On (t, k)-shredders in k-connected graphs

Zeev Nutov

Masao Tsugaki

Department of Computer Science
The Open University of Israel

Department of Mathematical Information Science Science University of Tokyo

nutov@openu.ac.il

Abstract

Let G=(V,E) be a k-connected graph. For $t\geq 3$ a subset $T\subset V$ is a (t,k)-shredder if |T|=k and G-T has at least t connected components. It is known that the number of (t,k)-shredders in a k-connected graph on n nodes is less than 2n/(2t-3). We show a slightly better bound for the case $k\leq 2t-3$.

1 Introduction

Let G = (V, E) be a k-(node) connected graph, that is, G is is simple and there are k pairwise internally disjoint paths between every pair of its nodes. For $T \subseteq V$ the T-components are the connected components of G - T and let b(T) denote the number of T-components. T with |T| = k is: a k-separator if $b(T) \ge 2$, a k-shredder if $b(T) \ge 3$, and a (t, k)-shredder if $b(T) \ge 3$. Let B(t, k, G) denote number of (t, k)-shredders in G; note that B(3, k, G) is just the number of k-shredders in G. Let $B(t, k, n) = \max B(t, k, G)$ where the maximum is taken over all k-connected graphs G on n nodes.

A motivation for studying shredders comes from the node-connectivity augmentation problem, see [3, 1, 5]. Cheriyan and Thurimella [1] showed that in a k-connected graph computing the number of k-separators (which may be roughly $2^k n^2/k^2$) is #-complete, while the number of k-shredders separating two given nodes r, s is O(n) and that they all can be found using one max-flow computation. They also proved that $B(3, k, n) = O(n^2)$ and conjectured that $B(3, k, n) \leq n$. Jordán [4] proved this conjecture, and established a tight bound for $k \leq 3$: if $k \leq 3$ and if G is k-connected then $B(3, k, G) \leq (n - k - 1)/2$ unless k = 3 and $G = K_{3,3}$. For arbitrary k, Egawa [2] proved that B(3, k, n) < 2n/3 and that this bound

is (asymptotically) the best possible. Liberman and Nutov [5], and independently the second author of this paper, considered (t, k)-shredders and proved that B(t, k, n) < 2n/(2t - 3).

Remark: The following simple example shows that the bound B(t, k, n) < 2n/(2t - 3) is asymptotically tight for $k \geq 2(t - 1)$. Let t, q be integers. Let G be (t - 1)-blow-up of a q-cycle, that is G is obtained from a cycle of length q by replacing every node a by a set V_a of t - 1 nodes, and every edge ab by $(t - 1)^2$ edges, so that $V_a \cup V_b$ induces a complete bipartite graph $K_{t-1,t-1}$. For k = 2(t - 1), G is k-connected and n = qk/2 = q(t - 1). Thus 2n/(2t - 3) = 2q(t - 1)/(2t - 3) = q + q/(2t - 3). On the other hand, B(t, k, G) = q. For 2t - 3 = k - 1 > q, the above bound is tight. This example easily extends for the case k > 2(t - 1), by adding k - 2(t - 1) nodes to G and connecting by an edge every added node to all the other nodes.

We show a slightly better bound for the case $k \leq 2t-3$, and prove the following theorem:

Theorem Let $k \le 2t - 3$. Then $B(t, k, n) \le (n - k - 1)/(t - 1)$ for $n \ge 2k + 1$ and B(t, k, n) < n/(t - 1) for $n \le 2k$.

Remark: Our bound generalizes the bound of Jordán [4] which states:

For $k \leq 3$ and t = 3, $B(t, k, G) \leq (n - k - 1)/(t - 1)$ unless k = 3 and $G = K_{3,3}$. Indeed, let t = 3 and let $k \leq 3$. Then $k \leq 2t - 3$ since t = 3. Our bound implies that $B(t, k, G) \leq (n - k - 1)/(t - 1)$ for $n \geq 2k + 1$. For $n \leq 2k \leq 6$, an easy case analysis shows that this bound also holds, unless k = 3 and $G = K_{3,3}$.

