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Abstract. In the Steiner Network problem we are given a graph G with
edge-costs and connectivity requirements ruv between node pairs u, v.
The goal is to find a minimum-cost subgraph H of G that contains ruv
edge-disjoint paths for all u, v ∈ V . In Prize-Collecting Steiner Network

problems we do not need to satisfy all requirements, but are given a
penalty function for violating the connectivity requirements, and the goal
is to find a subgraphH that minimizes the cost plus the penalty. The case
when ruv ∈ {0, 1} is the classic Prize-Collecting Steiner Forest problem.
In this paper we present a novel linear programming relaxation for the
Prize-Collecting Steiner Network problem, and by rounding it, obtain the
first constant-factor approximation algorithm for submodular and mono-
tone non-decreasing penalty functions. In particular, our setting includes
all-or-nothing penalty functions, which charge the penalty even if the
connectivity requirement is slightly violated; this resolves an open ques-
tion posed in [SSW07]. We further generalize our results for element-
connectivity and node-connectivity.

1 Introduction

Prize-collecting Steiner problems are well-known network design problems with
several applications in expanding telecommunications networks (see for exam-
ple [JMP00,SCRS00]), cost sharing, and Lagrangian relaxation techniques (see
e.g. [JV01,CRW01]). A general form of these problems is the Prize-Collecting

Steiner Forest problem1: given a network (graph) G = (V,E), a set of source-
sink pairs P = {{s1, t1}, {s2, t2}, . . . , {sk, tk}}, a non-negative cost function
c : E → ℜ+, and a non-negative penalty function � : P → ℜ+, our goal is
a minimum-cost way of installing (buying) a set of links (edges) and paying the
penalty for those pairs which are not connected via installed links. When all
penalties are ∞, the problem is the classic APX-hard Steiner Forest problem, for
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1 In the literature, this problem is also called “prize-collecting generalized Steiner
tree”.



which the best known approximation ratio is 2− 2
n (n is the number of nodes of

the graph) due to Agrawal, Klein, and Ravi [AKR95] (see also [GW95] for a more
general result and a simpler analysis). The case of Prize-Collecting Steiner Forest

problem when all sinks are identical is the classic Prize-Collecting Steiner Tree

problem. Bienstock, Goemans, Simchi-Levi, and Williamson [BGSLW93] first
considered this problem (based on a problem earlier proposed by Balas [Bal89])
and gave for it a 3-approximation algorithm. The current best ratio for this
problem is 1.992 by Archer, Bateni, Hajiaghayi, and Karloff [ABHK09], im-

proving upon a primal-dual
(

2− 1
n−1

)

-approximation algorithm of Goemans

and Williamson [GW95]. When in addition all penalties are ∞, the problem is
the classic Steiner Tree problem, which is known to be APX-hard [BP89] and
for which the best approximation ratio is 1.55 [RZ05]. Very recently, Byrka et
al. [BGRS10] have announced an improved approximation algorithm for the
Steiner tree problem.

The general form of the Prize-Collecting Steiner Forest problem first has been
formulated by Hajiaghayi and Jain [HJ06]. They showed how by a primal-dual al-
gorithm to a novel integer programming formulation of the problem with doubly-
exponential variables, we can obtain a 3-approximation algorithm for the prob-
lem. In addition, they show that the factor 3 in the analysis of their algorithm is
tight. However they show how a direct randomized LP-rounding algorithm with
approximation factor 2.54 can be obtained for this problem. Their approach has
been generalized by Sharma, Swamy, and Williamson [SSW07] for network de-
sign problems where violated arbitrary 0-1 connectivity constraints are allowed
in exchange for a very general penalty function. The work of Hajiaghayi and
Jain has also motivated a game-theoretic version of the problem considered by
Gupta et al. [GKL+07].

In this paper, we consider a much more general high-connectivity version of
Prize-Collecting Steiner Forest, called Prize-Collecting Steiner Network, in which
we are also given connectivity requirements ruv for pairs of nodes u and v and
a penalty function in case we do not satisfy all ruv. Our goal is to find a mini-
mum way of constructing a network (graph) in which we connect u and v with
r′uv ≤ ruv edge-disjoint paths and paying a penalty for all violated connectivity
between source-sink pairs. This problem can arise in real-world network design,
in which a typical client not only might want to connect to the network but
also might want to connect via a few disjoint paths (e.g., to have a higher band-
width or redundant connections in case of edge failures) and a penalty might
be charged if we cannot satisfy its connectivity requirement. When all penalties
are ∞, the problem is the classic Steiner Network problem. Improving on a long
line of earlier research that applied primal-dual methods, Jain [Jai01] obtained
a 2-approximation algorithm for Steiner Network using the iterative rounding
method. This algorithm was generalized to so called “element-connectivity” by
Fleischer, Jain, and Williamson [FJW01] and by Cheriyan, Vempala, and Vetta
[CVV06]. Recently, some results were obtained for the node-connectivity version;
the currently best known ratios for the node-connectivity case are O(R3 logn)
for general requirements [CK09] and O(R2) for rooted requirements [Nut09],



where R = maxu,v∈V ruv is the maximum requirement. See also the survey by
Kortsarz and Nutov [KN07] for various min-cost connectivity problems.

