moreover, the {C',C"}-square is a uniform
%—cycle.

Proof: We first show that all corner cuts in the {C’, C"}-square are (A + 1)-cuts. Assume,
in negation, that this is not so. Then the equations (2) and (3) imply that at least one
corner cut is a A-cut; w.l.o.g. assume d; = A. Since both C’,C" are nondegenerate, it
follows that dg,ds > X\ + 1, which together with (3) implies do = d3 = A + 1. But then the
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triangle of 6(Az) and §(A2 U A;) has two corner (A + 1)-cuts and one corner A-cut, which
by Lemma 4.1(ii) is impossible. Now, a simple computation using (2) and (3) shows that
the {C', C"}-square has edge weights as required. O

As a corollary, for any pair of crossing nondegenerate cuts in F holds both (C1) and
(C2). Now, the question remains only for squares of crossing cuts in F' such that at least
one of them is degenerate. We show that such crossing pairs do not exist, excluding one
specific case of a (A 4+ 1)-component. Observe that, by Lemma 5.7(ii), a (A + 1)-cut of a
(A + 1)-component is degenerate if and only if it is defined by two halo nodes.

Lemma 5.10 Let C be an essential degenerate cut. Then C does not cross any essential
cut, except for the case when A\ = 3 and the (X + 1)-component that C is compatible with is

a cube graph on halo nodes only.

Proof: Let C’, C" be a pair of crossing nondegenerate (A+1)-cuts such that C is a degener-
ate corner cut in their square. Consider the {C’, C"}-square. W.l.o.g., assume that A, Ay
are contained in the same side of C' and that C is defined by A;; hence, A; consists of two
nodes of the degree A each, say Xi,Y;. Assume to the contrary that there is an essential
(A + 1)-cut C crossing with C (see Fig. 12(a)). Clearly, C is crossing with at least one of
c',c".

Let us consider the case of nondegenerate C' first. We show that, in this case, C divides
each of Ay and Aj (see Fig. 12(b)(c)). Assume, in negation, that C does not divide Ay (the
proof for Ajg is similar). Then one of X;,Y7, say X1, and Ay are contained both in the same
part of C. Now, if C is crossing with C' (resp., C"), then Y7 (resp., X1) is a corner cut in
their square. In each case, a square of two nondegenerate (A + 1)-cuts has a corner A-cut,

a contradiction to Lemma 5.9.

So, C divides each of Ay, A3 in addition to A; (see Fig. 12(d)). This implies that there
are at least seven {C, C’, C"}-atoms. From [24, Lemma 7.3], it follows that if F' is a family
consisting of three cuts and if there are more than six F-atoms, then F' contains a cut of
cardinality at least %)\. Applying this to F = {C,C’,C"} we obtain % > %, which is
possible only if A = 3.

Let us now fix A = 3 and show that each of the cuts defined by A, and Aj is degenerate.
We prove this for As (the proof for Aj is similar). Observe that C' crosses both C' and
C". Denote the parts into which C' divides A4;, i = 1,2,3, by X;,Y;, where all X; are in the
same part of C' (see Fig. 12(d)). By Lemma 5.9, each of the cuts d(X; U X5) and §(Y; UY3)

is a (A + 1)-cut, since it is a corner cut in the {C,C'}-square and since both C,C’ are
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Figure 12: Tllustration to the proof of Lemma 5.10.

nondegenerate. Now, 6(X7) is a corner A-cut in the {C”,§(X; U X3)}-square, (Y1) is a
corner A-cut in the {C’, (Y7 UY3)}-square, and C' is nondegenerate. Hence, by Lemma 5.9,
each of §(X; U Xy), (Y1 UY3) must be degenerate. Therefore, d(Xs) = d(Y2) = A = 3,
which implies that §(Ay) is degenerate, and thus Xy, Y5 are singletons.

