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Abstract

Let G = (V, E) be a k-connected graph. For ¢t > 3 asubset T' C V is a (t, k)-shredder
if |T'| = k and G —T has at least ¢ connected components. It is known that the number
of (¢, k)-shredders in a k-connected graph on n nodes is less than 2n/(2t — 3). We show
a slightly better bound for the case £ < 2¢ — 3.

1 Introduction

Let G = (V, E) be a k-(node) connected graph, that is, G is is simple and there are k pairwise
internally disjoint paths between every pair of its nodes. For T" C V the T-components are
the connected components of G — T and let b(T') denote the number of T-components. T
with |T| = k is: a k-separator if b(T) > 2, a k-shredder if b(T) > 3, and a (t, k)-shredder if
b(T) >t > 3. Let B(t,k,G) denote number of (¢, k)-shredders in G; note that B(3,k,G) is
just the number of k-shredders in G. Let B(t, k,n) = max B(t, k, G) where the maximum is

taken over all k-connected graphs G on n nodes.

A motivation for studying shredders comes from the node-connectivity augmentation
problem, see [3, 1, 5]. Cheriyan and Thurimella [1] showed that in a k-connected graph
computing the number of k-separators (which may be roughly 2¥n?/k?) is #-complete, while
the number of k-shredders separating two given nodes r, s is O(n) and that they all can
be found using one max-flow computation. They also proved that B(3,k,n) = O(n?) and
conjectured that B(3,k,n) < n. Jordan [4] proved this conjecture, and established a tight
bound for £ < 3: if £ < 3 and if G is k-connected then B(3,k,G) < (n—k—1)/2 unless k = 3
and G = K3 3. For arbitrary k, Egawa [2] proved that B(3, k,n) < 2n/3 and that this bound



is (asymptotically) the best possible. Liberman and Nutov [5], and independently the second
author of this paper, considered (t, k)-shredders and proved that B(t, k,n) < 2n/(2t — 3).

Remark: The following simple example shows that the bound B(t, k,n) < 2n/(2t — 3) is
asymptotically tight for £ > 2(¢t — 1). Let t,q be integers. Let G be (¢ — 1)-blow-up of a
g-cycle, that is G is obtained from a cycle of length ¢ by replacing every node a by a set
V, of t — 1 nodes, and every edge ab by (¢t — 1)2 edges, so that V, UV} induces a complete
bipartite graph K; 1, ;. For k =2(t — 1), G is k-connected and n = ¢k/2 = ¢(t — 1). Thus
2n/(2t — 3) = 2¢(t — 1)/(2t — 3) = ¢ + q/(2t — 3). On the other hand, B(t,k,G) = ¢. For
2t —3 = k — 1 > q, the above bound is tight. This example easily extends for the case
k > 2(t—1), by adding k — 2(¢t — 1) nodes to G and connecting by an edge every added node
to all the other nodes.

We show a slightly better bound for the case k£ < 2¢—3, and prove the following theorem:

Theorem Let k < 2t — 3. Then B(t,k,n) < (n—k—1)/(t — 1) for n > 2k + 1 and
B(t,k,n) <n/(t—1) for n < 2k.

Remark: Our bound generalizes the bound of Jordan [4] which states:

Fork <3 andt=3, B(t,k,G) < (n—k—1)/(t—1) unless k =3 and G = K3 3.

Indeed, let ¢t = 3 and let £ < 3. Then k < 2t — 3 since ¢ = 3. Our bound implies that
B(t,k,G) < (n—k—1)/(t—1) for n > 2k + 1. For n < 2k < 6, an easy case analysis shows
that this bound also holds, unless k = 3 and G = K3 3.

The bound in the Theorem is sharp for n > 2k + 1, in the sense that there are infinitely
many graphs that attain this bound. Let p be an integer, and k,¢ be as in the Theorem.
Define a graph G = (V, E) with n = |V| =k + 1 X<, (t — 1) by:

V = {a}

{bijn:1<i<t,1<j<pl1<h<(t—1)"}

{ep:1 <l <k-1}

E = {abi11, bijnbijriel <i<t 1<j<p-—1,
I<h<@t-17"" (h—1)(t—-1)+1<L<h(t-1)}
{eicil <i<j<k-1}

U {cea, cibijpll <0<k-1,1<i<t 1<j<p,
I<h<(t—1)Y"1

U
U



Then G is k-connected and has 1 +23<;<, 1 (1 — 1)"~" (t, k)-shredders which are:

{a,c1, ..., cp1}

{bijmcr, o ven} 1<i<t,1<j<p—-1,1<h<(t—177"

Thus
n—k—1 1 i-1
——1 - t_—l(k+t1§%)(t—l) —k—1)
e () PRGOS
- t_%(t(t )Y ) - 1) )
= (- ) X =Ty
= 1+t Y (t—-1)""=BtkG)

1<i<p—1

2 Properties of separators and shredders

Let G = (V, E) be a k-connected graph. For Y C V let I'(Y") denote the set of neighbors of
YVin G, and let Y* =V =Y —[(Y). Y is tight if |[I'(Y)| = k and Y* # (). A separators S
meshes a separator T if S intersects at least two T-components. As was mentioned in [1], if
S meshes T', then each one of S, T intersects all the components of the other; thus “meshing”

is a symmetric relation. The following statement is immediate.