Hajiaghayi and Nasri [HN10] generalize the iterative rounding approach of
Jain to Prize-Collecting Steiner Network when there is a separate non-increasing
marginal penalty function for each pair u, v whose ruv-connectivity requirement
is not satisfied. They obtain an iterative rounding 3-approximation algorithm for
this case. For the special case when penalty functions are linear in the violation
of the connectivity requirements, Nagarajan, Sharma, and Williamson [NSW08]
using Jains iterative rounding algorithm as a black box give a 2.54-factor approx-
imation algorithm. They also generalize the 0-1 requirements of Prize-Collecting
Steiner Forest problem introduced by Sharma, Swamy, and Williamson [SSW07]
to include general connectivity requirements. Assuming the monotone submod-
ular penalty function of Sharma et al. is generalized to a multiset function that
can be decomposed into functions in the same type as that of Sharma et al.,
they give an O(logR)-approximation algorithm (recall that R is the maximum
connectivity requirement). In this algorithm, they assume that we can use each
edge possibly many times (without bound). They raise the question whether we
can obtain a constant ratio without all these assumptions, when penalty is a sub-
modular multi-set function of the set of disconnected pairs? More importantly
they pose as an open problem to design a good approximation algorithm for the
all-or-nothing version of penalty functions: penalty functions which charge the
penalty even if the connectivity requirement is slightly violated. In this paper,
we answer affirmatively all these open problems by proving the first constant
factor 2.54-approximation algorithm which is based on a novel LP formulation
of the problem. We further generalize our results for element-connectivity and
node-connectivity. In fact, for all types of connectivities, we prove a very gen-
eral result (see Theorem 1) stating that if Steiner Network (the version without
penalties) admits an LP-based �-approximation algorithm, then the correspond-
ing prize-collecting version admits a (�+ 1)-approximation algorithm.

1.1 Problems we consider

In this section, we define formally the terms used in the paper. For a subset
S of nodes in a graph H , let �S

H(u, v) denote the S-connectivity between u
and v in H , namely, the maximum number of edge-disjoint uv-paths in H so
that no two of them have a node in S − {u, v} in common. In the Generalized

Steiner-Network (GSN) problem we are given a graph G = (V,E) with edge-costs
{ce ≥ 0 ∣ e ∈ E}, a node subset S ⊆ V , a collection {u1, v1}, . . . , {uk, vk} of node
pairs from V , and S-connectivity requirements r1, . . . , rk. The goal is to find a
minimum cost subgraph H of G so that �S

H(ui, vi) ≥ ri for all i. Extensively
studied particular cases of GSN are: the Steiner Network problem, called also
Edge-Connectivity GSN (S = ∅), Node-Connectivity GSN (S = V ), and Element-

Connectivity GSN (S ∩ {ui, vi} = ∅ for all i). The case of rooted requirements
is when there is a “root” s that belongs to all pairs {ui, vi}. We consider the
following “prize-collecting” version of GSN.



All-or-Nothing Prize Collecting Generalized Steiner Network (PC-GSN):

Instance: A graph G = (V,E) with edge-costs {ce ≥ 0 ∣ e ∈ E}, S ⊆ V , a
collection {u1, v1}, . . . , {uk, vk} of node pairs from V , S-connectivity require-
ments r1, . . . , rk > 0, and a penalty function � : 2{1,...,k} → ℜ+.

Objective: Find a subgraph H of G that minimizes the value

val(H) = c(H) + �(unsat(H))

of H , where unsat(H) = {i ∣ �S
H(ui, vi) < ri} is the set of requirements not

satisfied by H .

We will assume that the penalty function � is given by an evaluation oracle.
We will also assume that � is submodular, namely, that �(A) + �(B) ≥ �(A ∩
B) + �(A ∪ B) for all A,B and that it is monotone non-decreasing, namely,
�(A) ≤ �(B) for all A,B with A ⊆ B. As was mentioned, approximating the
edge-connectivity variant of PC-GSN was posed as the main open problem by
Nagarajan, Sharma, and Williamson [NSW08]. We resolve this open problem for
the submodular function val(H) considered here.