Now, using this and arguments as before applied to A, instead of Ay, we obtain that
C divides A4 into two sets, say X4, Yy, of the degree A each. Summarizing, we have
d(X;) =d(Y;) = X =3,4i=1,...,4; by Lemma 5.7(ii), all X;,Y; are single halo nodes.
By Lemma 4.1(i), two nodes defining a degenerate 4-cut must be connected by exactly one
edge. Using this, one can easily verify that the (A + 1)-component is a cube graph (see
Fig. 12(e)).

Now, let us consider the case of A arbitrary and a degenerate essential cut C. Since C
is crossing with C’ or with C”, which are both nondegenerate cuts, we arrive at the same
situation as before of a nondegenerate cut, which is now C, crossing a degenerate essential
cut. Thus we get the statement of the theorem for C, i.e., A = 3, and the (A+1)-component
that C is compatible with is a cube graph on halo nodes only. The same holds for C, since,

by Lemma 3.1(ii), C and C, being crossing, are compatible with the same component. O

By this Lemma and Theorem 5.8, we obtain:
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Corollary 5.11 Let N be a node of T* with Fyr # (0. Then either

(i) for the family Fyr there exists a local model (w.r.t. T), which is a cactus tree with

its minimal cuts, of size linear in the number of Fxr-atoms, or;

(i) A =3, and G is a cube graph with halo nodes only.

5.3 TUnited model

Let us show how to construct a 2-level cactus tree model using the models described in the
two previous sections. Note that a cube graph has only three nondegenerate 4-cuts; each
such cut consists of four pairwise nonadjacent edges of the cube. Thus, if G is a cube graph
with halo nodes only, then G ~, with its three nondegenerate cuts, is a local model for the
nondegenerate cuts in F)/; the degenerate cuts in F)s, although they are all essential, can be
skipped, since they are represented in the II-model. To accord conditions of Theorem 5.1,
let us do the following. For every cactus tree type local model as in Corollary 5.11, replace
every its bridge by two parallel edges with the same ends; clearly, such operation does not
spoil the model and turns the structural graph be 2-connected. Let us now implant all the
local models as in Corollary 5.11 instead of the corresponding nodes of 72, as described in
Section 3; we denote the resulting cut model for F'U F* by (H2, o2, F?). Observe that this
model bijectively represents the A-cuts by its 1-cuts, which all are inherited from 72. In
other words, the bridge-tree of 2, obtained by shrinking every its 2-class, is isomorphic to
T>. By Corollaries 5.6 and 5.11 and Lemma 3.4(iii), the size of the model is linear in the
number of the F-atoms, i.e., the (A 4 2)-classes of G. The structural graph H? is a cactus

tree in the case A > 3, or a tree of edges, cycles, and cube graphs, in the case A = 3.

Identifying each edge of 7* with the corresponding bridge of H2, the set of generating
paths forms a set of bridge-paths of 72, called generating bridge-paths. Let us add to
F? the cuts corresponding to the generating bridge-paths, and denote by F? the obtained
modeling family. By Corollary 5.6, this operation retains the linearity of the size in the
number of the (A 4 2)-classes of G. Tt is easy to see that the model H? = (H?2,p?, F?),
together with the set of the generating bridge-paths (which is a II-model), satisfies the

conditions (i-iii) of Theorem 5.1, i.e., is a 2-level cactus tree model for FA U FAt!,

Note that every local model implanted is condensed, since its modeling cuts partition
the node set of the structural graph into singletons; this is clear for a cactus tree, and can be
easily verified for a cube. Thus, by Lemma 3.4(ii), the model H? is also condensed. This
finishes the proof of Theorem 5.1.

Observe that any cut in FAM! is represented by 72 at most four times, since anyone of
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Figure 13: Example of the construction of a 2-level cactus tree model, the case A = 3. (Generating
paths and some of generating cuts are shown by dotted lines.)

the II-model and the cactus tree model represent cuts at most twice, while cuts modeled

by cubes and cuts in F* are represented bijectively.

