
On shredders and vertex connectivity augmentation

Gilad Liberman

The Open University of Israel

giladliberman@gmail.com

Zeev Nutov

The Open University of Israel

nutov@openu.ac.il

Abstract

We consider the following problem: given a k-(node) connected graph G find a
smallest set F of new edges so that the graph G + F is (k + 1)-connected. The
complexity status of this problem is an open question. The problem admits a 2-
approximation algorithm. Another algorithm due to Jordán computes an augmenting
edge set with at most d(k− 1)/2e edges over the optimum. C ⊂ V (G) is a k-separator
(k-shredder) of G if |C| = k and the number b(C) of connected components of G− C

is at least two (at least three). We will show that the problem is polynomially solvable
for graphs that have a k-separator C with b(C) ≥ k + 1. This leads to a new splitting-
off theorem for node connectivity. We also prove that in a k-connected graph G on
n nodes the number of k-shredders with at least p components (p ≥ 3) is less than
2n/(2p− 3), and that this bound is asymptotically tight.

Key words: node-connectivity augmentation, shredders, exact/approximation algorithms.
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1 Introduction and preliminaries

A (simple) graph G is k-(node) connected if there are k pairwise internally disjoint paths

between every pair of its nodes. We consider the following problem:

Instance: A k-connected graph G.

Objective: Find a smallest set F of new edges so that the graph G + F is (k + 1)-connected.

The complexity status of this problem is a major open question in graph connectivity.

The same problem for digraphs is solvable in polynomial time [8], and this implies a 2-

approximation algorithm for undirected graphs. Jordán’s algorithm [12, 13] computes an

augmenting edge set with at most d(k − 1)/2e edges over the optimum. Recently, Jordán

and Jackson [11] gave an algorithm that for any fixed k computes an optimal augmenting edge

set in polynomial time. We remark that a much more general problem for edge-connectivity

is solvable in polynomial time [7].

Let us use the following notation. An edge from u to v is denoted by uv. A uv-path is a

path from u to v. For an arbitrary two sets of nodes and edges (or graphs) A, B we denote

by A−B the set (or graph) obtained by deleting B from A, where deletion of a node implies

also deletion of all the edges incident to it; similarly, A+B denotes the set (graph) obtained

by adding B to A. For a graph G = (V, E) and X ⊆ V let ΓG(X) = Γ(X) denote the set

{v ∈ V −X : uv ∈ E for some u ∈ X} of neighbors of X in V , and let X∗ = V −(X +Γ(X)).

Let G = (V, E) be a k-connected graph. We say that X ⊂ V is tight if |Γ(X)| = k and

X∗ 6= ∅. It follows from Menger’s Theorem that G + F is (k + 1)-connected if, and only if,

G + F has no tight sets, that is, for every tight set X of G there is an edge in F between X

and X∗. The following property of tight sets (cf., [12, Lemma 1.2]) will be repeatedly used.

Lemma 1.1 Let X, Y be two intersecting tight sets in a k-connected graph G on n nodes.

If X∗ ∩ Y ∗ 6= ∅ then X ∩ Y and X ∪ Y are both tight. If n − |X ∪ Y | ≥ k then X ∩ Y is

tight, and if a strict inequality holds then also X ∪ Y is tight.

Let t∗(G) denote the number of inclusion minimal tight sets in G. T ⊆ V is a tight

set cover (of G) if T intersects every (minimal) tight set of G. Given a graph, we call

the new edges that can be added to the graph links, to distinguish them from the existing

edges. Let opt(G) denote the minimum cardinality of an augmenting link set that makes G

(k + 1)-connected. Following [13], we use the following lower bound on opt(G):

Lemma 1.2 ([13], Lemma 2.1) Let T be an arbitrary inclusion minimal tight set cover of

a k-connected graph G. Then opt(G) ≥ dt∗(G)/2e ≥ d|T |/2e. Furthermore, if |T | ≥ k + 2

then the minimal tight sets are pairwise disjoint.
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Proof: Clearly t∗(G) ≥ |T |. We prove that opt(G) ≥ dt∗(G)/2e. Let F(H) denote the

family of inclusion minimal tight sets of a graph H. It would be enough to show that

|F(H + e)| ≥ |F(H)| − 2 for any k-connected graph H and a link e. If not, then there is a

link e = uv and X,Y ∈ F(H) such that u ∈ X∩Y and v ∈ V −(X+Y +Γ(X+Y )) = X∗∩Y ∗.

By Lemma 1.1 X ∩ Y is also a tight set of H, contradicting the minimality of X, Y .

Now let T be an inclusion minimal tight set cover of G with |T | ≥ k +2. The minimality

of T implies that for every u ∈ T there exist Xu ∈ F(G) with |Xu ∩ T | = {u}. If the sets

{Xu : u ∈ T} are pairwise disjoint, the statement is obvious. Suppose therefore that there

are u, v ∈ T so that Xu ∩Xv 6= ∅. If |T | ≥ k + 2, then |V − (Xu ∪Xv)| ≥ |T | − 2 ≥ k. Thus

by Lemma 1.1 Xu ∩Xv is also a tight set, contradicting the minimality of Xu, Xv. 2

We note that the (inclusion) minimal tight sets, and thus also an (inclusion) minimal tight

set cover can be computed in O(min{k,
√

n}kn(n + k2)) time, see Section 4.