The bound in the Theorem is sharp for $n \geq 2k+1$, in the sense that there are infinitely many graphs that attain this bound. Let p be an integer, and k, t be as in the Theorem. Define a graph G = (V, E) with $n = |V| = k + t \sum_{1 \leq i \leq p} (t-1)^{i-1}$ by:

$$V = \{a\}$$

$$\cup \{b_{i,j,h} : 1 \le i \le t, 1 \le j \le p, 1 \le h \le (t-1)^{j-1}\}$$

$$\cup \{c_{\ell} : 1 \le \ell \le k-1\}$$

$$E = \{ab_{i,1,1}, b_{i,j,h}b_{i,j+1,\ell}|1 \le i \le t, 1 \le j \le p-1,$$

$$1 \le h \le (t-1)^{j-1}, (h-1)(t-1)+1 \le \ell \le h(t-1)\}$$

$$\cup \{c_{i}c_{j}|1 \le i < j \le k-1\}$$

$$\cup \{c_{\ell}a, c_{\ell}b_{i,j,h}|1 \le \ell \le k-1, 1 \le i \le t, 1 \le j \le p,$$

$$1 \le h \le (t-1)^{j-1}\}.$$

Then G is k-connected and has $1 + t \sum_{1 \le i \le p-1} (t-1)^{i-1} (t,k)$ -shredders which are:

$$\{a, c_1, \dots, c_{k-1}\}\$$

 $\{b_{i,j,h}, c_1, \dots, c_{k-1}\}\$ $1 \le i \le t, 1 \le j \le p-1, 1 \le h \le (t-1)^{j-1}.$

Thus

$$\frac{n-k-1}{t-1} = \frac{1}{t-1}(k+t)\sum_{1\leq i\leq p}(t-1)^{i-1}-k-1$$

$$= \frac{1}{t-1}(t(t-1))\sum_{1\leq i\leq p}(t-1)^{i-2}-1$$

$$= \frac{1}{t-1}(t(t-1))\sum_{1\leq i\leq p}(t-1)^{i-2}+t(t-1)(t-1)^{-1}-1$$

$$= \frac{1}{t-1}(t(t-1))\sum_{1\leq i\leq p-1}(t-1)^{i-1}+t-1$$

$$= 1+t\sum_{1\leq i\leq p-1}(t-1)^{i-1}=B(t,k,G)$$

2 Properties of separators and shredders

Let G = (V, E) be a k-connected graph. For $Y \subseteq V$ let $\Gamma(Y)$ denote the set of neighbors of Y in G, and let $Y^* = V - Y - \Gamma(Y)$. Y is tight if $|\Gamma(Y)| = k$ and $Y^* \neq \emptyset$. A separators S meshes a separator T if S intersects at least two T-components. As was mentioned in [1], if S meshes T, then each one of S, T intersects all the components of the other; thus "meshing" is a symmetric relation. The following statement is immediate.

Proposition 2.1 Let S, T be distinct nonmeshing k-separators in a k-connected graph. Then there is an S-component X and a T-component Y so that $T \subset X \cup S$ and $S \subset Y \cup T$ holds; thus $Y^* \subset X$ and $X^* \subset Y$.

Corollary 2.2 Let \mathcal{T} be a family of pairwise nonmeshing k-separators in a k-connected graph G. Then G has a node r not belonging to any member of \mathcal{T} .

Proof: Let \mathcal{C} be the family of tight sets obtained by picking the T-components for each $T \in \mathcal{T}$. Let X be a an inclusion minimal set in \mathcal{C} , and let $S = \Gamma(X)$. We claim that no member of \mathcal{T} intersects X. Suppose this is not so, that is, there is $T \in \mathcal{T}$ intersecting X. Then $T \subset X \cup S$, since S, T are nonmeshing. By Proposition 2.1, there is a T-component strictly contained in X, contradicting the minimality of X.

Lemma 2.3 Let S, T be meshing k-separators in a k-connected graph G = (V, E) so that $S \cup T \neq V$. Then $k \geq b(S) + b(T) - 2$.

Proof: Let t = b(T) and s = b(S). Let Y be the union of T-components not containing r, and let Z be the union of S-components not containing r. Since S, T mesh, $|\Gamma(Z) \cap Y| \ge t - 1$, $|\Gamma(Y) \cap Z| \ge s - 1$. Let $W = Y^* \cap Z^*$. Then $r \in W^* \ne \emptyset$. Thus $|\Gamma(W)| \ge k$, since G is k-connected. Furthermore,

$$|\Gamma(W)| = |\Gamma(Y^* \cap Z^*)| \le |\Gamma(Y^*)| + |\Gamma(Z^*)| - [|\Gamma(Y^*) \cap Z| + |\Gamma(Z^*) \cap Y|] \le 2k - [(s-1) + (t-1)].$$

Thus we have
$$k \leq 2k - [(s-1) + (t-1)]$$
, that is $k \geq s + t - 2$.

For $r \in V$ let $B_r(t, k, G)$ be the number of (t, k)-shredders in G not containing r. The following statement follows from a simple averaging argument, e.g., see [5, Lemma 2.4].

Lemma 2.4 $B(t, k, G) \leq \frac{n}{n-k} \max_{r \in V} B_r(t, k, G)$. If r is a node of G not contained in any (t, k)-shredder then $B(t, k, G) = B_r(t, k, G)$.