Remark. Lemmas 5.2 and 5.9 imply the following interesting property of paths in a II-
model (we do not use it, and thus omit the proof): Let &',&"” be any two edges in a path in
II. Then the shortest path between them in H? has at most one structural edge in common

with any cycle of H?.

5.4 Incremental maintenance

Herein we show how, using a 2-level cactus tree model, to maintain efficiently the (A + 2)-

classes under insertions of edges into G.

Theorem 5.12 For Ay odd, the (A\g+2)-classes of G can be maintained under a sequence of
u updates Insert-Edge and q queries Same-(Ag + 2)-Class(z,y)? in O((u+q+n)a(u+gq,n))

total time. The initialization time is polynomial in n, and the space required is O(n).

Our main idea is to extend the algorithm for the case A = 1 [16] to the case of arbitrary
A odd, preserving its complexity. For A > 3, our model is structurally similar to that of
[16], except for the II-model, and this goal is achieved by replacing the insertion of any edge
by equivalent, in a sense, sequence of edge insertions; each of those insertions is processed
separately by means of the algorithm [16]. Moreover, we show how our algorithm can be

extended to the case A = 3, when also cube graphs appear in the structural graph.

Notice that we can easily reduce the complexity of maintenance to O((u+q-+nx,+2)a(u+
q,Mx,+2)) in the following way. At the preprocessing stage, we can build the quotient graph
G' by shrinking each of the ny,+2 (Ao +2)-classes of G into a single supervertex and apply
our algorithm to G’, with ny,19 supervertices, instead of G. In this version, the current

(Ao + 2)-class of a vertex v of G is found as the current (Ao + 2)-class of the supervertex
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Figure 14: Squeeze(N',N"') operation. (New nodes arising from shrinkings are shown by bigger
circles.)

of G' corresponding to the initial (Mg + 2)-class of v. This is done via two queries, where

finding the supervertex can be supported by a static data structure in O(1) time.

5.4.1 Incremental transformations, the case A > 3

Let us consider the case A > 3, when the structural graph H? is a cactus tree. We first
discuss the transformations of a 2-level cactus tree model caused by insertion of an edge (z, y)
into G. Similarly to [16, 13, 10], when an edge (z,y) is inserted, we define the squeezing
path P, to be the unique path-of-edges-and-cycles in H? between the nodes ¢?(z) and
©?(y). The attachment nodes of Py, are defined as ¢?(z), ¢?(y), and all the articulation
nodes of H? separating them. Each cycle in Py contains exactly two attachment nodes.
To squeeze a cycle means to shrink its two attachment nodes into a new node (recall that
shrinking includes deletion of arising loops). As usually, we assume that shrinking a set of
nodes of a structural graph implies the corresponding change of the model mapping: the

new mapping is the composition of the original mapping and the quotient one.

Given two nodes (N, N"") of a model whose structural graph is a cactus tree, we define

the following operation (see Fig. 14):

Squeeze(N', N"):
e add an edge with endnodes N/, N'';

e squeeze every cycle on the path between N’ and N”.

It is easy to show that such an operation keeps the property of the structural graph to be

a cactus tree; this operation is the same as used in [16].

Let us denote by 75xy the bridge-path formed by the bridges of P.,. The set of inter-
sections {ﬁmy NP : P € 11} which have at least two edges and the single edges of ﬁmy not
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Figure 15: Transformations of a 2-level cactus tree model: (a) initial model; (b) transformation (A);
(¢) transformations (B),(C). (Dotted lines show generating paths and cycle-generating subpaths.)

belonging to any such intersection are called the cycle-generating subpaths of P, (or
of 75”) The transformations of the 2-level cactus tree model under insertion of an edge

e = (z,y) are as follows (see Fig. 15):

(A) For any two cycle-generating subpaths P’ = N{,...,Nj and P" = N{,... N, that

have a structural edge (N{', N3) in common:

(i) an empty node N is inserted into this common edge (i.e., this edge is replaced
by N and the two structural edges (N, N) and (N, N3));

(ii) P’ and P” are replaced by the two new cycle-generating subpaths N, ..., N and
N, ..., NJ, respectively.