We next define the second problem we consider.

Generalized Steiner Network with Generalized Penalties (GSN-GP):

Instance: A graph G = (V,E) with edge-costs {ce ≥ 0 ∣ e ∈ E}, S ⊆ V ,
a collection {u1, v1}, . . . , {uk, vk} of node pairs from V , and non-increasing
penalty functions p1, . . . , pk : {0, 1, . . . , n− 1} → ℜ+.

Objective: Find a subgraph H of G that minimizes the value

val
′(H) = c(H) +

k
∑

i=1

pi(�
S
H(ui, vi)).

The above problem captures general penalty functions of the S-connectivity
�S(ui, vi) for given pairs {ui, vi}. It is natural to assume that the penalty func-
tions are non-increasing, i.e., we pay less in the objective function if the achieved
connectivity is more. This problem was posed as an open question by Nagarajan
et al. [NSW08]. In this paper, we use the convention that pi(n) = 0 for all i.

We need some definitions to introduce our results. A pair T = {T ′, T ′′} of
subsets of V is called a setpair (of V ) if T ′ ∩ T ′′ = ∅. Let K = {1, . . . , k}.
Let T = {T ′, T ′′} be a setpair of V . We denote by �(T ) the set of edges in E
between T ′ and T ′′. For i ∈ K we use T ⊙(i, S) to denote that ∣T ′∩{ui, vi}∣ = 1,
∣T ′′ ∩{ui, vi}∣ = 1 and V ∖ (T ′ ∪T ′′) ⊆ S. While in the case of edge-connectivity
a “cut” consists of edges only, in the case of S-connectivity a cut that separates



between u and v is “mixed”, meaning it may contain both edges in the graph
and nodes from S. Note that if T ⊙ (i, S) then �(T ) ∪ (V ∖ (T ′ ∪ T ′′)) is such
a mixed cut that separates between ui and vi. Intuitively, Menger’s Theorem
for S-connectivity (c.f. [KN07]) states that the S-connectivity between ui and
vi equals the minimum size of such a mixed cut. Formally, for a node pair ui, vi
of a graph H = (V,E) and S ⊆ V we have:

�S
H(ui, vi) = min

T⊙(i,S)
(∣�(T )∣+ ∣V ∖(T ′∪T ′′)∣) = min

T⊙(i,S)
(∣�(T )∣+ ∣V ∣−(∣T ′∣+ ∣T ′′∣))

Hence if �S
H(ui, vi) ≥ ri for a graph H = (V,E), then for any setpair T with

T ⊙ (i, S) we must have ∣�(T )∣ ≥ ri(T ), where ri(T ) = max{ri + ∣T ′∣ + ∣T ′′∣ −
∣V ∣, 0}. Consequently, a standard “cut-type” LP-relaxation of the GSN problem
is as follows (c.f. [KN07]):

min

⎧

⎨

⎩

∑

e∈E

cexe ∣
∑

e∈�(T )

xe ≥ ri(T ) ∀T ⊙ (i, S), ∀i ∈ K, xe ∈ [0, 1] ∀e

⎫

⎬

⎭

. (1)

1.2 Our results

We introduce a novel LP relaxation of the problem which is shown to be bet-
ter, in terms of the integrality gap, than a “natural” LP relaxation considered
in [NSW08]. Using our LP relaxation, we prove the following main result.

Theorem 1. Suppose that there exists a polynomial time algorithm that com-
putes an integral solution to LP (1) of cost at most � times the optimal value
of LP (1) for any subset of node pairs. Then PC-GSN admits a (1 − e−1/�)−1-
approximation algorithm, provided that the penalty function � is submodular and
monotone non-decreasing.

Note that since 1 − 1
� < e−

1
� < 1 − 1

�+1 holds for � ≥ 1, we have � < (1 −

e−1/�)−1 < �+ 1.
Let R = maxi ri denote the maximum requirement. The best known values

of � are as follows: 2 for Edge-GSN [Jai01], 2 for Element-GSN [FJW01,CVV06],
O(R3 log ∣V ∣) for Node-GSN [CK09], and O(R2) for Node-GSN with rooted re-
quirements [Nut09]. Substituting these values in Theorem 1, we obtain:

Corollary 1. PC-GSN problems admit the following approximation ratios pro-
vided that the penalty function � is submodular and monotone non-decreasing:
2.54 for edge- and element-connectivity, O(R3 log ∣V ∣) for node-connectivity, and
O(R2) for node-connectivity with rooted requirements.

Our results for GSN-GP follow from Corollary 1.