Another lower bound on opt(G) is as follows. For C ⊆ V the C-components are the

connected components of G − C and let b(C) denote the number of C-components; C is a

k-separator of G if |C| = k and b(C) ≥ 2. Let b(G) = max{b(C) : C ⊆ V, |C| = k}. If

G + F is (k + 1)-connected then |F | ≥ b(G)− 1, since for any k-separator C, F must induce

a connected graph on the C-components. Combining with Lemma 1.2 gives that for any

minimal tight set cover T of G:

opt(G) ≥ max{dt∗(G)/2e, b(G)− 1} ≥ max{d|T |/2e, b(G)− 1} . (1)

In [12, 13] Jordán gave a polynomial algorithm that for |V | ≥ 2k +1 computes a solution

which size exceeds this lower bound by at most d(k − 1)/2e edges; (for |V | ≤ 2k he used an

additional lower bound). Jordán’s algorithm relies on two key theorems, and one of them is:

Theorem 1.3 ([12],Theorem 2.4) There exists a polynomial time algorithm that given a

k-connected graph G with b(G) ≥ k + 1 and b(G)− 1 ≥ dt∗(G)/2e finds a link set F of size

max{dt∗(G)/2e, b(G)− 1} such that G + F is k-connected.

We will show that the second condition in the above theorem is not necessary, see Theorem 3.1

in Section 3. This implies a new “splitting-off” theorem for node-connectivity, see Section 5.

A k-separator C is a k-shredder if b(C) ≥ 3. Cheriyan and Thurimella [3] showed that in

a k-connected graph computing the number of k-separators (which may be roughly 2kn2/k2)

is #-complete. On the other hand, they proved that the number of k-shredders separating

two given nodes r, s is O(n) and that they all can be found using one max-flow computation,

as follows. First, compute a set of k internally disjoint paths between r and s, and set P to

be the the union of the nodes of these paths. Second, for every connected component X of
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G − (P − {r, s}) check whether Γ(X) is a shredder. The algorithm is correct since if C is

a k-shredder so that r and s belong to distinct C-components, then every C-component X

with X∩{r, s} = ∅ is a connected component of G−(P−{r, s}). Indeed, any (r, s)-path that

contains a node from X must contain at least two nodes from C, implying C ⊆ P−{r, s} and

X ∩ P = ∅. Using this, [3] showed an O(k2n2 min{k,
√

n}) time implementation of Jordán’s

algorithm from [12] (that computes an augmenting edge set of size opt(G) + k − 2). Based

on our Theorem 3.1, we will show a simple version of Jordán’s algorithm [12, 13], and (with

the help of [12, 13]) prove the following theorem, see Section 4.

Theorem 1.4 There exists an algorithm that given a k-connected graph G on n nodes finds

in O(kn3 +k3n min{k,
√

n})) time an augmenting edge set F with |F | ≤ opt(G)+d(k−1)/2e
such that G + F is (k + 1)-connected. Moreover, |F | = max{dt∗(G)/2e, b(G)− 1} if b(G) ≥
k + 1, and |F | ≤ dt∗(G)/2e+ d(k − 1)/2e if b(G) ≤ k and n ≥ 2k + 1.

We note that the term t∗(G) in theorem 1.4 can be replaced by |T |, where T is a given

minimal tight set cover of G.

For an integer p ≥ 2, let S(p, k, G) be the number of k-separators in G with at least

p components, and let S(p, k, n) = max S(p, k, G) where the maximum is taken over all k-

connected graphs G on n nodes. Note that S(3, k, G) is just the number of k-shredders in G.

Cheriyan and Thurimella [3] proved that S(3, k, n) = O(n2) and conjectured that S(3, k, n) ≤
n, which was proved by Jordán [14]. Recently, Egawa [4] proved that S(3, k, n) ≤ 2n/3, and

that this bound is (asymptotically) the best possible. However, Egawa’s proof is long and

complicated. In the next section we will give a simple and short proof of a more general

bound and derive some properties of shredders.

2 Properties of shredders

Theorem 2.1 For p ≥ 3 a k-connected graph on n nodes has at most 2n
2p−3

(
1− 1

n−k

)
< 2n

2p−3

k-shredders with at least p components; thus S(p, k, n) < 2n/(2p − 3). In particular, a k-

connected graph on n nodes has less than 2n/3 k-shredders.

Remark: The bound 2n/(2p− 3) in Theorem 2.1 is asymptotically tight for k ≥ 2(p− 1).

Let p, q be integers. Let G be a (p−1)-blow-up of a q-cycle, that is G is obtained from a cycle

of length q by replacing every node a by a set Va of p−1 nodes, and every edge ab by (p− 1)2

edges, so that Va ∪ Vb induces a complete bipartite graph Kp−1,p−1. For k = 2(p − 1), G is

k-connected and n = qk/2 = q(p−1). Thus 2n/(2p−3) = 2q(p−1)/(2p−3) = q+q/(2p−3).

On the other hand, G has q k-shredders with at least p components. For 2p− 3 = k− 1 > q,
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the bound 2n/(2p − 3) is tight. This example easily extends for the case k > 2(p − 1), by

adding k − 2(p− 1) nodes to G and connecting every added node to all the other nodes.

The proof of Theorem 2.1 follows. Two intersecting sets X,Y are crossing, (or Y crosses

X) if none of them contains the other. Two disjoint sets X, Y are adjacent (in G) if there

is an edge in G with one end in X and the other end in Y . The following statement can be

deduced from results in [17]; we give a proof for completeness of exposition.

Lemma 2.2 Let C be a k-shredder of a k-connected graph G = (V, E) and let Y be a tight

set such that Y ∗ intersects some C-component Z. Then Y does not cross V − C − Z nor a

C-component distinct from Z.