(Observe that after this modification, no two cycle-generating subpaths have a struc-

tural edge in common.)

(B) The endnodes of the cycle-generating subpaths partition Py, into a sequence of paths-
of-edges-and-cycles. For each such path with endnodes N, N'; the operation Squeeze(N', N')

is executed.

(C) The new II-model is defined to be the set of paths {P\ ﬁmy P ell|P\ 75%| > 2},
i.e., for every path in II, its remaining bridges form a path of the new Il-model if

their number is at least two. (Note that each generating path in II gives at most one
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generating path in the new II-model, since every path in the new II-model consists of

all remaining bridges from some path in II.)

Our aim now is to show that the result is a 2-level cactus tree model for the new graph
Gy = GU(z,y), provided A(Gyy) = A(G). Let us denote the objects modified as above by
’H%y, goiy, and II,,. The modeling family }'fy is defined to consist of the 1-cuts and minimal
2-cuts of H}, and of the nonminimal 2-cuts of the form {{e’,e"} : &/,e"” € P, P € Iy}

Theorem 5.13 If \(G.y) = AMG), then the model (Hgy,wgy,ffy) is a condensed 2-level

cactus tree model of size O(n) for Gyy.

Proof: In order to prove our statement, it is sufficient to show that the cut model
(H:%y, wgy,}"%y), together with II,,, satisfies for G, properties (i-iii) of Theorem 5.1 (con-
density is obtained automatically, as above). For convenience, let us modify the order of

transformations as follows.

(1) Every cycle of P, is squeezed (as a result, P, turns into 75%)
Execute (C).

(2) Execute (A).

(3) For each cycle-generating subpath with ends N7, N3, the edge (N7, N3) is added.

It is easy to see that these transformations lead to the same model (H%ya @iy, fgy) and

to the same set of paths II,,.

Let us prove property (i). Clearly, contraction of an edge or squeezing of a cycle in a
cactus tree keeps it a cactus tree. Thus, the structural graph after transformation (1) is a
cactus tree. Also, any insertion of a node into an edge at transformation (2) retains the
model graph a cactus tree. Let us, at transformation (3), add the edges sequentially. Then,
at each stage, there is a unique path in the current cactus tree between the endnodes of the
added edge, and this path does not contain any edge of a cycle. Therefore, after adding
such an edge, no two cycles have an edge in common, i.e., we arrive at another cactus tree.

Hence, Hgy is a cactus tree.

Property (ii) is satisfied by the definition of F2,. Moreover, the fact that any two paths

in II have at most one edge in common implies immediately the same property for IL,,.

Let us prove property (iii). First, let us show that (wgy)_l takes bijectively the family
of 1-cuts of H2, onto the family of A-cuts of Gy. Observe that a bisection of V defines
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a A-cut of Gy if and only if it defines a A-cut of G that does not get the inserted edge.

It is easy to see that those bisections are represented bijectively in H? by the bridges not

2
zY?
in ’H?Cy the same bisection of V that it ¢?-induces in H?, (b) the bridges of H? belonging

to Py after transformation (3) stop being bridges, and (c) no new bridges are made, which

belonging to P,,. By construction: (a) any such bridge remains in %z, and it @iy—induces

suffices.

To finish proving property (iii), it remains to show that (wgy)_l takes the 2-cuts in }'fy
onto the family of (A + 1)-cuts of G,. Let us consider the (A + 1)-cuts of Gy: such one is
either a A-cut of G that gets the inserted edge, or a (A + 1)-cut of G that does not get the
inserted edge. Observe that the former are represented in #? by the bridges belonging to
Py, and the latter by the minimal 2-cuts not dividing Py, and by the cuts {¢’,e”} of the
II-model for which either ¢',¢"” € Py, or €',¢"” ¢ Pyy.