Corollary 2. GSN-GP problems admit the following approximation ratios: 2.54
for edge- and element-connectivity, O(R3 log ∣V ∣) for node-connectivity, and O(R2)
for node-connectivity with rooted requirements. Here R = max1≤i≤k min{� ≥ 0 ∣
pi(�) = 0}.



Proof. We present an approximation ratio preserving reduction from the GSN-

GP problem to the corresponding PC-GSN problem. Given an instance of the
GSN-GP problem, we create an instance of the PC-GSN problem as follows. The
PC-GSN instance inherits the graph G, its edge-costs, and the set S. Let (ui, vi)
be a pair in GSN-GP and let Ri = min{� ≥ 0 ∣ pi(�) = 0}. We introduce Ri

copies of this pair, {(u1
i , v

1
i ), . . . , (u

Ri

i , vRi

i )}, to the set of pairs in the PC-GSN

instance. We set the edge-connectivity requirement of a pair (ut
i, v

t
i) to be t

for 1 ≤ t ≤ Ri. We also set the penalty function for singleton sets as follows
�({(ut

i, v
t
i)}) = pi(t−1)−pi(t) for all 1 ≤ t ≤ Ri. Finally, we extend this function

� to a set of pairs P by linearity, i.e., �(P ) =
∑

p∈P �({p}). Note that such a
function � is clearly submodular and monotone non-decreasing.

It is sufficient to show that for any subgraph H of G, its value in the GSN-GP
instance equals its value in the PC-GSN instance, i.e., val(H) = val

′(H); then we
can use the algorithm from Corollary 1 to complete the proof. Fix a pair (ui, vi)
in the GSN-GP instance. Let �S

H(ui, vi) = ti. Thus the contribution of pair (ui, vi)
to the objective function val(H) of the GSN-GP instance is pi(ti). On the other
hand, since � is linear, the total contribution of pairs {(u1

i , v
1
i ), . . . , (u

Ri

i , vRi

i )} to

the objective function val
′(H) of the PC-GSN instance is

∑Ri

t=ti+1 �({(u
t
i, v

t
i)}) =

∑Ri

t=ti+1(pi(t− 1)− pi(t)) = pi(ti). Note that the pairs (ut
i, v

t
i) for 1 ≤ t ≤ ti do

not incur any penalty. Summing up over all pairs, we conclude that val(H) =
val

′(H), as claimed.

2 A new LP relaxation

We use the following LP-relaxation for the PC-GSN problem. We introduce vari-
ables xe for e ∈ E (xe = 1 if e ∈ H), fi,e for i ∈ K and e ∈ E (fi,e = 1 if
i ∕∈ unsat(H) and e appears on a chosen set of ri S-disjoint {ui, vi}-paths in
H), and zI for I ⊆ K (zI = 1 if I = unsat(H)).

Minimize
∑

e∈E cexe +
∑

I⊆K �(I)zI

Subject to
∑

e∈�(T ) fi,e ≥ (1−
∑

I:i∈I zI)ri(T ) ∀i ∀T ⊙ (i, S)

fi,e ≤ 1−
∑

I:i∈I zI ∀i ∀e
xe ≥ fi,e ∀i ∀e

∑

I⊆K zI = 1

xe, fi,e, zI ∈ [0, 1] ∀i ∀e ∀I

(2)

We first prove that (2) is a valid LP-relaxation of the PC-GSN problem.

Lemma 1. The optimal value of LP (2) is at most the optimal solution value
to the PC-GSN problem. Moreover, if � is monotone non-decreasing, the opti-
mum solution value to the PC-GSN problem is at most the value of the optimum
integral solution of LP (2).



Proof. Given a feasible solution H to the PC-GSN problem define a feasible
solution to LP (2) as follows. Let xe = 1 if e ∈ H and xe = 0 otherwise. Let
zI = 1 if I = unsat(H) and zI = 0 otherwise. For each i ∈ unsat(H) set fi,e = 0
for all e ∈ E, while for i /∈ unsat(H) the variables fi,e take values as follows: fix
a set of ri pairwise S-disjoint {ui, vi}-paths, and let fi,e = 1 if e belongs to one
of these paths and fi,e = 0 otherwise. The defined solution is feasible for LP (2):
the first set of constraints are satisfied by Menger’s Theorem for S-connectivity,
while the remaining constraints are satisfied by the above definition of variables.
It is also easy to see that the above solution has value exactly val(H).

