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Bacteria were first detected in human tumors more than 100 years ago, but the characterization of the
tumor microbiome has remained challenging because of its low biomass. We undertook a comprehensive
analysis of the tumor microbiome, studying 1526 tumors and their adjacent normal tissues across
seven cancer types, including breast, lung, ovary, pancreas, melanoma, bone, and brain tumors. We found
that each tumor type has a distinct microbiome composition and that breast cancer has a particularly
rich and diverse microbiome. The intratumor bacteria are mostly intracellular and are present in both
cancer and immune cells. We also noted correlations between intratumor bacteria or their predicted
functions with tumor types and subtypes, patients’ smoking status, and the response to immunotherapy.

M
ore than 16%of cancer incidenceworld-
wide has been attributed to infectious
agents (1). Intratumor bacteria have
been reported in many tumor types
(2–19), but these bacteria have not been

characterized in a comprehensivemanner (20).
The gut microbiome has been shown to have
multiple effects on tumor biology, such as the
transformation process, tumor progression,
and the response to anticancer therapies in-
cluding immunotherapy (21–29). Thus, charac-
terization of the tumor microbiome may be an
essential step in unraveling the effects that tu-
mor bacteria have ondifferent cancer hallmarks.

Bacterial DNA, RNA, and lipopolysaccharide
are present in many human solid tumors

Because the tumor microbiome has a relative-
ly low biomass, contamination of the tumor

samples with bacteria or bacterial DNA can be
problematic (30, 31). Therefore, it is critical to
include multiple measures to avoid, or at least
detect, any possible contamination in the pro-
cess of profiling the tumor microbiome (sup-
plementary note) (32, 33). For next-generation
sequencing applications, it is also important to
use mechanical tissue shearing in the DNA iso-
lation protocol to ensure the complete recovery
of DNA from within the cell wall of Gram-
positive bacteria—a step not included inmost
standardDNA isolation protocols (6, 7). To char-
acterize and visualize intratumor bacteria, we
applied an extensive combination of methods
to a large cohort of solid human tumor sam-
ples to detect bacterial DNA, RNA, and bacte-
rial outer membrane or cell wall components.
We focused on seven solid tumor types that

represent either common cancer types or cancer

types for which the tumor microbiome is largely
unknown, such as melanoma, bone, and brain
tumors (Fig. 1A). To address laboratory-borne
contaminants, we introduced 643 negative con-
trols that were processed with the samples,
including 437 DNA extraction controls and 206
polymerase chain reaction (PCR) no-template
controls (NTCs). To address contamination that
might have occurred before the samples reached
our laboratory, we also included 168 paraffin-
only samples taken from the margins of the
paraffin blocks (without tissue) that were used
in the study (Fig. 1A).
Overall, we profiled 1010 tumor samples

and 516 normal samples, including normal
adjacent tissues (NATs) from the same pa-
tients (Fig. 1A and table S1). In the case of
ovarian cancer, our normal samples came from
the ovaries or uteruses of the patients or from
normal fallopian tube fimbria of unmatched
healthy subjects (tables S1 and S2). To quan-
tify bacterial DNA,we used a real-time quanti-
tative PCR (qPCR) assaywith universal primers
967F and 1064R specific for the bacterial ribo-
somal 16S gene [16S rDNA (ribosomal DNA)]
(34). Levels of bacterial DNA in all tumor types
were significantly higher than those found
in both DNA extraction and paraffin controls
(Fig. 1B; P value <10−10 for each tumor type,
Wilcoxon rank sum test). We found that differ-
ent cancer types vary in the proportion of tu-
mors that are positive for bacterial DNA, ranging
fromonly 14.3% inmelanoma to >60% in breast,
pancreatic, and bone tumors. Bacterial DNAwas
also detected in solid tumors that have no di-
rect connectionwith the external environment,
such as ovarian cancer, glioblastoma multi-
forme (GBM), and bone cancer.
To validate the presence of bacteria in hu-

man tumors, we stained >400 additional tumors
(not related to the 1526 samples described
above), representing six of our seven profiled
tumor types, for the presence of bacteria. We
conducted immunohistochemistry (IHC) using
antibodies against bacterial lipopolysaccharide
(LPS) and lipoteichoic acid (LTA) to detect
Gram-negative and Gram-positive bacteria,
respectively (35, 36). We also used RNA fluo-
rescence in situ hybridization (FISH), with a
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universal probe against bacterial 16S ribo-
somal RNA (rRNA), to detect bacterial RNA
in these tumors (37). To control for nonspecific
staining, IHC-negative controls (no primary
antibody) and FISH-negative controls (non-
specific complement probe) were also ap-
plied to the samples (figs. S1 and S2). Bacterial
LPS and 16S rRNA were frequently detected
in all tumor types (Fig. 1C) and demonstrated
a similar spatial distribution (Fig. 1D and fig.
S3). LTA was detected mainly in melanomas
and was largely absent in other tumor types.