Proof: Let C, Y , and Z be as in the lemma. We need the following claim:

Claim: Let Xi, Xj be two C-components distinct from Z and suppose that Y ∩Xi 6= ∅.
(i) If Y ∩Xj 6= ∅ then Xi, Xj ⊂ Y .

(ii) If Y ∩Xj = ∅ then Γ(Y ∪Xi) = C.

Proof: Note that if A, B are disjoint nonadjacent tight sets in G so that A∪B is tight, then

Γ(A) = Γ(B). Observe that ∅ 6= Y ∗ ∩ Z ⊆ Y ∗ ∩X∗
i ∩X∗

j , since Z ⊆ X∗
i ∩X∗

j . This implies,

by Lemma 1.1 that the following sets are tight: Y ∩Xi, Y ∪Xi, Y ∩ (Xi∪Xj), Y ∪ (Xi∪Xj).

For part (i), suppose that Y ∩Xj 6= ∅. By Lemma 1.1, the sets A = Y ∩Xi, B = Y ∩Xj,

and A ∪ B = Y ∩ (Xi ∪ Xj) are tight. Moreover, A, B are nonadjacent, since Xi, Xj are

nonadjacent. From this it is easy to see that Γ(Y ∩Xi) = Γ(Y ∩Xj) = C. This implies (i).

For part (ii), suppose that Y ∩Xj = ∅. Let A = Y ∪Xi. Then Γ(A ∪Xj) ⊆ Γ(A) since

Γ(Xi) = Γ(Xj) and Xi ⊆ A. But A ∪Xj and A are both tight, so Γ(A ∪Xj) = Γ(A). This

implies that A, Xj are nonadjacent. Summarizing, A, Xj, A ∪ Xj are tight and A, Xj are

nonadjacent. Thus Γ(A) = Γ(Xj) = C, as claimed. 2

Let Y intersect some C-component Xi 6= Z. By (i), if Y intersects all C-components

distinct from Z, then it contains all of them. Assume therefore that there is a C-component

Xj 6= Z disjoint to Y . By (ii), Γ(Y ∪ Xi) = C. Consequently, Y ∪ Xi must be a union of

some C-components. Now, if Y intersects a C-component distinct from Xi, then Xi ⊂ Y ,

by (i); otherwise, Y ⊆ Xi holds, and the proof of the lemma is complete. 2

Let Q(p, k, G, r) be the number of k-separators in G with at least p components that do

not contain a node r of G. Let Q(p, k, n) = max Q(p, k, G, r) where the maximum is taken

over all pairs (G, r) so that G is a k-connected graphs on n nodes and r is a node of G.

Lemma 2.3 S(p, k, n) ≤ Q(p, k, n) · n/(n− k) for any integer p ≥ 2.
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Proof: Let G = (V, E) be k-connected graph on n nodes with S = S(p, k, n) k-separators

with at least p components. For u ∈ V let s(u) be the number of such separators containing u.

Since
∑{s(u) : u ∈ V } = kS, there is r ∈ V with s(r) ≤ kS/n. Thus Q(p, k, G, r) + kS/n ≥

S, implying Q(p, k, n) + kS/n ≥ S. Consequently, S ≤ Q(p, k, n) · n/(n− k), as claimed. 2

Lemma 2.4 Let p ≥ 3 and let r be a node of a k-connected graph G on n nodes. Then

Q(p, k, G, r) ≤ 2(n− |Γ(r)| − 1)/(2p− 3). In particular, Q(p, k, n) ≤ 2(n− k − 1)/(2p− 3).

Proof: Consider the set family L obtained by picking for every k-shredder C with b(C) ≥ p

and r /∈ C: each one of the C-components not containing r which we color blue, and also their

union which we color red. The number of red sets equals Q(p, k, G, r). Let U be the union

of the sets in L. Note that |U | ≤ n− |Γ(r)| − 1, and that L is laminar (that is, its members

are pairwise noncrossing), by Lemma 2.2. We can represent L as a forest T of rooted trees

if we order the sets in L by inclusion: X is a child of Y if X is the inclusion maximal set

in L properly contained in Y . Note that if Y is red then the connected components of G[Y ]

(the graph induced by Y in G) are the Γ(Y )-components not containing r; they are the

children of Y and their number is at least p− 1. On the other hand, if Y is blue then G[Y ]

is connected. This implies that the nodes (sets) of this forest have the following properties:

(i) every node is either blue or red, but not both;

(ii) the children of every red node are all blue, and there are at least p− 1 of them;

(iii) every child (if any) of a blue node is red.

Let B be the family of blue sets that have at most one (red) child, and let ` = |B|. Note that

every set in B must contain a node from U not contained in its child (if any). Thus ` ≤ |U |,
implying ` ≤ n − |Γ(r)| − 1. We claim that in any tree (and thus in any forest) T with

properties (i),(ii),(iii), the number of red sets is at most 2`/(2p− 3). If T has one red node

the statement is obvious. Otherwise, T has a blue node B so that every red descendant of

B is a child of B. Let q be the number of children of B. By deleting the q children of B and

their descendants (which are all blue leaves) we get a tree with the same properties, and `

decreases by at least: q(p− 1)− 1 if q ≥ 2 (at least q(p− 1) blue leaves are deleted, but B

becomes a new member of B) and by at least p − 1 if q = 1 (at least q(p − 1) blue leaves

are deleted and B remains a member of B). Thus the decrease in ` per red node is at least:

p − 1 − 1/q if q ≥ 2 and p − 1 if q = 1, so at least p − 3/2 in the worst case q = 2. Thus

the number of red nodes is at most `/(p− 3/2) = 2`/(2p− 3). 2

Theorem 2.1 follows immediately from Lemmas 2.3 and 2.4.