If � is monotone non-decreasing, we prove that for any integral solution
{xe, fi,e, zI} to (2), the graph H with edge-set {e ∈ E ∣ xe = 1} has val(H)
at most the value of the solution {xe, fi,e, zI}. To see this, first note that there
is a unique set I ⊆ K with zI = 1, since the variables zI are integral and
∑

I⊆K zI = 1. Now consider an index i /∈ I. Since
∑

I:i∈I zI = 0, we have
∑

e∈�(T ) xe ≥
∑

e∈�(T ) fi,e ≥ ri(T ) for all T ⊙ (i, S). This implies that i /∈

unsat(H), by Menger’s Theorem for S-connectivity. Consequently, unsat(H) ⊆
I, hence �(unsat(H)) ≤ �(I) by the monotonicity of �. Thus val(H) = c(H) +
�(unsat(H)) ≤

∑

e∈E cexe +
∑

I⊆K �(I)zI and the lemma follows.

2.1 Why does a “natural” LP relaxation not work?

One may be tempted to consider a natural LP without using the flow variables
fi,e, namely, the LP obtained from LP (2) by replacing the the first three sets
of constraints by the set of constraints

∑

e∈�(T )

xe ≥ (1−
∑

I:i∈I

zI)ri(T )

for all i and T ⊙ (i, S). Here is an example demonstrating that the integrality
gap of this LP can be as large as R = maxi ri even for edge-connectivity. Let G
consist of R − 1 edge-disjoint paths between two nodes s and t. All the edges
have cost 0. There is only one pair {u1, v1} = {s, t} that has requirement r1 = R
and penalty �({1}) = 1. Let �(∅) = 0. Clearly, � is submodular and monotone
non-decreasing. We have S = ∅. No integral solution can satisfy the requirement
r1, hence an optimal integral solution pays the penalty �({1}) and has value 1.
A feasible fractional solution (without the flow variables) sets xe = 1 for all e,
and sets z{1} = 1/R, z∅ = 1− 1/R. The new set of constraints is satisfied since
∑

e∈�(T ) xe ≥ (1 − 1/R) ⋅ R = (1 − z{1})r1(T ) for any {s, t}-cut T . Thus the

optimal LP-value is at most 1/R, giving a gap of at least R.

With flow variables, however, we have an upper bound f1,e ≤ 1− z{1}. Since
there is an {s, t}-cut T with ∣�(T )∣ = R − 1, we cannot satisfy the constraints
∑

e∈�(T ) f1,e ≥ (1− z{1})r1(T ) and f1,e ≤ 1− z{1} simultaneously unless we set

z{1} = 1. Thus in this case, our LP (2) with flow variables has the same optimal
value of as the integral optimum.



2.2 Some technical results regarding LP (2)

We will prove the following two statements that together imply Theorem 1.

Lemma 2. Any basic feasible solution to (2) has a polynomial number of non-
zero variables. Furthermore, an optimal basic solution to (2) (the non-zero en-
tries) can be computed in polynomial time.

Lemma 3. Suppose that there exists a polynomial time algorithm that computes
an integral solution to LP (1) of cost at most � times the optimal value of LP (1)
for any subset of node pairs. Then there exists a polynomial time algorithm that
given a feasible solution to (2) computes as a solution to PC-GSN a subgraph H
of G so that val(H) = c(H) + �(unsat(H)) is at most (1− e−1/�)−1 times the
value of this solution, assuming � is submodular and monotone non-decreasing.

Before proving these lemmas, we prove some useful results. The following
statement can be deduced from a theorem of Edmonds for polymatroids (c.f.
[KV02, Chapter 14.2]), as the dual LP d() in the lemma seeks to optimize a
linear function over a polymatroid. We provide a direct proof for completeness
of exposition.

Lemma 4. Let  ∈ [0, 1]k be a vector. Consider a primal LP

p() := min

⎧

⎨

⎩

∑

I⊆K

�(I)zI ∣
∑

I:i∈I

zI ≥ i ∀i ∈ K, zI ≥ 0 ∀I ⊆ K

⎫

⎬

⎭

and its dual LP

d() := max

{

∑

i∈K

iyi ∣
∑

i∈I

yi ≤ �(I) ∀I ⊆ K, yi ≥ 0 ∀i ∈ K

}

.

Let � be a permutation of K such that �(1) ≤ �(2) ≤ . . . ≤ �(k). Let us also use
the notation that �(0) = 0. The optimum solutions to p() and d() respectively
are given by

zI =

{

�(i) − �(i−1), for I = {�(i), . . . , �(k)}, i ∈ K
0, otherwise;

and

y�(i) = �({�(i), . . . , �(k)})− �({�(i + 1), . . . , �(k)}), for i ∈ K.

Proof. To simplify the notation, we assume without loss of generality that 1 ≤
2 ≤ ⋅ ⋅ ⋅ ≤ k, i.e., that � is the identity permutation.