Let us trace transformations (1-3). It is easy to see that after transformation (1) only
minimal 2-cuts of #? are affected, and exactly cuts dividing Py disappear. According to
transformation (2), let us insert the corresponding empty nodes, denoting the path arising

from ﬁmy by 75% as well. In the obtained model:
e The A-cuts that get the inserted edge are modeled by the single edges of ﬁmy;
e The (A + 1)-cuts that do not get the inserted edge are modeled by:

- the minimal 2-cuts not dividing ﬁmy;

- the nonminimal 2-cuts {¢’, £}, where &', " are two bridges either both belonging
to the same cycle-generating subpath, or &’,¢” € P\ 75“,,77 € TI (the latter are
the modeling cuts of the II,,-model).

Observe that at transformation (3) we only add certain edges, and thus the node set
and model mapping remain the same. Let us denote the intermediate model obtained after
transformation (2) together with the set of modeling cuts listed above by (7—22,90§y,f2).
Observe that, by the above discussion, this is a model for the (A + 1)-cuts of G.

Let us show that the family of node bisections defining the 2-cuts in F? coincides

with the family of node bisections defining the cuts in F2. Recall that any 2-cut in .7-"$2y

2
zy»

{e',e"} : €',e" € P, P € Ily. For any bisection B of the node set of Hz, (and thus of that
of ’}:[2), it can be easily verified that:

consists of two edges belonging to the same cycle of H2 | or of two bridges of the form

e BB defines a cut of ’Hgy that consists of two edges belonging to the same cycle if and only

if it defines in 72 a cut that consists either of two edges belonging to the same cycle,
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or of a single bridge forming a cycle-generating subpath, or of two bridges belonging

to the same cycle-generating subpath.

e B defines a cut of Hgy that consists of two bridges ¢, €”, such that ¢’, " € P, P € I,
if and only if it defines in 72 a cut that consists of the same two bridges £’ ¢”, with
ee"eP\ ﬁmy,P e IL

Thus, (<,0:2Ey)*1 takes the 2-cuts in .’F%y onto the A-cuts of G that get the inserted edge
and the (A 4 1)-cuts that do not get the inserted edge. Thus (@iy)*l takes the family of
2-cuts in }'%y onto the family of (A +1)-cuts of G,. This finishes the proof of property (iii)
and thus the proof of the Theorem. O

Observe that the transformations of our model, as described, is insensible to increasing
of the connectivity of the current graph from Ag to Ag+1 (since nothing depends on ezistence
of \p-cuts). Therefore, in the next section we discuss implementation for the general case of

maintenance of the (Ag + 2)-classes of a graph undergoing any sequence of edge insertions.

5.4.2 Implementation

Let us discuss now implementation of incremental dynamics of (Ao + 2)-classes by means
of the 2-level cactus tree model. We use as a subroutine the algorithm [16] that solves our
problem for the case A\g = 1. To be free to use it for our purposes, let us give for it formal
specifications independent of its concrete semantics. The algorithm [16], given a cut model
for a set V whose structural graph is a cactus tree, maintains the classes defined by the

nonempty preimages of its nodes under any sequence of update operations

Compress(z,y): do Squeeze(Ny, Ny), where z,y are two elements of V and N, N, are the

nodes they are mapped to, respectively,
and at any time is able to answer for any two elements z,y € V the query

Same-Class{z,y}?: Return “true” if  and y are mapped to the same node of the current

model, and “false” otherwise.

In the case the size of the model is O(n), n = |V, the total time complexity for v updates

and ¢ queries is O((u + g +n)a(u + ¢,n)) and the space required is O(n).

The algorithm [16] uses a certain tree-like data structure, whose nodes represent the
nodes of the model and its cycles. To support dynamics, to each “node” node is assigned a

certain union-find type data structure, while to each “cycle” node is assigned a certain data
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structure of set-splitting type; any primitive operation on those data structures is executed

in O(a(u + ¢q,n)) amortized time.