Generally, more tumors were found to be posi-
tive for bacteria using visualization methods
than by using qPCR. This disparity may be be-
cause of some limitation in the sensitivity of
our qPCR assay, or it might be caused by our
strict cutoff for confirming a sample as positive.

Intratumor bacteria are mostly intracellular
and are present in both cancer and
immune cells

Pathological examination of tumor cores in-
dicated that LPS and bacterial 16S rRNA were

localized mainly in cancer cells and immune
cells (Fig. 2A and fig. S4). In cancer cells, bac-
terial 16S rRNA was detected mostly in the
cytoplasm, whereas LPS staining was associ-
ated with both the cytoplasm and the nucleus
(Fig. 2B and fig. S5). CD45-positive leukocytes
generally exhibited a stronger cytoplasmic
bacterial staining by 16S rRNA staining than
that exhibited by cancer cells (Fig. 2C and fig.
S6A). LTA-positive bacteria were almost ex-
clusively found in macrophages, as detected
by hematoxylin and eosin (H&E) staining and
verified by immunofluorescence (IF) for CD68
(Fig. 2D and fig. S6B). LTA was rarely detected
in cancer cells or in CD45+/CD68− immune
cells (Fig. 2). Although the intensity of bac-
terial LPS and LTA staining was very strong
in CD45+/CD68+ cells, bacterial 16S rRNA was
only rarely found in macrophages by FISH
(Fig. 2, A and D, and figs. S4 and S6). This
discrepancy may reflect macrophage inges-
tion of bacterial components rather than live
bacteria, or it may result from the accumu-
lation of LPS and LTA in macrophages long
after the bacteria have been phagocytized and
processed by the macrophages. It has been
previously demonstrated that the processing
of bacterial LPS by macrophages is very slow;
therefore, LPS can be found in these cells
months after the bacteria were ingested and
processed (38).
To further verify the presence of bacteria

inside cancer cells, we performed correla-
tive light and electron microscopy (CLEM)
(39, 40) on four human breast tumors that
were positive for bacterial LPS and 16S rRNA
(fig. S7). Combined LPS fluorescence stain-
ing and transmission electron microscopy
(TEM) imaging of the same cells clearly dem-
onstrated the intracellular localization of
bacteria in all four tumors (Fig. 2E and fig.
S7). In many cases, the bacteria were found
in close proximity to the nuclear membrane.
Because we did not detect intranuclear bacte-
ria by TEM, we suspect that the appearance
of LPS nuclear localization in some tumors
represents the staining of cytoplasmic peri-
nuclear bacteria.
Whereas bacterial 16S rRNA FISH staining

appeared as a diffused signal inside cells, typical
bacterial rods or cocci were only rarely detected
(in 3 of 426 cores). This observation, combined
with the fact that no cell wall polymer LTA
was detected in cancer cells—despite the de-
tection of many Gram-positive bacteria in
human tumors by 16S rDNA sequencing—
suggests that bacteria in tumor cells may have
altered their envelope, perhaps leading to a
cell wall–deficient state, akin to L-forms (41).
Cell wall–deficient bacteria are known to be
found exclusively inside cells, where theirmor-
phology transforms into less-defined structures
of highly variable sizes and shapes (42, 43).
Our TEM images also suggest thatmany of the
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Fig. 1. Bacterial components are detected in human tumors. (A) Number of human samples analyzed in the
study. Normal samples include both normal tissue samples and normal adjacent tissue (NAT) to tumor samples,
as detailed in table S1. Dashes indicate data not available. GBM, glioblastoma multiforme. (B) The presence
of bacterial DNA in human tumors was assessed by bacterial 16S rDNA qPCR. A calibration curve, generated
by spiking bacterial DNA into human DNA, was used to estimate bacterial load, which was then normalized against
batch-specific qPCR NTCs. Values were floored to 0.1. Red bars represent the median. The proportion of samples
of each cancer type that had more bacteria than the 99th percentile of the DNA extraction control samples
(black bar) is depicted above each cancer type. (C) Heatmap representing the proportion of tumors that stained
positively for 16S rRNA, LPS, or LTA. n = 40 to 101 tissue cores per tumor type. (D) Consecutive slices from
four human tumor types were stained with H&E, anti-LPS antibody (LPS), or with FISH probes against bacterial
16S rRNA. Scale bars, 200 mm. The letter (T) indicates samples originating from tumors.
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intracellular bacteria lack a cell wall (Fig. 2E
and fig. S7).