We argue that the above defined {zI} and {yi} form feasible solutions to the
primal and dual LPs respectively. Note that zI ≥ 0 for all I and

∑

I:i∈I zI =
∑i

j=1(j − j−1) = i for all i. Since � is monotone non-decreasing, the above



defined yi satisfy yi ≥ 0 for all i. Now fix I ⊆ K. Let I = {i1, . . . , ip} where
i1 < ⋅ ⋅ ⋅ < ip. Therefore

∑

i∈I

yi =

p
∑

j=1

yij =

p
∑

j=1

[�({ij , . . . , k})− �({ij + 1, . . . , k})]

≤

p
∑

j=1

[�({ij , ij+1, . . . , ip})− �({ij+1, ij+2, . . . , ip})]

= �({i1, . . . , ip}) = �(I).

The above inequality holds because of the submodularity of �. Next observe that
the solutions {zI} and {yi} satisfy

∑

I

�(I)zI =

k
∑

i=1

�({i, . . . , k}) ⋅ (i − i−1)

=

k
∑

i=1

i ⋅ (�({i, . . . , k})− �({i+ 1, . . . , k})) =
k
∑

i=1

i ⋅ yi.

Thus from weak LP duality, they in fact form optimum solutions to primal and
dual LPs respectively.

Recall that a sub-gradient of a convex function g : ℜk → ℜ at a point
 ∈ ℜk is a vector d ∈ ℜk such that for any ′ ∈ ℜk, we have g(′) − g() ≥
d ⋅ (′ − ). For a differentiable convex function g, the sub-gradient corresponds
to gradient ∇g. The function p() defined in Lemma 4 is essentially Lovasz’s
continuous extension of the submodular function �. The fact that p is convex
and its subgradient can be computed efficiently is given in [Fuj05]. We provide
a full proof for completeness of exposition.

Lemma 5. The function p() in Lemma 4 is convex and given  ∈ [0, 1]k, both
p() and its sub-gradient ∇p() can be computed in polynomial time.

Proof. We first prove that p is convex. Fix 1, 2 ∈ [0, 1]k and � ∈ [0, 1]. To show
that p is convex, we will show p(�1 + (1− �)2) ≤ �p(1) + (1− �)p(2). Let
{z1I} and {z2I} be the optimum solutions of the primal LP defining p for 1 and
2 respectively. Note that the solution {�z1I + (1 − �)z2I} is feasible for this LP
for  = �1 + (1− �)2. Thus the optimum solution has value not greater than
the value of this solution which is �p(1) + (1− �)p(2).

From Lemma 4, it is clear that given  ∈ [0, 1]k, the value p() can be
computed in polynomial time. Lemma 4 also implies that the optimum dual
solution y∗ = (y∗1 , . . . , y

∗
k) ∈ ℜk

+ can be computed in polynomial time. We now
argue that y∗ is a sub-gradient of p at . Fix any ′ ∈ ℜk. First note that, from
LP duality, p() = y∗ ⋅ . Thus we have

p() + y∗ ⋅ (′ − ) = y∗ ⋅  + y∗ ⋅ (′ − ) = y∗ ⋅ ′ ≤ p(′).

The last inequality holds from weak LP duality since y∗ is a feasible solution for
the dual LP d(′) as well. The lemma follows.



3 Proof of Lemma 3

We now describe how to round LP (2) solutions to obtain a (�+1)-approximation
for PC-GSN. Later we show how to improve it to (1− e−1/�)−1. Let {x∗

e, f
∗
i,e, z

∗
I}

be a feasible solution to LP (2). Let � ∈ (0, 1) be a parameter to be fixed later.
We partition the requirements into two classes: we call a requirement i ∈ K good
if
∑

I:i∈I z
∗
I ≤ � and bad otherwise. Let Kg denote the set of good requirements.

The following statement shows how to satisfy the good requirements.

Lemma 6. There exists a polynomial time algorithm that computes a subgraph
H of G of cost c(H) ≤ �

1−� ⋅
∑

e cex
∗
e that satisfies all good requirements.

Proof. Consider the LP-relaxation (1) of the GSN problem with good require-
ments only, with K replaced by Kg; namely, we seek a minimum cost sub-
graph H of G that satisfies the set Kg of good requirements. We claim that
x∗∗
e = min {1, x∗

e/(1− �)} for each e ∈ E is a feasible solution to LP (1). Thus
the optimum value of LP (1) is at most

∑

e∈E cex
∗∗
e . Consequently, using the

algorithm that computes an integral solution to LP (1) of cost at most � times
the optimal value of LP (1), we can construct a subgraph H that satisfies all
good requirements and has cost at most c(H) ≤ �

∑

e∈E cex
∗∗
e ≤ �

1−�

∑

e cex
∗
e ,

as desired.
We now show that {x∗∗

e } is a feasible solution to LP (1), namely, that
∑

e∈�(T ) x
∗∗
e ≥ ri(T ) for any i ∈ Kg and any T ⊙ (i, S). Let i ∈ Kg and let �i =

1−
∑

I:i∈I z
∗
I . Note that �i ≥ 1− �, by the definition of Kg. By the second and

the third sets of constraints in LP (2), for every e ∈ E we have min{�i, x∗
e} ≥ f∗

i,e.