Each Compress(xz,y) operation is done in three phases. First, Find(z) and Find(y)
return Ny, Ny, respectively. Then, the squeezed path is found, in time linear in its length.
Finally, Squeeze(Ny, Ny) is executed; the number of primitive data structure operations
during it is linear in the length of the squeezed path. Each query Same-Class{z,y}? is
answered by checking Find(z) and Find(y) for equality.

It is shown in [16], that the total length of all paths undergoing Squeeze operations
during the algorithm, for any sequence of updates, is O(n’), where n' is the size of the
initial cactus tree. Hence, the total number of primitive operations for finding all squeezed
paths and for reorganizing the data structure is O(n’), while the total number of Find
operations is 2(u + ¢). The space required is O(n + n’). For the case n’ = O(n), this leads

to the time and space complexities given above. °

In order to maintain the (Mg + 2)-classes of G, we apply the incremental algorithm and
the data structure of [16] to the cut model (H2, ¢?). The additional information on the

2-level cactus tree model is implemented and maintained as follows.

The data structure used in [16] contains the representation of all bridges of the model.
Using it, we keep for each bridge of H? the list of names of at most four paths in IT containing
it. Such name lists provide forming the cycle-generating paths in time linear in the length
of 75:1;3;, by a single pass along that path. Paths in IT are maintained as double-linked edge
lists; therefore, excluding a cycle-generating path from a path in II can be done in O(1)
time. Observe that there is no need to update name lists during the algorithm; the space

remains linear.

Our algorithm is the following extension of the algorithm [16]. First, given the endpoints
x and y of an inserted edge, we call the subroutine of algorithm [16] that returns the squeezed
path Py,. We scan that path to find all the cycle-generating subpaths (using the lists defined
above) and insert an empty node into each bridge that is contained in two cycle generating
subpaths; this can be done in time linear in |P,,|. Finally, for each cycle-generating subpath
with endnodes N, N, we call subroutine Squeeze(N’, N"").5

To adjust the algorithm and the data structure of [16] to insertions of empty nodes,

preserving the complexity, let us use the following trick. Instead of inserting empty nodes

°In [16] was considered the case of a model that has no empty nodes. However, the same algorithm works
also if there are empty nodes in the model. One of the ways to see this, is by means of the following simple
reduction: for every empty node N of the model, add a “dummy” preimage element vy to the ground set.

5In the case Ao = 1 considered in [16], always the whole ’ﬁmy plays the role of the single cycle-generating
subpath, since in this case any pair of edges of 7*° models a 2-cut of G.
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during the algorithm, all possible insertions are done at the initialization by inserting an
empty node into every bridge of #? which belongs to at least two paths of the II-model (the
inserted empty nodes will have degree 2); the total size of the representation remains O(n).
The name lists for the two bridges incident to an inserted node are copies of the list for the
bridge that this node was inserted into. Thus, no insertions will be needed. However, if all
the insertions are done at the initialization, we must modify the transformations to adjust
them to the case when the two bridges incident to an inserted node belong to only one cycle-
generating subpath, when such an insertion should not have taken place. To reverse the
wheel backwards, in such a case, we can simply contract one of the “twin” bridges incident
to the inserted node, say (N, N'), which can be executed by calling twice Squeeze(N', N');

the number of such calls is again linear in |Py,|.

Let us show that the time complexity of our algorithm is the same O((u+q+n)a(u+q,n))
as for the algorithm [16]. Indeed, the initial size of the cactus tree model is, as in [16], O(n).
In fact, the proof in [16] of the linear bound for the total sum of the lengths of all squeezed
paths during the algorithm can be easily generalized to any formally possible sequence of
such paths, independently of their semantics. Hence, the total sum of the lengths of the
squeezed paths used in our algorithm is, as in [16], O(n). Recall that the additional time
spent for finding cycle-generating subpaths and for modifying the II-model is O(| Py, |), and,

hence, does not lead to an increase of complexity.

