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Abstract

We use cluster analysis as a unifying principle for prob-
lems from low, middle and high level vision. The cluster-
ing problem is viewed as graph partitioning, where nodes
represent data elements and the weights of the edges rep-
resent pairwise similarities. Our algorithm generates sam-
ples of cuts in this graph, by using David Karger’s con-
traction algorithm, and computes an ”average” cut which
provides the basis for our solution to the clustering prob-
lem. The stochastic nature of our method makes it robust
against noise, including accidental edges and small spu-
rious clusters. The complexity of our algorithm is very
low: O(N log2N) for N objects and a fixed accuracy lev-
el. Without additional computational cost, our algorithm
provides a hierarchy of nested partitions. We demonstrate
the superiority of our method for image segmentation on
a few real color images. Our second application includes
the concatenation of edges in a cluttered scene (perceptual
grouping), where we show that the same clustering algo-
rithm achieves as good a grouping, if not better, as more
specialized methods.

1 Introduction
A wide range of tasks in computer vision may be viewed

as unsupervised partitioning of data. Image segmentation,
grouping of edge elements and image database organiza-
tion, are problems at different levels of visual information
processing. These tasks have different application objec-
tives, and they handle very different data entities (pixels,
edgels, images). Nevertheless, they all come to serve a
common goal, which is the partitioning of the visual enti-
ties into “coherent” parts.

The goal of this work is to use cluster analysis as a u-
nifying principle for a wide range of problems from low,
middle and high level vision. In our approach we distin-
guish between two stages of processing. The first stage is
task dependent, and defines the affinity, or similarity, be-

tween the visual entities. The affinity is a function of the
relevant attributes. Low level attributes may be the spa-
tial location, intensity level, color composition or filter re-
sponse of a pixel in the image. Mid level attributes, in the
case of edge elements, may be spatial location, orientation
or curvature, and the affinity associated with them may re-
flect properties such as proximity, symmetry, co-circuitry
and good continuity. High level attributes may be as com-
plex as the entire shape of an object in the scene, or the
color distribution of all the pixels in an image.

The second stage in this approach follows the unifying
principle, and applies cluster analysis to the organizion of
the visual objects (pixels, edgels, images) into coheren-
t groups. These groups reflect internal structure among
the entities, where (roughly speaking) the affinity within
groups is larger than the affinity between groups. There-
fore, a cluster of pixels in the image, sharing similar loca-
tions and colors, is expected to account for an object or a
part of an object in the scene. A cluster of edge elements is
expected to exhibit a meaningful aggregation into a com-
plete edge, and a cluster of images in a database is expected
to be related with a common topic.

We present in Section 2 our stochastic pairwise clus-
tering algorithm; it is an efficient, robust and model-free
pairwise hierarchical algorithm (see also [2]). The robust-
ness of our method is achieved by averaging over all the
possible interpretations of the data, giving more weight to
data partitions that are associated with lower cost. This
idea is adopted from clustering algorithms that are inspired
by statistical mechanics, and in particular our method is
related to [1]. Our algorithm can be analyzed analytically,
and for sparse graphs and a fixed accuracy level it runs in
O(N log2N) time, whereN is the number of data-points.

Clustering methods which are formulated as graph par-
titioning (as we do here) involve partitioning criteria such
as the min-cut algorithm [12]. They are related to spectral
methods which identify good partitions via the eigenvec-
tors of the affinity matrix, or other matrices derived from it
[6, 7, 9]. These methods have been applied, in the context
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of computer vision, to image segmentation, motion estima-
tion and perceptual grouping.

In Sections 3,4 we describe the application of our clus-
tering algorithm to color image segmentation and percep-
tual grouping of edge elements. A description of its appli-
cation to image database organization is beyond the scope
of the present short report. Our good results (both absolute
and relative to other methods), and the results of extensive
experiments not described here, demonstrate that we can
handle successfully problems in low- and mid-level vision
in this unified way. In comparison, other successful algo-
rithms have been shown to be more specific; for example,
it has been shown in [6] that the normalized cut algorithm
[9] is not suitable for figure/ground segregation (or percep-
tual grouping), while the factorization method in [6] is less
suitable for image segmentation.

2 The typical cut algorithm
We present now the general approach and the princi-

ples of our clustering method. After defining the termi-
nology in Section 2.1, we describe the algorithm in Sec-
tion 2.2. Complexity and parameter tuning are discussed
in Section 2.3.

2.1 Notations and Definitions
Our clustering algorithm uses pairwise similarities, which

are represented as a weighted graphG(V;E): the nodesV
represent data items, and the positive weightwij of an edge
(i; j) represents the similarity between nodes (data items)
i and j. The graphG(V;E) may be incomplete, due to
missing data or due to edge dilution (whose purpose is to
increase efficiency). The weightswij may violate metric
properties, and in general they may reflect either similarity
or dissimilarity values. In the current work, however, we
assume that the weights reflect symmetric similarity rela-
tions (hencewij=wji, andwij=0 for i andj that are com-
pletely dissimilar). We do not assume that the similarity
weights obey the triangle inequality, and self similarities
wii are not defined.