Two intersecting sets X, Y are *crossing* (or Y *crosses* X) if none of them contains the other. We will use the following key statement (see [6, Lemma 3.14] and [5, Lemma 2.3]).

Lemma 2.5 ([6, 5]) Let G be a k-connected graph, let T be a k-shredder in G, and let Y be a tight set in G so that Y^* intersects some T-component C. Then Y does not cross V - T - C nor a T-component distinct from C.

3 Proof of the Theorem

Let $r \in V$. Consider the family \mathcal{L} obtained by picking for every (t, k)-shredders T the T-components that do not contain r and their union; color the former blue and the later red. Let U be the union of the sets in \mathcal{L} ; note that $|U| \leq n - |\Gamma(r)| - 1 \leq n - k - 1$. By Lemma 2.5, \mathcal{L} is laminar (that is, if two sets in \mathcal{L} intersect then one of them contains the other). Thus \mathcal{L} can be represented by a forest \mathcal{F} of rooted trees, if we order the sets in \mathcal{L} by inclusion: X is a child of Y if X is the largest set in \mathcal{L} properly contained in Y. Note that every red set is the union of its children. The forest \mathcal{F} has the following properties:

- (i) every member of \mathcal{L} is either blue or red, but not both;
- (ii) the children of every red set are blue, and there are at least t-1 of them;
- (iii) every child of a blue set is red.

Claim 3.1 If a blue set Z is the union of its children, then for every child Q of Z there exists a child R of Z so that $S = \Gamma(Q)$ and $T = \Gamma(R)$ are meshing. In particular, if Z has one child, then Z contains a node not contained in its children.

Proof: Let Q be a child of Z. Since $S \neq \Gamma(Z)$ and $Q \subseteq Z$, and since Z is the union of its children, Q has a neighbor in some child R of Z. Consequently, Q has a child X and R has a child Y, so that there is an edge in G with one end in X and the other end in Y. This implies that S and T mesh. Otherwise, by Proposition 2.1, $Y^* \subset X$; this is a contradiction, since $r \in Y^* - X$.

Claim 3.2 If every blue set has a node not contained in any of its children then $B_r(t, k, G) \le (n - k - 1)/(t - 1)$.

Proof: Let ℓ be the number of blue sets. Then $\ell \leq |U| \leq n - k - 1$, since every blue set has a node not contained in any of its children. We will show that the number of red sets (which equals $B_r(t,k,G)$) is at most $\ell/(t-1)$. We claim that in any tree \mathcal{T} (and thus in any forest) that satisfies properties (i),(ii),(iii), the number of red nodes is at most $\ell/(t-1)$. If \mathcal{T} has one red node, the statement is obvious. Otherwise, \mathcal{T} has a blue node X so that every red descendant of X is a child of X. Let q be the number of children of X. By deleting the children of X and their descendants (which are all blue leaves) we get a tree with the same properties, and ℓ decreases by at least q(t-1). The claim follows.

Combining Corollary 2.2 and Lemma 2.4 with the two claims above, we get:

Corollary 3.3 If no two (t,k)-shredders mesh, then $B(t,k,G) \leq (n-k-1)/(t-1)$.

Proof of the Theorem By Lemma 2.3, if S, T are meshing (t, k)-shredders, then $S \cup T = V$ and thus $n \leq 2k$. Thus for $n \geq 2k+1$ no two (t, k)-shredders mesh, and Corollary 3.3 implies the bound $B(t, k, G) \leq (n - k - 1)/(t - 1)$.

Assume $n \leq 2k$. Let $r \in V$ and consider the corresponding forest \mathcal{F} . We claim that every blue set X has a node not contained in any of its children; thus by Claim 3.2 $B_r(t, k, G) \leq (n-k-1)/(t-1)$, implying (via Lemma 2.4) B(t, k, G) < n/(t-1). Otherwise, by Claim 3.1, X has two (red) children Y, Z corresponding to meshing shredders. But then by Lemma 2.3 $k \geq 2t-2$, contradicting the assumption of the theorem.

References

- [1] J. Cheriyan and R. Thurimella, Fast algorithms for k-shredders and k-node connectivity augmentation, J. Algorithms **33** (1999), No. 1, 15–50.
- [2] Y. Egawa, k-shredders in k-connected graphs, manuscript.

- [3] T. Jordán, On the optimal vertex-connectivity augmentation, J. Combinatorial Theory Series B 63 (1995), 8–20.
- [4] T. Jordán, On the number of shredders, J. Graph Theory 31 (1999), 195–200.
- [5] G. Liberman and Z. Nutov, On shredders and vertex-connectivity augmentation, manuscript.
- [6] Z. Nutov, Approximating rooted connectivity augmentation problems, manuscript.