Proposition 2.1 Let S, T be distinct nonmeshing k-separators in a k-connected graph. Then
there is an S-component X and a T-componentY so thatT C X US and S C Y UT holds;
thus Y* C X and X* CY.

Corollary 2.2 Let T be a family of pairwise nonmeshing k-separators in a k-connected

graph G. Then G has a node r not belonging to any member of T .

Proof: Let C be the family of tight sets obtained by picking the 7T-components for each
T € T. Let X be a an inclusion minimal set in C, and let S = I'(X). We claim that no
member of 7 intersects X. Suppose this is not so, that is, there is T € T intersecting X.
Then T'C X U S, since S, T are nonmeshing. By Proposition 2.1, there is a T-component

strictly contained in X, contradicting the minimality of X. O

Lemma 2.3 Let S,T be meshing k-separators in a k-connected graph G = (V, E) so that
SUT #V. Then k > b(S)+b(T) — 2.



Proof: Let t = b(T) and s = b(S). Let Y be the union of T-components not containing r,
and let Z be the union of S-components not containing r. Since S,T mesh, |I'(Z)NY| >
t—1,)0(Y)NZ| > s—1. Let W = Y*N Z*. Then r € W* # 0. Thus [T(W)| > £, since G
is k-connected. Furthermore,

POV = PN Z7)] < D)+ D20 = [P0 AZID(Z)NY]] < 2k—[(s—1)+ (= 1)),
Thus we have kK <2k —[(s — 1)+ (¢t — 1)], that is k > s+t — 2. O

For r € V let B,(t,k,G) be the number of (¢, k)-shredders in G' not containing r. The

following statement follows from a simple averaging argument, e.g., see [5, Lemma 2.4].

Lemma 2.4 B(t,k,G) < "y max,cv B.(t,k,G). If r is a node of G not contained in any
(t, k)-shredder then B(t,k,G) = B,(t, k, Q).

Two intersecting sets X, Y are crossing (or Y crosses X) if none of them contains the
other. We will use the following key statement (see [6, Lemma 3.14] and [5, Lemma 2.3]).

Lemma 2.5 ([6, 5]) Let G be a k-connected graph, let T be a k-shredder in G, and let Y be
a tight set in G so that Y™ intersects some T'-component C. Then'Y does not cross V=T —C

nor a T'-component distinct from C.

3 Proof of the Theorem

Let r € V. Consider the family £ obtained by picking for every (¢, k)-shredders T the T-
components that do not contain r and their union; color the former blue and the later red.
Let U be the union of the sets in £; note that |U| < n—|I'(r)]—1 < n—k—1. By Lemma 2.5,
L is laminar (that is, if two sets in £ intersect then one of them contains the other). Thus
L can be represented by a forest F of rooted trees, if we order the sets in £ by inclusion: X
is a child of Y if X is the largest set in £ properly contained in Y. Note that every red set
is the union of its children. The forest F has the following properties:

(i) every member of L is either blue or red, but not both;

(ii) the children of every red set are blue, and there are at least t — 1 of them;

(iii) every child of a blue set is red.

Claim 3.1 If a blue set Z is the union of its children, then for every child () of Z there
exists a child R of Z so that S =T(Q) and T = T'(R) are meshing. In particular, if Z has

one child, then Z contains a node not contained in its children.



Proof: Let @ be a child of Z. Since S # I'(Z) and @@ C Z, and since Z is the union of its
children, ) has a neighbor in some child R of Z. Consequently, ) has a child X and R has
a child Y, so that there is an edge in G with one end in X and the other end in Y. This
implies that S and T mesh. Otherwise, by Proposition 2.1, Y* C X; this is a contradiction,
since r € Y* — X. O

Claim 3.2 If every blue set has a node not contained in any of its children then B, (t, k,G) <
(n—k-=1)/(t-1).

Proof: Let ¢ be the number of blue sets. Then ¢ < |U| < n — k — 1, since every blue set
has a node not contained in any of its children. We will show that the number of red sets
(which equals B, (t, k,G)) is at most £/(t —1). We claim that in any tree 7 (and thus in any
forest) that satisfies properties (i),(ii),(iii), the number of red nodes is at most ¢/(t—1). If T
has one red node, the statement is obvious. Otherwise, 7 has a blue node X so that every
red descendant of X is a child of X. Let ¢ be the number of children of X. By deleting the
children of X and their descendants (which are all blue leaves) we get a tree with the same

properties, and ¢ decreases by at least ¢(t — 1). The claim follows. O

Combining Corollary 2.2 and Lemma 2.4 with the two claims above, we get:

Corollary 3.3 If no two (t, k)-shredders mesh, then B(t,k,G) < (n—k—1)/(t —1).

Proof of the Theorem By Lemma 2.3, if S, T are meshing (¢, k)-shredders, then SUT =V
and thus n < 2k. Thus for n > 2k+1 no two (t, k)-shredders mesh, and Corollary 3.3 implies
the bound B(t,k,G) < (n—k—1)/(t —1).

Assume n < 2k. Let r € V and consider the corresponding forest 7. We claim that every
blue set X has a node not contained in any of its children; thus by Claim 3.2 B,(t, k, G) <
(n—k—1)/(t—1), implying (via Lemma 2.4) B(t,k,G) < n/(t—1). Otherwise, by Claim 3.1,
X has two (red) children Y, Z corresponding to meshing shredders. But then by Lemma 2.3

k > 2t — 2, contradicting the assumption of the theorem.
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