Lemma 2.2 implies the following statement, generalizing [12, Lemma 2.2] and [3, Lemma 4.3].

Lemma 2.5 For a k-shredder C and a tight set Y exactly one of the following holds:

5



(i) Γ(Y ) = Γ(Y ∗) = C (thus each of Y, Y ∗ is a union of some but not all C-components);

(ii) exactly one of Y, Y ∗ is properly contained in a C-component (thus the other properly

contains all the other C-components);

(iii) Γ(Y ) intersects every C-component, (and thus C intersects every Γ(Y )-component)

and exactly one of the following holds:

(a) Y, Y ∗ ⊂ C ∪X for some C-component X;

(b) one of Y, Y ∗ is contained in C while the other intersects C and at least two C-

components and is a Γ(Y )-component;

(c) C ∪ Γ(Y ) = V .

Proof: It is easy to see that the cases of the lemma are exclusive. If C ∪ Γ(Y ) = V then

every C-component is contained in Γ(Y ) (and every Γ(Y )-component is contained in C),

thus (iiic) holds. Assume therefore that there is r ∈ V − (C ∪ Γ(Y )) and that none of (i)

and (ii) holds; we will show that then (iiia) or (iiib) must hold. Let R be the C-component

containing r. Since r /∈ Γ(Y ) then r ∈ Y or r ∈ Y ∗, and without loss of generality assume

that the former holds. By interchanging the roles of Y and Y ∗ in Lemma 2.2, we obtain

that Y ∗ does not cross V − C − R nor a C-component distinct from R. This implies that

Y ∗ ⊂ R ∪C and that Y ∗ ∩C 6= ∅, as otherwise (i) or (ii) holds. Assume that Y intersects a

C-component R′ distinct from R, as otherwise (iiia) holds. Then using a similar argument

with R′ instead of R we get that Y ∗ ⊆ C ∪ R′. Consequently, since R and R′ are disjoint,

we conclude that Y ∗ ⊆ C. Thus Y ∗ has a neighbor in every C-component, so Γ(Y ∗) = Γ(Y )

intersects every C-component. This implies that C must intersect every Γ(Y )-component.

In particular, C ∩ Y 6= ∅. To arrive at case (iiib) it remains to show that the subgraph

G[Y ] = G− Γ(Y )− Y ∗ of G induced by Y is connected. We will show that G[Y ] contains a

path between r and any t ∈ C∩Y . Recall that Γ(Y ) = Γ(Y ∗) intersects every C-component,

and thus |Γ(Y )∩ (C ∪R)| < k. Consider a set of k internally disjoint paths from r to t in G.

Any such path that contains a node from Y ∗∪Γ(Y ) must contain a node from Γ(Y )∩(C∪R),

hence the number of such paths is at most |Γ(Y )∩ (C ∪R)| < k. Thus at least one of these

paths does not contain a node from Y ∗ ∪ Γ(Y ). This proves the claim. 2

Note that if case (iii) of Lemma 2.5 holds, then Y has at least one neighbor in every

C-component, which implies b(C) ≤ k. Thus we get the following statement from [12]:

Lemma 2.6 (Lemma 2.2,[12]) Let C be a shredder of a k-connected graph G with b(C) ≥
k + 1. Then for every tight set Y holds: either one of Y, Y ∗ is properly contained in a C-

component and the other properly contains all the other C-components, or each one of Y, Y ∗
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is a union of some but not all C-components. Thus every minimal tight set of G is contained

in some C-component, and the minimal tight sets of G are pairwise disjoint.

3 Augmenting graphs with b(G) ≥ k + 1

Theorem 3.1 There exists an algorithm with running time O(kn3) that given a k-connected

graph G determines whether b(G) ≥ k +1, and if so, finds an (optimal) augmenting edge set

F of size max{dt∗(G)/2e, b(G)− 1} such that G + F is (k + 1)-connected.

The proof of Theorem 3.1 follows. Henceforth assume that the input graph G has O(kn)

edges (otherwise, replace G by its “sparse k-connected certificate” G′ that has the same tight

sets as G, see [6, Corollary 2.3]). Also, computing a maximum flow in G with unit capacities

on the nodes can be done in O(kn min{k,
√

n}) time (see [9]).

Lemma 3.2 There exists an algorithm with running time O(k2n2) that given a k-connected

graph G finds a k-separator C of G such that: if b(C) ≥ k + 1 then b(C) = b(G), and if

b(C) ≤ k then b(G) ≤ k.

Proof: Let C ′ be an arbitrary k-separator of G; such can be found in O(k2n2) time by the

algorithm of [10] for testing k-connectivity. Let r1, r2 belong to distinct C ′ components. If C

is a k-separator with b(C) ≥ k +1 then, by Lemma 2.6, at least one of r1, r2 does not belong

to C; thus there is v ∈ V such that one of r1, r2 and v belong to distinct C-components. For

every v ∈ V − ri we compute all shredders separating ri and v, i = 1, 2, and among them

output one C with the maximal number of components. Then C is as required. Computing

all shredders separating two nodes r and v can be done in O(k2n) time [3]. We apply this

procedure O(n) times. Thus the total running time is as claimed. 2

After a shredder C with b(C) ≥ k + 1 is found the minimal tight sets can be computed

using n max-flow computations, thus in O(kn2 min{k,
√

n}) total time. Indeed, for every

v ∈ V − C we can find the minimal tight set containing v (such exists) by computing a

maximum (r, v)-flow so that r and v belong to distinct C-components.