Thus we obtain: x∗∗
e = min

{

1,
x∗

e

1−�

}

= 1
�i
min

{

�i,
�i

1−�x
∗
e

}

≥ 1
�i
min{�i, x

∗
e} ≥

f∗

i,e

�i
=

f∗

i,e

1−
∑

I:i∈I z∗

I
. Consequently, combining with the first set of constraints in

LP (2), for any T ⊙ (i, S) we obtain that
∑

e∈�(T ) x
∗∗
e ≥

∑
e∈�(T ) f

∗

i,e

1−
∑

I:i∈I z∗

I
≥ ri(T ).

Let H be as in Lemma 6, and recall that unsat(H) denotes the set of re-
quirements not satisfied by H . Clearly each requirement i ∈ unsat(H) is bad.
The following lemma bounds the total penalty we pay for unsat(H).

Lemma 7. �(unsat(H)) ≤ 1
� ⋅
∑

I �(I)z
∗
I .

Proof. Define  ∈ [0, 1]k as follows: i = 1 if i ∈ unsat(H) and 0 otherwise. Now
consider LP p() defined in Lemma 4. Since each i ∈ unsat(H) is bad, from
the definition of bad requirements, it is clear that {z∗I/�} is a feasible solution
to LP p(). Furthermore, from Lemma 4, the solution {zI} defined as zI = 1
if I = unsat(H) and 0 otherwise is the optimum solution to p(). The cost of
this solution, �(unsat(H)), is therefore at most the cost of the feasible solution
{z∗I/�} which is 1

� ⋅
∑

I �(I)z
∗
I . The lemma thus follows.

Combining Lemmas 6 and 7, we obtain max{ �
1−� ,

1
�}-approximation. If we sub-

stitute � = 1/(�+ 1), we obtain a (�+ 1)-approximation for PC-GSN.



Improving the approximation to (1−e
−1/�)−1. We use a technique intro-

duced by Goemans as follows. We pick � uniformly at random from the interval
(0, �] where � = 1 − e−1/�. From Lemmas 6 and 7, the expected cost of the
solution is at most

E�

[

�

1− �

]

⋅
∑

e∈E

cex
∗
e + E� [�(unsat(H))] . (3)

To complete the proof of 1
� -approximation, we now argue that the above expec-

tation is at most 1
� ⋅
∑

e∈E(cex
∗
e +

∑

I �(I)z
∗
I ).

Since E�

[

�
1−�

]

= 1
� , the first term in (3) is at most 1

� ⋅
∑

e∈E cex
∗
e. Since

unsat(H) ⊆ {i ∣
∑

I:i∈I z
∗
I ≥ �} and since � is monotone non-decreasing, the

second term in (3) is at most E�

[

�
(

{i ∣
∑

I:i∈I z
∗
I ≥ �}

)]

. Lemma 8 bounds
this quantity as follows. The ideas used here are also presented in Sharma et
al. [SSW07].

Lemma 8. We have

E�

[

�

(

{i ∣
∑

I:i∈I

z∗I ≥ �}

)]

≤
1

�
⋅
∑

I

�(I)z∗I . (4)

Proof. Let i =
∑

I:i∈I z
∗
I for all i ∈ K. Let us, without loss of generality, order

the elements i ∈ K such that 1 ≤ 2 ≤ ⋅ ⋅ ⋅ ≤ k. We also use the notation
0 = 0. Note that {z∗I} forms a feasible solution to the primal LP p() given in
Lemma 4. Therefore, from Lemma 4, its objective value is at least that of the
optimum solution:

∑

I

�(I)z∗I ≥
k
∑

i=1

[(i − i−1) ⋅ �({i, . . . , k})] . (5)

We now observe that the LHS of (4) can be expressed as follows. Since � is picked
uniformly at random from (0, �], we have that for all 1 ≤ i ≤ k, with probability
at most i−i−1

� , the random variable � lies in the interval (i−1, i]. When this

event happens, we get that {i′ ∣
∑

I:i′∈I z
∗
I ≥ �} = {i′ ∣ i′ ≥ �} = {i, . . . , k}.