The microbiome of breast tumors is richer and
more diverse than that of other tumor types

To characterize the intratumor microbiome,
we developed a multiplexed 16S rDNA se-
quencing protocol that amplifies five short
regions along the 16S rRNA gene: the 5R 16S
rDNA sequencing method (Fig. 3A). By am-
plifying 68% of the bacterial 16S rRNA gene

using short amplicons, this method increases
the coverage and resolution of the detection
of bacterial species compared with the widely
used V4 or V3-V4 amplification (fig. S8). More-
over, it can be applied to partially degraded
DNA originating from formalin-fixed paraffin-
embedded tumors. Reads from 1526 samples
and 811 negative controls (DNA extraction con-
trols, 16S 5R PCR controls, and paraffin con-
trols) were computationally combined into
long amplicons, using Short MUltiple Regions

Framework (SMURF) (44) and the Greengenes
database as a reference. To improve taxonomic
assignment, we used the Ribosomal Database
Project (RDP) classifier to augment the Green-
genes database by assigning a species-level
taxonomy to 380,000 bacterial 16S rRNA se-
quences that originally lacked such taxonomy
(45) (table S3 and materials and methods).
Thirty-nine samples and 10 controls that had
fewer than 1000 normalized reads were dis-
carded from further analysis (materials and
methods).
Overall, we detected 9190 bacterial species

across the different tumor or normal tissue
types (Fig. 3B and table S2). Because some of
these species may represent contamination of
the samples, we applied a strict set of six filters
to control for potential sources of contamina-
tion. To account for the most frequent general
contaminants, filter 1 removed 167 bacterial
species that were detected in >7.5% of our
DNA extraction and NTC negative control
samples or in the paraffin controls. This thresh-
old demarcates the transition between most
of the species that are absent or very rarely
present in controls and the species that ap-
pear much more commonly in controls (fig.
S9). We then applied three filters to control
for batch effects that originate from DNA ex-
traction, PCR amplification, or sequencing
lane using hundreds of negative controls as a
background for laboratory-borne contamina-
tion (filters 2 to 4). Filters 5 and 6 were added
to control for contamination thatmight have
been introduced to the samples before their
processing in the laboratory. Filter 5 uses
paraffin-only samples (without tissue) from
the margins of the same paraffin blocks that
were used in the study to control for con-
tamination in the process of preparing and
storing the paraffin blocks. Lastly, to account
for other potential sources of medical center–
specific contamination, filter 6 excluded bacte-
ria that were not significantly enriched in a
specific tumor type across multiple medical
centers. Only bacteria that passed all six fil-
ters in a specific cancer type or its NAT were
considered to be hits that are present in this
cancer or NAT condition (Fig. 3B, table S4,
materials and methods, and supplementary
note).
We found that breast tumors had a richer

and more diverse microbiome than all other
tumor types tested (P value <10−15 for each
tumor type, Wilcoxon rank sum test; Fig. 3, C
and D, and figs. S10 and S11). An average of
16.4 bacterial species were detected in any
single breast tumor sample, whereas the aver-
age was <9 in all other tumor types (P value
<10−17 for each tumor type, Wilcoxon rank sum
test; Fig. 3E and fig. S11). We also found that
bacterial load and richness were higher in
the breast tumor samples than those found in
normal breast samples from healthy subjects.
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bacteria are marked with arrows. TEM images of the same cell are shown in grayscale. High-magnification image
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Tumor-adjacent normal breast tissue had
an intermediate bacterial load and rich-
ness, between those of the breast tumor and
normal samples (Fig. 3F and fig. S12). In
contrast, we did not find a higher bacterial
load in lung and ovarian tumors compared
with their tumor-adjacent normal tissues
(fig. S12).
To determine whether live bacteria are