Given a minimal tight set cover T of G let us say that a link uv with u, v ∈ T is (G, T )-

saturating if T − {u, v} is a tight set cover of G + uv. The algorithm relies on the following

statement, which will be proved later.

Lemma 3.3 Let G be a k-connected graph G, let T be a minimal tight set cover of G, and

let C be a k-shredder of G with b(C) ≥ k + 1.
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(i) If there is a C-component X with |T ∩X| ≥ b(G) then there exists a (G, T )-saturating

link e = uv with u, v ∈ T ∩X.

(ii) If |T ∩ X| ≤ b(C) for every C-component X, then an (optimal) augmenting edge set

for G of size max{d|T |/2e, b(G)− 1} can be found in O(k2n2) time.

Proof of Theorem 3.1: Given a shredder C with b(C) = b(G) ≥ k + 1 and a min-

imal tight set cover T , the following algorithm finds an augmenting edge set F of size

max{d|T |/2e, b(G)− 1} such that G + F is (k + 1)-connected.

Phase 1: While there exists a C-component C with |T ∩X| ≥ b(C) do:

find a (G, T )-saturating link uv and set G← G + uv, T ← T − {u, v}.
End While

Phase 2: Add to G an edge set as in part (ii) of Lemma 3.3.

The condition in the loop of Phase 1 ensures that an appropriate (G, T )-saturating link

exists, by Lemma 3.3 (i). Consequently, the algorithm is correct since at the beginning

of Phase 2, G satisfies the assumption of Lemma 3.3 (ii). Let us show that the size of the

augmenting edge set F found is max{d|T |/2e, b(C)−1}. Let F1 and F2 be the link sets added

during Phase 1 and Phase 2, respectively. If F1 = ∅ then |F | = |F2| = max{d|T |/2e, b(C)−1},
by Lemma 3.3 (ii). Assume therefore that F1 6= ∅. Let T2 be the set of nodes in T at the

beginning of Phase 2. Clearly, |T2| = |T | − 2|F1|. We claim that |F2| = d|T2|/2e and thus

|F | = |F1|+ |F2| = |F1|+ d(|T | − 2|F1|)/2e = d|T |/2e.

To see that |F2| = d|T2|/2e, note that if F1 6= ∅ then there is a C-component X with

|X ∩T2| ≥ b(C)− 2, while any other C-component contains at least one node from T2. Thus

|T2| ≥ (b(C)− 2) + (b(C)− 1) = 2b(C)− 3. Consequently, |F2| = max{d|T2|/2e, b(C)− 1} =

d|T2|/2e.

Finding a shredder C with b(C) = b(G) ≥ k + 1 or determining that b(G) ≤ k can be

done in O(k2n2) time, by Lemma 3.2. The minimal tight sets, and thus also a minimal tight

set cover, can be computed in O(kn2 min{k,
√

n}) time. To finish the proof of Theorem 3.1

it remains to show that Phase 1 of the algorithm can be implemented in O(kn3) time. This

will be discussed in Section 4. 2

The proof of Lemma 3.3 follows, starting with part (i).

Following [12, 13], we call a link e saturating if t∗(G + e) = t∗(G)− 2 holds. For minimal

tight sets Di, Dj (possibly Di = Dj) let Sij be the family of tight sets containing Di∪Dj and

not containing any other minimal tight set. Let Sij be the union of the sets in Sij, where

Sij = ∅ if Sij = ∅; for simplicity, Si = Sii and Si = Sii.
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Lemma 3.4 ([12]) Let Di, Dj be distinct minimal tight sets in a k-connected graph G that

has a minimal tight set cover of size at least k + 2. Then Si, Sj are tight and disjoint, and a

link connecting Di, Dj is not saturating if, and only if:

Dj ⊆ Γ(Si) or Di ⊆ Γ(Sj) or Sij 6= ∅ . (2)

Theorem 3.5 Let F be a family of at least k + 1 minimal tight sets in a k-connected graph

G = (V, E) that has a minimal tight set cover T of size at least k + 2. Let S = ∪Di,Dj∈FSij

(note that Si = Sii ⊆ S for every Di ∈ F). If there is r ∈ V − (S ∪ Γ(S)) then exactly one

of the following holds:

(i) there exists a (G, T )-saturating link connecting two sets in F ;

(ii) the sets {Si : Di ∈ F} are C ′-components for some k-shredder C ′.

Proof: It is easy to see that if (ii) holds, then (i) cannot hold. We prove that if (i) does not

hold, then (ii) must hold.

Let us say that X ⊆ V − r is r-tight if |Γ(r) ∩X| + |Γ(X) − r| = k. In [17] it is shown

that if G contains k internally disjoint rv-paths for every v ∈ V − r (note that this is so if

G is k-connected) then the minimal r-tight sets are pairwise disjoint. Let tr(G) denote the

number of minimal r-tight sets in G. A link e is r-saturating if tr(G + e) = tr(G)− 2 holds.

Let Sr
ij be the family of r-tight sets containing Di∪Dj and not containing any other minimal

r-tight set. Let Sr
ij be the union of the sets in Sr

ij, where Sr
ij = ∅ if Sr

ij = ∅; for simplicity,

Sr
i = Sr

ii and Sr
i = Sr

ii. In [17] it is proved:

Let F be a family of at least k+1 minimal r-tight sets in a graph G that contains k internally

disjoint rv-paths for every v ∈ V − r. Then exactly one of the following holds:

(i) there exists a pair of sets in F such that any link connecting them is r-saturating;

(ii) the sets {Sr
i : Di ∈ F} are C ′-components for some k-shredder C ′ with r /∈ C ′.