Thus the expectation in LHS of (4) is at most

k
∑

i=1

[

i − i−1

�
⋅ �({i, . . . , k})

]

. (6)

From expressions (5) and (6), the lemma follows.

Thus the proof of (1− e−1/�)−1-approximation is complete. It is worth men-
tioning so far in this section we obtain a solution with a bound on its expected
cost. However, the choice of � can be simply derandomized by trying out all the
breakpoints where a good demand pair becomes a bad one (plus 0 and �).



4 Proof of Lemma 2

We next show that even if LP (2) has exponential number of variables and
constraints, the following lemma holds.

Lemma 9. Any basic feasible solution to LP (2) has a polynomial number of
non-zero variables.

Proof. Fix a basic feasible solution {x∗
e, f

∗
i,e, z

∗
i } to (2). For i ∈ K, let

i = 1−
min
T :T⊙i

∑

e∈�(T ) f
∗
i,e

ri
and ′

i = 1−max
e

f∗
i,e .

Now fix the values of variables {xe, fi,e} to {x∗
e, f

∗
i,e} and project the LP (2) onto

variables {zI} as follows.

∑

e∈E

cex
∗
e + min

⎧

⎨

⎩

∑

I⊆K

�(I)zI ∣

∑

I⊆K

zI = 1, i ≤
∑

I:i∈I

zI ≤ ′
i ∀i ∈ K, zI ≥ 0 ∀I ⊆ K

⎫

⎬

⎭

. (7)

Since {x∗
e, f

∗
i,e, z

∗
i } is a basic feasible solution to (2), it cannot be written as a

convex combination of two distinct feasible solutions to (2). Thus we get that
{z∗I} cannot be written as a convex combination of two distinct feasible solutions
to (7), and hence it forms a basic feasible solution to (7). Since there are 1+2∣K∣
non-trivial constraints in (7), at most 1 + 2∣K∣ variables zI can be non-zero in
any basic feasible solution of (7). Thus the lemma follows.

We prove that LP (2) can be solved in polynomial time. Introduce variables
 ∈ [0, 1]k and obtain the following program (the function p is as in Lemma 4).

Minimize
∑

e∈E cexe + p()

Subject to
∑

e∈�(T ) fi,e ≥ (1 − i)ri(T ) ∀i ∀T ⊙ (i, S)

fi,e ≤ 1− i ∀i ∀e
xe ≥ fi,e ∀i ∀e

xe, fi,e, i ∈ [0, 1] ∀i ∀e

(8)

It is clear that solving (8) is enough to solve (2). Now note that this is a convex
program since p is a convex function. To solve (8), we convert its objective func-
tion into a constraint

∑

e∈E cexe+p() ≤ opt where opt is the target objective
value and thus reduce it to a feasibility problem. Now to find a feasible solution
using an ellipsoid algorithm, we need to show a polynomial time separation or-
acle. The separation oracle for the first set of constraints can be reduced to a
minimum u-v cut problem using standard techniques. The separation oracle for
the remaining constraints is trivial.



The separation oracle for the objective function is as follows. Given a point
(x, ) = {xe, i} that satisfies

∑

e∈E cexe + p() > opt, we compute a sub-
gradient of the function

∑

e∈E cexe + p() w.r.t. variables {xe, i}. The sub-
gradient of

∑

e∈E cexe w.r.t. x is simply the cost vector c. The sub-gradient

of p() w.r.t.  is computed using Lemma 5, denote it by y ∈ ℜk
+. From the

definition of sub-gradient, we have that the sub-gradient (c, y) to the objective
function at point (x, ) satisfies

(

∑

e∈E

cex
′
e + p(′)

)

−

(

∑

e∈E

cexe + p()

)

≥ (c, y) ⋅ ((x′, ′)− (x, )) .

Now fix any feasible solution (x∗, ∗), i.e., the one that satisfies
∑

e∈E cex
∗
e +

p(∗) ≤ opt. Substituting (x′, ′) = (x∗, ∗) in the above equation we get,

0 = opt− opt >

(

∑

e∈E

cex
∗
e + p(∗)

)

−

(

∑

e∈E

cexe + p()

)

≥ (c, y) ⋅ (x∗, ∗)− (c, y) ⋅ (x, ).

Thus (c, y) defines a separating hyperplane between the point (x, ) and any
point (x∗, ∗) that satisfies

∑

e∈E cex
∗
e + p(∗) ≤ opt. Hence we have a polyno-

mial time separation oracle for the objective function as well.

Thus we can solve (8) using the ellipsoid algorithm. The proof of Lemma 2
is hence complete.
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