present in human tumors, we collected fresh
breast tumor samples from five women un-
dergoing breast surgery. All tissues were
gently dissociated in sterile conditions, plated
on 35 types of agar growth media, and incu-
bated in both aerobic and anaerobic condi-
tions, representing a broad span of growth
conditions to accommodate a high diversity
of bacteria (table S5) (46). In agreement with
the positive staining of these tumors for LPS
and 16S rRNA FISH (fig. S13), >1000 colonies
were grown per tumor from four of the tumors,
and 37 colonies were grown from one tumor.
In contrast, applying the same steps of tissue
dissociation and culturing protocol to five full
sets of negative control plates (350 plates) using
only phosphate-buffered saline (PBS) yielded
only five colonies in total. Whole-genome se-
quencing of 474 representative colonies from
all five tumors demonstrated that they repre-
sented 37 different bacterial species, 11 of which
(29.7%) are bacteria that were previously de-
tected as hits in our breast tumor cohort (table
S5). Fifteen isolated species (40.5%) were de-
tected in our breast tumor cohort but did not
pass all filters. For 105 of the colonies, we
could not identify the bacteria at the species
level (table S5 and materials and methods).
Overall, these results show that live bacte-
ria from three main phyla—Proteobacteria,
Firmicutes, and Actinobacteria—can be found
in breast tumors.
To further validate the presence of live,

metabolically active bacteria in human tu-
mors, we cultured slices from four freshly
resected human breast tumors ex vivo in the
presence of fluorescently labeled D-alanine
or dimethyl sulfoxide (DMSO) control. Al-
though D-alanine is used by bacteria to gen-
erate peptidoglycan, an essential component
of the bacterial cell wall, it is not used by
mammalian cells (fig. S14) (47). We de-
tected intracellular labeling in all four tu-
mors, which supports the hypothesis that
the tumors harbor live intracellular bacte-
ria (Fig. 3G)

Different tumor types have distinct
microbial compositions

Using a single sequencing methodology and
platform for the characterization of the micro-
biome in multiple tumor types enabled us to
directly compare the microbiomes of these
tumors. Comparison of the beta-diversity be-
tween all pairs of samples within a given
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Fig. 3. The microbiome of breast tumors is richer and more diverse than that of other tumor types.
(A) Graphic representation of the bacterial 16S rRNA gene with its conserved (blue) and variable
(yellow) regions. The sequence from Escherichia coli K-12 substrain MG1655 was used as a reference
sequence. The five amplicons of the multiplexed 5R PCR method are depicted in gray. (B) Schematic
representation of the analysis pipeline applied to 16S rDNA sequencing data. (C) Rarefaction plots showing
the number of bacterial genera that passed all filters in the different tumor types per number of tumor
samples that were selected for the analysis. Light color shading represents confidence intervals based on
100 random subsamplings for each number of tumor samples that was analyzed. (D) Box blot of Shannon
diversity indexes of all samples, segregated by tumor type. Neg., negative. (E) Box blot of the numbers
of bacterial species present in each tumor. For (D) and (E), values were calculated on rarefied data of
40 samples per tumor type, with 10 iterations. For each iteration, only bacteria that passed all filters in any of
the tumor types were included in the analysis. (F) Rarefaction plots for the number of bacterial genera that
passed all filters in breast tumor, breast NAT, and breast normal samples. Light color shading represents
confidence intervals based on 100 random subsamplings for each number of samples that was analyzed.
(G) Fluorescent images from four human breast tumors that were cultured ex vivo with fluorescently labeled
D-alanine for 2 hours (blue). Nuclei were stained with DRAQ5 (orange). Scale bars, 10 mm.
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tumor type and across different tumor types
revealed that the microbiomes of tumors of
the same type tend to be more similar to
each other than they are to the microbiomes
of other tumor types (Fig. 4A and fig. S15).
The distribution of order-level phylotypes
revealedmarked changes between the bacte-
rial composition of the different tumor types
(Fig. 4B and fig. S16). We added 22 colorectal
tumors from one medical center to our cohort
to help relate someof our findings to the known
colorectal cancer microbiome (table S2) (11, 12).
Consistent with previous reports, bacteria be-
longing to the Firmicutes and Bacteroidetes
phyla were the most abundant species in co-
lorectal tumors (Fig. 4B) (10). In contrast,
Proteobacteria dominated the microbiome
of pancreatic cancer, similarly to the normal
duodenal microbiome makeup (16, 17, 48, 49).
This may reflect a retrograde bacterial mi-
gration from the duodenum, to which the
pancreatic duct opens, as we have previously
reported (16). Although species belonging to
the Proteobacteria and Firmicutes phyla ac-
counted for most of the detected bacterial se-
quences in all cancer types, the Proteobacteria
to Firmicutes (P/F) ratio appears to vary be-
tween tumor types (Fig. 4B). We also detected
taxa of the Actinobacteria phylum, including
the Corynebacteriaceae and Micrococcaceae
families, mostly in nongastrointestinal tumors
(Fig. 4B and fig. S16). These observations are
in agreement with previous reports describing
the microbiome of breast, lung, and ovarian
cancer (2, 4, 6, 9, 14, 15, 18).
A tumor-type distinctive microbiome com-