Note that if X ⊆ V − r is r-tight then X − Γ(r), if nonempty, is tight. In particular, if

r /∈ X ∪ Γ(X), then X is tight if, and only if, X is r-tight. Thus, by the condition of the

theorem, each Di ∈ F is also a minimal r-tight set, and Sij ⊆ Sr
ij for Di, Dj ∈ F . Therefore,

the theorem will be proved if we show that:

If an edge e connecting distinct Di, Dj ∈ F is not saturating, then e is not r-saturating.

By [17], Sr
i , S

r
j are r-tight and disjoint, and e is not r-saturating if, and only if:

Dj ⊆ Γ(Sr
i ) or Di ⊆ Γ(Sr

j ) or Sr
ij 6= ∅ . (3)

Under the condition of the theorem, (2) implies (3): if Dj ⊆ Γ(Si) then Dj ⊆ Γ(Sr
i ) since

Si ⊆ Sr
i ; if Di ⊆ Γ(Sj) then Di ⊆ Γ(Sr

j ), since Sj ⊆ Sr
j ; if Sij 6= ∅ then Sr

ij 6= ∅ since

Sij ⊆ Sr
ij. 2
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Note that if F is a family of at least k+1 minimal tight sets contained in a C-component

X of a shredder C with b(C) ≥ k + 1, then, by Lemma 2.6, F and any r ∈ V − (X + C)

satisfy the condition of Theorem 3.5. Thus we have:

Corollary 3.6 Let F be a family of at least k + 1 minimal tight sets contained in the same

C-component of a shredder T with b(C) ≥ k + 1. Then either there exists a pair of minimal

tight sets in F such that every link connecting them is saturating, or there exists a shredder

C ′ such that the corresponding sets {Si : Di ∈ F} are C ′-components.

Corollary 3.6 easily implies part (i) of Lemma 3.3. Recall that we need to show that if

|T ∩X| ≥ b(G) then there exists a (G, T )-saturating link with u, v ∈ T ∩X. If not, then by

Corollary 3.6, there is a k-shredder C ′ in G that has at least |T ∩X| C ′-components that are

contained in X (the sets Si), and there is one more C ′-component that contains X∗. Thus

b(C ′) ≥ |T ∩X|+ 1 ≥ b(G) + 1, which is a contradiction.

The proof of part (i) of Lemma 3.3 is done. We now prove part (ii).

Given a nontrivial partitionW of a groundset W , an edge set F on W is aW-connecting

cover (of W ) if the following three conditions hold: (a) degF (w) ≥ 1 for every w ∈ W ;

(b) every edge in F connects distinct parts of W ; (c) F induces a connected graph on

the parts of W . Let max(W) denote the largest cardinality of a set in W . The following

statement was proved in [17]; we restate the proof for completeness of exposition.

Lemma 3.7 ([17]) Let W be a nontrivial partition of a groundset W . Then the minimum

cardinality of a W-connecting cover equals max{d|W |/2e, max(W), |W| − 1}, and given W
a minimum cardinality W-connecting cover can be found in linear time.

Proof: Let F be a W-connecting cover (satisfying conditions (a),(b),(c) above). Then: (a)

implies |F | ≥ d|W |/2e, (a) and (b) imply |F | ≥ max(W), and (c) implies |F | ≥ |W| − 1;

hence |F | ≥ max{d|W |/2e, max(W), |W| − 1}. The following algorithm starts with F = ∅
and computes a W-connecting cover for which equality holds.

While |W| ≥ 2 and max(W) ≥ 2 do:

add a link zw to F where z belongs to the largest set Z ∈ W , and w belongs to:

- the largest set in W − Z if max(W) ≥ |W|;
- to the smallest set in W otherwise.

W ← W − {z, w}, and replace W by its restriction to W (discarding empty sets).

End while

If |W| = 1 then for every z ∈ W add to F an arbitrary link zw that satisfies condition (b);

Else (applies if |W | ≥ 2 and max(W) = 1) add to F an arbitrary tree on W .
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It is easy to see that at every iteration of the loop the bound max{d|W |/2e, max(W), |W|−1}
decreases by 1. Thus at the end of the algorithm F has size as claimed. Also, (a) and (b)

hold for F by the construction, while (c) can be easily proved by induction on the number

of iterations in the loop. Thus at the end of the algorithm F is as required. The algorithm

can be implemented to run in linear time, by maintaining an array A of size |W |, where

A[i] has a pointer to a linked list of the sets in W of size i, pointers to the sizes in A of the

largest, the second largest, and the smallest sets in W , and a variable indicating |W |. It is

easy to see that this data structure enables to answer every query during the algorithm in

O(1) time, and can be maintained during the algorithm in O(|W |) total time. 2

We now finish the proof of part (ii) of Lemma 3.3. The inclusion in the C-components

induces a partition T of T , and let F be a minimum cardinality T -connecting cover. Using

Lemma 2.6 it is easy to see that for any tight set Y of G there is a link in F that connects Y

and Y ∗, thus G + F is (k + 1)-connected. Note that |T | = b(C), and max(T ) ≤ b(C)− 1 =

|T | − 1. Hence, by Lemma 3.7, |F | = max{d|T |/2e, |T | − 1} = max{d|T |/2e, b(C)− 1}. The

dominating time for computing F as above is spent for computing T ; as was mentioned, this

can be done in O(kn2 min{k,
√

n}) = O(k2n2) time. Thus the time complexity is as claimed.