Let us now show that the space complexity is O(n). Except for the II-model and the
corresponding name lists, all the parts of our model are of the same type as in [16]; their
updates are executed by means of the algorithm [16]. Therefore, the space required for
those parts is, as in [16], O(n + n’) = O(n). Now, the initial space related to the II-model
is O(n), and during the algorithm it can only decrease. Thus, the total space requirements
are O(n). This finishes the proof of Theorem 5.12 for the case \g > 3.

5.4.3 Generalization to the case A = 3

Let us now discuss the case A\g = 3 when there are local models which are cubes. As we
show, this case can be reduced to the previous one. Let us, for each cube of #?, choose
arbitrarily any its cut formed by four nonadjacent edges; recall that such a cut models a
(Ao + 1)-cut, henceforth called “hidden”. Then, let us contract everyone of those structural
edges, transforming the cube into a 2-uniform cycle of length 4, and then delete one edge
from every pair of its parallel edges. Clearly, any 2-cut which consists of two edges of such
a cycle p2-induces a (\g + 1)-cut of G: it induces a nondegenerate (Ao + 1)-cut if those

edges are nonadjacent and a degenerate (Ao + 1)-cut otherwise. Execution of this operation
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for every cube of H? results in a cut model, whose structural graph is a cactus tree and
which satisfies all properties of a 2-level cactus tree model, except for the representation of
the hidden (A\g + 1)-cuts. Therefore, maintaining the atoms w.r.t. the \op- and nonhidden
(Ao + 1)-cuts under insertions of edges into G can be processed by using the algorithm

suggested above for the case Ay > 3.
Clearly, the subfamily of hidden ()¢ + 1)-cuts is parallel, and thus is modeled by a tree.

We maintain the corresponding atoms by treating this tree model separately; obviously, the
time complexity cannot be greater than that of the algorithm of [16] (e.g., the algorithm
[13, Section 3.2], with the time complexity O(u + ¢ + n) and required space O(n), can be
applied). Moreover, since the union of the cut sets represented by our two models at any
stage is the entire set of A\g- and (Ao + 1)-cuts of the current graph, then the answer to a
query Same-4-Class(x,y)? is positive if and only if both z and y belong to the same atom
w.r.t. each of these two systems. In this way, the case A\g = 3 is reduced to the previous

one, which finishes the proof of Theorem 5.12.

6 Concluding remarks

1. Observe that the properties mentioned in Theorem 5.1 are similar to those of the cactus
tree model for the minimum cuts, though more complicated. Since the structure of the
modeling cuts is explicit and, in a sense, simple, and since the representation is compact,
our model seems to be convenient to represent the minimum and minimum+1 cuts of graphs

in various applications.

2. Our difficulties to include the case A = 3 into the general scheme seem to be explainable.
According to [24], there are special properties of cut families when cardinalities of the cuts
are strictly within %)\; observe that if A = 3 then % = %, while for A > % holds % < %.
3. In [5], the k-cuts of an arbitrary graph G dividing only one its 3-class S are described
as generated by the k-cuts of the corresponding 3-component S (which is defined slightly
differently than in this paper); the 3-components are shown to be 3-connected graphs.
Using this description and the 2-level cactus tree models for all such 3-components of G, a
complete description of k-cuts, k£ < 4, of G can be given. The structure thus obtained is

used in [11] to maintain effectively the 5-classes in an arbitrary incremental graph.

4. Let us call a cut of a weighted graph subminimum if its weight is the second minimum.
Let us suggest as an open problem generalizing the results of this paper to modeling the
minimum and subminimum )'-cuts, in the case /\7’ < %, for an arbitrary weighted graph.

To achieve this generalization, the techniques used in this paper separately for odd and

35



even cases have to be combined; therefore, the new construction is expected to have the

difficulties of both these cases simultaneously, and maybe even more.
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