position was also apparent at the species level.
Unsupervised clustering of the most prevalent
intratumor bacterial species (n = 137 species)
demonstrated that many of these species are
enriched in certain tumor types (Fig. 4, C and
D, and fig. S17). Fusobacterium nucleatum,
previously reported to be enriched in colorec-
tal tumors, was also a hit in our breast and
pancreatic tumor cohorts (fig. S17). We also
observed a distinct microbiome across sub-
types of the same tumor type. For example,
when comparing different subtypes of breast
cancer according to their estrogen receptor
(ER), progesterone receptor (PR), and HER2
status, we foundmultiple bacterial taxa whose
prevalencewas different between the subtypes
(Fig. 4E and table S6). Lastly, although the
overall microbial composition of the differ-
ent tumor types was relatively similar to their
NAT microbiome (Fig. 4F), we also detected
bacteria with a different prevalence in tumors
and in their NAT (Fig. 4G and table S7). Con-
sistent with our observation that bacterial
load and richness of breast tumors are higher
than those in breast NAT (Fig. 3F and fig. S12),
we found many bacteria that are significantly
enriched in breast tumors comparedwith their
NAT (Fig. 4G).
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Fig. 4. Different tumor types have distinct microbial compositions. (A) Jaccard similarity indexes were
computed on the basis of profiles of bacterial species that passed all filters in tumors (n = 528) between
all possible pairs of samples. The heatmap presents the average of all indexes between sample pairs from any
two cancer types. (B) Distribution of order-level phylotypes across different tumor types. Relative abundances
were calculated by summing up the reads of species that passed all filters in the different tumor types and belong
to the same order. Orders are colored according to their associated phylum. (C) Unsupervised hierarchical
clustering of the prevalence of 137 bacteria species that were hits in one of the tumor types and are present
in 10% or more of the samples in at least one of the tumor types. (D) The prevalence of 19 bacteria from (C),
displayed across the different tumor types. Only bacteria that are a hit in a given tumor type are represented with
colored circles. Circle size indicates the prevalence level in samples. US, unknown species. (E) Bacterial taxa
with a significant differential prevalence between different breast tumor subtypes are presented in a bar plot.
P values were calculated using a two-sample proportion z test to compare between HER2+ (n = 61) and HER2−
(n = 247), ER+ (n = 270) and ER− (n = 49), or triple negative (TNG) (n = 36) and non-TNG (n = 284) breast tumors.
The direction of the bars indicates the enrichment direction. All bacteria presented had a false discovery rate
(FDR)–corrected Q value <0.25. US, unknown species; UG, unknown genus; UF, unknown family; (s), species;
(g), genus; (f), family; (c), class. (F) Principal coordinate analysis (PCoA) biplot on the Jaccard similarity indexes
between bacterial species profiles of the different tissue types. Only bacteria that passed all filters for the
specific tissue type were considered. Tumor types and their normal tissue are grouped. (G) Volcano plot
demonstrating the differential prevalence of bacteria between tumors (T) and their NAT in breast, lung, and
ovary samples. A two-sample proportion z test was used to calculate the P values. Sizes of dots reflect
phylotype levels, gradually increasing from species to phylum. Bacteria are colored according to the tumor
type (breast, pink; lung, green; and ovary, purple) if they passed significance thresholds (effect size >5%,
P value <0.05, and FDR-corrected Q value <0.25).
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Metabolic functions encoded by intratumor
bacteria are associated with clinical features
of certain tumor subtypes
Our results demonstrate that intratumor bacte-
ria span a wide spectrum of the bacterial king-
dom. To investigate the functional activities
of intratumor bacteria, we used the PICRUSt2
tool (50–52) to map the 16S sequences to the
genes and pathways that these bacterial species
may harbor (fig. S18 and tables S8 and S9).
Unsupervised clustering analysis of 287 pre-