The proof of part (ii) of Lemma 3.3 is done, and the proof of Lemma 3.3 is complete.

4 Implementation

Cheriyan and Thurimella [3] showed that Jordán’s algorithm from [12] (that computes a

solution of size at most opt(G) + (k− 2)) can be implemented to run in O(min{k,
√

n}k2n2)

time. The algorithm of [3] finds all shredders, and incrementally maintains them under

edge insertions. Based on Theorem 3.1 we will show a simple version of Jordán’s algorithm

from [13] (that computes a solution of size at most opt(G) + d(k− 1)/2e) with running time

O(kn3 + k3n min{k,
√

n})). Our algorithm does not compute all shredders, but only finds a

shredder as in Lemma 3.2.

The second key theorem in [12] is (for an earlier slightly weaker version see [1], and for

a generalization see [2, Theorem 3]):

Theorem 4.1 ([12]) Let T be a minimal tight set cover of a k-connected graph G = (V, E)

with |V | ≥ 2k+1 and |T | ≥ k+3. Then either b(G) = |T |, or there exists a (G, T )-saturating

link.

We also need the following statements for treating the cases |T | ≤ k + 2 and |V | ≤ 2k.

11



Lemma 4.2 ([12]) Let T be a tight set cover of a k-connected graph G. Then there exists

a forest F ′ on T such that G + F ′ is (k + 1)-connected.

Lemma 4.3 ([13]) Let G be a k-connected graph with |V | ≤ 2k, and let F1 = {u1v1, . . . , ujvj}
be a sequence of links such that uivi is (Gi, Ti)-saturating, where for i = 1, . . . , j: G1 = G,

T1 = T , Gi+1 = Gi + uivi, and Ti+1 = Ti − {ui, vi}. If Tj+1 ≥ k + 3 and if no (Gj+1, Tj+1)-

saturating link exists, then one can find in O(k2n2) time an optimal augmenting edge set F2

for G + F1 such that |F1|+ |F2| ≤ opt(G) + d(k − 1)/2e.

Remark: Provided that the sets Si (as defined in the previous section) and Γ(Si) are given,

[12] shows that a set F2 as in Lemma 4.3 can be computed in linear time.

Here is a description of the algorithm.

Phase 1: Determine whether b(G) ≥ k + 1, and if so, find an augmenting edge set F as in

Theorem 3.1, output F , and STOP.

Phase 2: Initialization: Find a minimal tight set cover T of G.

1. While |T | ≥ k + 3 and there exists a (G, T )-saturating link uv do:

G← G + uv, T ← T − {u, v}.
End While

2. If |T | ≤ k + 2 add to G a forest on T as in Lemma 4.2;

Else (|V | ≤ 2k) add to G an augmenting edge set as in Lemma 4.3

Let us show that the the size of the augmenting link set found is as stated in Theorem 1.4.

If b(G) ≥ k + 1 this follows from Theorem 3.1. Suppose therefore that b(G) ≤ k, so Phase 2

applies. Note that T remains a tight set cover of G during the loop of step 1, by Lemma 1.2.

Let F1 and F2 be the link sets added during steps 1 and 2, respectively. Let T2 be the set

of nodes that remain in T at the beginning of step 2. The case |T2| = 0 is obvious, while

|T2| = 1 is not possible. Assume therefore that |T2| ≥ 2. If |T2| ≤ k + 2 then:

|F1|+ |F2| = (|T |−|T2|)/2+(|T2|−1) = d|T |/2e+d(|T2|−1)/2e−1 ≤ d|T |/2e+d(k−1)/2e .

If |T2| ≥ k + 3, then we must have |V | ≤ 2k, by Theorem 4.1. The correctness of this case

follows from Lemma 4.3.

We now discuss the implementation and time complexity of the algorithm. As was

mentioned in Section 3, if b(G) ≥ k + 1 then a minimal tight set cover can be found in

O(k2n2) time. Following [12], we show how one can efficiently find a minimal tight set cover

in the general case. Let G be a k-connected graph. Add to G a new node s and connect s to

every node of G. The obtained graph is (k + 1)-connected. Then repeatedly remove an edge
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incident to s as long as (k+1)-connectivity is preserved. Following [11], we call the obtained

graph H a critical extension of G; it can be constructed using n max-flow computations

(deletion of an edge sv preserves (k + 1)-connectivity if, and only if, it preserves (k + 1)

internally disjoint sv-paths). Clearly, ΓH(s) is a tight set cover. Now, if |ΓH(s)| ≥ k+2, then

T = ΓH(s) is a minimal tight set cover. Otherwise, if |ΓH(s)| = k+1, for every tight set X of

G there are u, v ∈ ΓH(s) so that u ∈ X and v ∈ X∗. Thus in this case all the minimal tight

sets (and thus also a minimal tight set cover T ) can be found in O(min{k,
√

n} · kn(n + k2))

time, by performing O(n + |T |2) = O(n + k2) max-flow computations.

Splitting off two edges su, sv means replacing them by a new edge uv. To apply the

“splitting off method” to our problem, construct a critical extension H as above, and re-

peatedly apply “legal” splitting off operations; an edge pair su, sv is called legal if splitting

off su, sv preserves (k + 1)-(node) connectivity. Let H be a critical extension of G, and let

T = ΓH(s). Assume |T | ≥ k + 2. It is easy to see that a link uv is (G, T )-saturating if, and

only if the pair su, sv is legal for H.