dictedmetabolicMetaCyc pathways that showed
the greatest variability between the tumor types
revealed that certainmicrobiomemetabolic path-
ways were relatively specific to certain tumor
types (Fig. 5A). We found a few tumor type–
specific enrichments of bacterial pathways that
can degrade metabolites known to be enriched
in these same tumor types (table S10). For ex-
ample, degradation of hydroxyprolines by bacte-
ria (MetaCyc PWY-5159) was enriched in bone

tumors (effect size 14.6%, P value <0.01, propor-
tion test). Bone collagen is a main source of hy-
droxyproline, and many bone pathologies, like
bone tumors, have been shown to result in ele-
vated hydroxyproline levels (53). In the case of
lung cancer, MetaCyc pathways responsible for
the degradation of chemicals in cigarette smoke,
such as toluene, acrylonitrile, and aminoben-
zoates (TOLUENE-DEG-2-OH-PWY, P344-PWY,
and PWY-6077), were significantly enriched in
bacteria found in lung tumors compared with
other tumor types (effect size 8.4, 8, and 7.2%,
P value <0.001 for all, proportion test).
The enrichment for bacteria with the pre-

dicted capability to degrade cigarette smoke
metabolites in lung tumors may suggest that
high levels of these metabolites create a pre-
ferred niche for bacteria that can use these
metabolites. To confirm this hypothesis, we
compared the bacterial functions found innon–
small cell lung cancers (NSCLCs) of 100 current

smokers with those in NSCLCs of 43 people
who had never smoked (never-smokers). We
found that 17 of the 49MetaCyc pathways that
were significantly enriched in tumors of cur-
rent smokers were pathways that degrade
chemicals found in cigarette smoke, such as
nicotine, anthranilate, toluene, and phenol
(Fig. 5B, blue circles, and table S11). We also
found eight MetaCyc pathways related to the
biosynthesis of metabolites that can be used
by plants—for example, for the biosynthesis
of glycine, a key intermediate in plant pho-
torespiration (Fig. 5B, red circles, and table
S11). We speculate that some plant-associated
bacteria, or their DNA, are present in cigarette
tobacco and are thus enriched in the lung tu-
mors of smokers.
To determine which bacteria contribute to

theMetaCyc pathways that are enriched in the
lung tumors of current smokers, we compared
the proportion of all bacterial taxa found in
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Fig. 5. Predicted bacterial metabolic functions
are associated with clinical features. (A) Heat-
map demonstrating unsupervised hierarchical
clustering of the frequencies of 287 MetaCyc
pathways across the different tumor types. Only
pathways that are abundant (frequency >10% in at
least one tumor type) and variable (standard
deviation divided by the average of frequencies
>0.4) were included (table S10). (B and C) Volcano
plots demonstrating bacterial MetaCyc pathways
(B) and taxa (C) that are enriched in lung tumors
from smokers (n = 100) versus never-smokers
(n = 43). Effect size represents the difference in the
proportion between the groups. A two-sample
proportion z test was used to calculate the P values.
Green filled circles indicate pathways with FDR-
corrected Q values <0.25. Degrading pathways of
smoke chemicals are indicated by blue circles in (B);
plant-related metabolic pathways are indicated by
red circles in (B). (o), order. (D) Taxonomy
wheel plot of bacterial species that contributed to
degradation of cigarette smoke metabolites (blue
ring) and to the biosynthesis of plant metabolites
functions (red ring) are indicated on the phyloge-
netic tree, along with all bacteria that are hits
in lung tumors (green ring). (E) Volcano plot
demonstrating enriched bacterial MetaCyc functions in
ER+ versus ER− breast tumors. A two-sample
proportion z test was used to calculate the
P values. Colored circles indicate pathways with
FDR-corrected Q values <0.25. (F) Volcano plot
demonstrating the bacterial taxa enriched in mela-
noma patients who responded (R) to immune
checkpoint inhibitors (ICI) versus nonresponders
(NR). A binomial test was used to calculate the
P values for the enrichment or depletion of bacterial
taxa in the responder cohort versus the non-
responder cohort. The size of dots reflects phylo-
type levels, gradually increasing from species to
phylum. Colored circles indicate taxa with
FDR-corrected Q values <0.25.
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lung tumors of current smokers (n = 100) with
those in the tumors of never-smokers (n = 43).
We found that most of the enriched taxa in
the lung tumors of smokers belong to the
Proteobacteria phylum.However, none of these
bacteria reached significance after correction
for multiple-hypothesis testing (Fig. 5C and
table S12), which indicates that there was no
homogeneous population of species conferring
this functionality across samples.We reasoned
that, although bacterial ecology differs between
tumors, there is a shared functional signal re-
lated to the specific environment within the
lungs of smokers. We were able to demon-
strate that a very large number of heteroge-
neous bacteria contribute to the degradation
functions of cigarette smoke metabolites and
the biosynthesis of plant metabolites (Fig. 5D).
Bacteria expressing these functions are found
mainly in the Proteobacteria, Actinobacteria,
andCyanobacteria phyla, and they are depleted
from the Firmicutes phylum (Fig. 5D).
We also found selective enrichment of bac-

terial functions in certain tumor subtypes. For
example, multipleMetaCyc pathways were en-
riched in bacteria from 270 ER+ breast tumors
compared with 49 ER− breast tumors (Fig. 5E
and table S13). Themost significantly enriched
pathways in bacteria within ER+ breast tumors
were arsenate detoxification and mycothiol
biosynthesis. Arsenic is a Group 1 carcinogen
that can increase the risk of breast cancer (54)
and has been shown to induce expression of
the estrogen receptor in human breast cancer
(55). Mycothiol is used by bacteria to detoxify
reactive oxygen species (56). Because ER+
breast tumors are known to have increased
oxidative stress compared with ER− tumors
(57), we hypothesize that bacteria with the
ability to synthesize mycothiol can better sur-
vive in the ER+ tumor microenvironment. We
also found enrichment of bacterial functions
when comparing breast tumor with NAT sam-
ples (table S14). For example, enzymes related
to anaerobic respiration were enriched in
bacteria from breast cancer versus NAT. Over-
all, our analysis of MetaCyc pathways suggests
a connection between the functions of bacte-
ria present in the tumor and their tumor
microenvironment.
Lastly, as our IF staining suggests (Fig. 2),

bacteria can be found inside CD45+ immune
cells, which indicates that they might influ-
ence or reflect the immune state of the tumor
microenvironment. To determine whether a
specific intratumor microbial signature is cor-
related with the response to immunotherapy,
we compared metastatic melanomas from pa-
tients who responded to immune checkpoint
inhibitors (ICI) (n = 29) with those from pa-
tients who did not respond (n = 48). Although
we did not find significant changes in the load
of bacteria between responders and nonres-
ponders to ICI, we did find multiple taxa that

were differentiallymore (n = 18) or less (n = 28)
abundant in the melanomas of responders
comparedwith nonresponders (Fig. 5F, fig. S19,
and table S15). Taxa that were more abundant
in tumors of responders included Clostridium,
whereasGardnerella vaginaliswasmore abun-
dant in tumors of nonresponders. Notably, this
is in line with differential abundances of taxa
in the gut microbiome of melanoma patients
responding to ICI (23–25).

Discussion

In the present study, we characterized the
microbiome of 1526 samples from seven hu-
man tumor types. We took multiple measures
to minimize and control for contamination
(supplementary note) and used our 5R multi-
plexed bacterial 16S rDNA PCR sequencing
technique to gain species-level resolution.
The exploration of multiple tumor types

with a single platform allowed us to compare
different tumor types and uncover cancer type–
specific microbial signatures. This is consistent
with a recent publication that demonstrated
that reexamination of whole-genome and
whole-transcriptome sequencing data from
The Cancer Genome Atlas (TCGA) for micro-
bial sequences identified associations between
different cancer types and specific microbiota
(19). Extending our analysis to the functional
level demonstrated that, despite a very large
variation in taxa levels, certain tumor environ-
ments are enriched for common, relevant
bacterial functional traits. This observation
is somewhat analogous to the relative stability
of the human gut microbiome functions com-
pared with its microbial taxa (58, 59). Using
multiple visualization methods and culturo-
mics, we were able to validate the presence of
bacteria in the tumors and demonstrate their
intracellular localization in both cancer and
immune cells.
Our data do not establish whether intra-