Let us discuss an implementation of successive legal splitting off operations in H or,

equivalently, successive adding (G, T )-legal links to G. We keep a set Πt of (k + 1) in-

ternally disjoint paths between s and every t ∈ T . The preprocessing time required is

O(kn2 min{k,
√

n}) = O(k2n2). Updating each set Πt after a single splitting off operation

can be done in O(m) = O(kn) time. We need to update O(|T |) = O(n) sets Πt per one

splitting off, and there are at most O(n) splitting off operations. Thus the overall time is

O(kn3). By Lemma 3.4, to check whether a specific pair su, sv is legal, we need to check

that in Huv = H − {su, sv} + uv there are still (k + 1) internally disjoint paths from s to

each one of u, v. Since in Huv we have k − 2 internally disjoint paths from s to each of

u, v, this can be done in O(m) = O(kn) time using the Ford-Fulkerson algorithm. An easy

observation (we omit the details) is that the already checked “rejected” pairs need not be

checked again, since they will not become legal. During the algorithm we might need to

check at most O(n2) pairs, which gives the overall running time O(kn3). This also finishes

the proof of Theorem 3.1.

Let us now analyze the time complexity of Phase 2. Step 1 can be implemented in

O(kn3) total time, as described above. If |T2| ≤ k + 2, then F2 can be found with O(k2)

max-flow computations (by adding a complete graph on T2 and checking every added edge

for deletion), so in O(k3n min{k,
√

n}) time. Otherwise, |V | ≤ 2k, and step 3 can be

implemented in O(k2n2) time, by Lemma 4.3. Thus the time complexity is as claimed.
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5 A new splitting-off theorem

There are several results asserting that the edges incident to a node s can be partitioned

into disjoint pairs such that splitting off all the pairs results in a graph with certain edge-

connectivity properties. For example, a classical result of Lovász states (for a generalization

see [16] and [5]):

Theorem 5.1 ([15]) If H = (V +s, E) is a graph such that there are at least k edge-disjoint

paths between every pair of nodes u, v ∈ V , k ≥ 2, and the degree of s is even, then the set

of edges incident to s can be partitioned into pairwise disjoint pairs such that splitting off all

the pairs and deleting s results in a k-edge connected graph.

Let bk(s, H) be a maximum number of components of a k-separator of H containing s.

Note that if H = (V + s, E) is a k-(node) connected graph, then the condition deg(s) ≥
2bk(s, H) − 2 is necessary (but, in general, not a sufficient one) for existence of a partition

as above (deg(s) denotes the degree of s in H). Using Theorem 3.1 we will prove:

Theorem 5.2 Let H = (V + s, E) be a k-connected graph with deg(s) ≥ 2bk(s, H)− 2 being

even and with every edge incident to s being critical. If bk(s, H) ≥ k, then the set of edges

incident to s can be partitioned into pairwise disjoint pairs such that splitting off all the

pairs and deleting s results in a k-node connected graph. Moreover, checking validity of the

conditions of the theorem, and then finding a partition as above can be done in O(kn3) time.

Proof: To be consistent with the notation of the paper, we will prove the statement with k

replaced by k+1. That is, we assume that: H is (k+1)-connected, deg(s) ≥ 2bk+1(s, H)−2,

deg(s) is even, H − sv is not (k + 1)-connected for every v ∈ Γ(s), and bk+1(s, H) ≥ k + 1.

We show that then the set of edges incident to s can be partitioned into disjoint pairs such

that splitting off all the pairs and deleting s results in a (k + 1)-node connected graph.

Let T = ΓH(s) and let G = H−s. Clearly, G is k-connected, and C is a k-separator of G

if, and only if, C+s is a (k+1)-separator of H. Note that |T | = deg(s) ≥ 2bk+1(s, H)−2 ≥ 2k,

implying |T | ≥ k +2 unless k = 1 and |T | = 2. Thus henceforth we assume that |T | ≥ k +2,

as the case k = 1 and |T | = 2 is trivial. Note that T is a minimal tight set cover of G.

Indeed, every tight set X of G contains at least one node from T , as otherwise X is a tight

set of H, contradicting that H is (k + 1)-connected. Furthermore, T is a minimal tight set

cover; otherwise, if there is v ∈ T so that T − v is a tight set cover of G, then H − sv is

(k + 1)-connected (since |T − v| ≥ k + 1), contradicting our assumption.

This implies that the set of edges incident to s can be partitioned as required if, and

only if, there exists an edge set F on |T | so that |F | = |T |/2 and G + F is (k + 1)-
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connected. By Theorem 3.1, such an edge set exists and can be found in O(kn3) time, since

b(G) = bk+1(s, H) ≥ k + 1 and |T |/2 ≥ bk+1(s, H)− 1 = b(G)− 1. 2

Finally, note that the condition “every edge incident to s being critical” in Theorem 5.2

cannot be dropped. For example, let H be obtained from a (2k + 1)-clique by choosing a

set S of k + 1 nodes and deleting all the edges that have both endpoints in S. It is easy to

verify that H is k-connected. Let s be an arbitrary node of H not belonging to S. Then

bk(s, H) = k + 1 and deg(s) = 2k = bk(s, H) − 2. One can easily verify that if F is an

edge set so that (G − s) + F is k-connected, then F induces a connected graph on S; thus

a partition as in Theorem 5.2 of the edges incident to s does not exist. Note that in this

example, an edge sv is critical if, and only if, v ∈ S.
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