tumor bacteria play a causal role in the de-
velopment of cancer or whether their presence
simply reflects infections of established tumors
(60, 61). As tumors develop, their disorganized,
leaky vasculaturemay allow circulating bacteria
to enter, and the immunosuppressed environ-
ment may provide a refuge for them (61, 62).
Intratumor bacteria may also arise from the
NAT, which can explain the high similarity we
found between the tumor microbiome and
its NAT microbiome. Whether or not bacteria
play a causal role in tumorigenesis, it is of
interest to further explore the effects that
intratumor bacteria may have on different
phenotypes of cancer cells and on the immune
system and its interactions with tumor cells.
Just as manipulation of the gut microbiome
has been shown to affect the response of tu-
mors to immune-checkpoint blockade therapy
(23–25, 28), we speculate that manipulation of
the tumor microbiome may also affect tumor

immunity and the response to immune ther-
apy. Thus, better understanding of these ef-
fects may pave the way for novel treatment
options for cancer patients.
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were enriched in bacteria that produce mycothiol, which can detoxify reactive oxygen species.
plausible associations were identified. For example, breast cancer subtypes characterized by increased oxidative stress
cancer cells and immune cells and that the bacterial composition varied according to tumor type. Certain biologically 
(see the Perspective by Atreya and Turnbaugh). They found that the bacteria within tumors were localized within both
an exhaustive catalog of the bacteria present in more than 1500 human tumors representing seven different tumor types 

 producedet al.to the bacteria themselves has been unclear. As an initial step toward addressing this question, Nejman 
Bacteria are well-known residents in human tumors, but whether their presence is advantageous to the tumors or

Profiling tumor bacteria

ARTICLE TOOLS http://science.sciencemag.org/content/368/6494/973

MATERIALS
SUPPLEMENTARY http://science.sciencemag.org/content/suppl/2020/05/27/368.6494.973.DC1

CONTENT
RELATED 

http://science.sciencemag.org/content/sci/368/6494/938.full
http://stm.sciencemag.org/content/scitransmed/7/289/289ra84.full
http://stm.sciencemag.org/content/scitransmed/12/530/eaax0876.full
http://stm.sciencemag.org/content/scitransmed/7/271/271ps1.full

REFERENCES

http://science.sciencemag.org/content/368/6494/973#BIBL
This article cites 72 articles, 19 of which you can access for free

Terms of ServiceUse of this article is subject to the 

 is a registered trademark of AAAS.ScienceScience, 1200 New York Avenue NW, Washington, DC 20005. The title 
(print ISSN 0036-8075; online ISSN 1095-9203) is published by the American Association for the Advancement ofScience 

Science. No claim to original U.S. Government Works
Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of

on M
ay 28, 2020

 
http://science.sciencem

ag.org/
D

ow
nloaded from

 

http://science.sciencemag.org/content/368/6494/973
http://science.sciencemag.org/content/suppl/2020/05/27/368.6494.973.DC1
http://stm.sciencemag.org/content/scitransmed/7/271/271ps1.full
http://stm.sciencemag.org/content/scitransmed/12/530/eaax0876.full
http://stm.sciencemag.org/content/scitransmed/7/289/289ra84.full
http://science.sciencemag.org/content/sci/368/6494/938.full
http://science.sciencemag.org/content/368/6494/973#BIBL
http://www.sciencemag.org/about/terms-service
http://science.sciencemag.org/


PERMISSIONS http://www.sciencemag.org/help/reprints-and-permissions

Terms of ServiceUse of this article is subject to the 

 is a registered trademark of AAAS.ScienceScience, 1200 New York Avenue NW, Washington, DC 20005. The title 
(print ISSN 0036-8075; online ISSN 1095-9203) is published by the American Association for the Advancement ofScience 

Science. No claim to original U.S. Government Works
Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of

on M
ay 28, 2020

 
http://science.sciencem

ag.org/
D

ow
nloaded from

 

http://www.sciencemag.org/help/reprints-and-permissions
http://www.sciencemag.org/about/terms-service
http://science.sciencemag.org/