A cut (V1; V2) in a graphG(V;E) is a partition ofV
into two disjoint setsV1 andV2. The capacity of the cut is
the sum of weights of all edges that cross the cut, namely:
c(V1; V2) =

P
i2V1;j2V2

wij . A minimal cuthas the min-
imal capacity. We use the term “cut” also for the general-
ized case of multi-way cuts. A partition ofV into r disjoint
sets(V1; : : : ; Vr) is calledr-way cut, and in accordance its
capacity is defined as

P
i2V�;j2V� ;�6=�

wij . Every one of
ther components may be referred to as a “side” of the cut.

Let the nodes which belong to each sideV� (� = 1 : : : r)
be grouped together into onemeta-node, and discard all the
edges which form self loops within meta-nodes (namely,
discard the inner edges of each component, which connec-
t two inner nodes belonging to the same component). The

graph which is thus obtained has exactlyr meta-nodes, and
it is a multi-graph since meta-nodes may be connected to
each other by more than one edge. Actually, ifG is a com-
plete graph, then the number of edges connecting the meta-
nodes representing the componentsV� andV� is exactly
jV�jjV� j.

The grouping procedure described above yields acon-
tracted graphwhich hasr meta-nodes, denotedG0

r. Note
that this notation does not characterize the contracted graph,
since there are many ways to group the nodes ofG into r
disjoint sets. However, any contracted graphG0

r represents
an r-way cut in the original graph. The edges ofG0

r are
the edges which cross the correspondingr-way cut in the
original graph.

2.2 Outline of algorithm
This section provides a simplified concise description of

the algorithm, ignoring implementation issues which arise
from considerations of space and time complexity, and em-
phasizing the general principles. The algorithm is divided
into two stages, described in pseudo-code in Figs. 1,2 and
explained below.

Generating typical cuts: For a given value ofr (r =
1 : : :N ) our algorithm generates a sample ofM possible
r-way cuts, and uses this sample to estimate the probability
prij that(i; j) is not a crossing edge of a randomr-way cut.
The pseudo-code in Fig. 1 counts, for every pair of nodes
i; j 2 V and for every integerr between 1 andN , the
number ofr-way cuts (out ofM ) in which the two nodes
are on the same side. These accumulators are divided by
M to estimate for every two nodes the probabilityprij that
they are on the same side.

In this pseudo-code the procedureCONTRACT gener-
ates ther-way cutG0

r from the previously generated cut
G0
r+1. The procedureCONTRACT selects two meta-nodes

ofG0
r+1 and merges them into one meta-node ofG0

r, while
discarding the edges which previously connected these t-
wo meta-nodes. The selection of the nodes to be unified is
probabilistic: an edge(i; j) ofG0

r+1 is selected for contrac-
tion with probability proportional to its weightwij . Then,
the two meta-nodes which are adjacent to the selected edge
are merged.

The contraction procedure is the cornerstone of our method,
since it defines the sample ofM cuts, according to which
the empirical probabilitiesprij are computed. Thus the con-
traction procedure is our sampling tool, typically assigning
higher probability to cuts with lower capacity as is shown
in [5]. In fact, [5] proves that the minimal cut can be
found using this sampling method in polynomial time, even
though the overall number of possible cuts is exponential.
In summary, the contraction process induces a probability
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procedure STAGE-1:
input: weighted graph G(V;E), N nodes
output: 3D array p of probabilities

srij  0 for i; j; r = 1 : : : N (init counters)
for m = 1 : : :M:

G0

N  G(V;E)
for r = (N � 1) : : : 1:

G0

r  CONTRACT(G0

r+1) (r-way cut)
for i; j = 1 : : : N:

if i and j belong to the same
meta-node of G0

r, then
srij  srij+1

end-if
end-loop

end-loop
end-loop
prij  srij=M for i; j; r = 1 : : : N
return array p.

Figure 1. Pseudo-code which transforms similarity weights
into pairing probabilities.

distribution over cuts, and under this distribution we esti-
mateprij – the marginal probability that nodesi andj are
on the same side of a randomr-way cut.

The number ofr-way cuts in a graph ofN nodes is the
Sterling number of the second kind, denoted�(r;N). Let
�(r) = 1 : : : �(r;N) be an index to the set of allr-way
cuts inG(V;E). Fix r and letP� denote the probability
that the contraction algorithm generates the cut�. For a
fixedr value,

P
� P� = 1. Define an indicator variablee�ij

to be 1 if the edge(i; j) crosses the cut� and 0 otherwise.
It is readily seen that
X

(i;j)2E

wij(1�p
r
ij) =

X

(i;j)2E

wij

X

�

e�ijP� =
X

�

c�P� = hc(r)i

wherec� is the capacity of cut�, andhc(r)i is the expect-
ed value of ther-way capacity. We can therefore interpret
1-prij as the probability that edge(i; j) is a crossing edge in
an “average cut”. We use this observation for the following
definition.

For every integerr between 1 andN we define thetyp-
ical cut (A1; A2; : : : ; As(r)) as the partition ofG into con-
nected components, such that for everyi 2 A�, j 2 A�

(� 6= �; �; � = 1 : : : s(r)) we haveprij < 0:5. To find
the typical cut for every integerr between 1 andN we
first remove all the edges whose transformed weightprij is
smaller than0:5, and we then compute the connected com-
ponents in the remaining graph. Note that the number of
parts,s(r), in the typical cut can be different fromr.

TheN typical cuts corresponding tor = 1 : : :N are the
candidate solutions to our clustering problem. Although

this is an extremely small number compared with the ex-
ponential number of possible partitions, we still need to
select only a few interesting solutions out of theN candi-
dates. The question that remains is to define and choose
“good” values ofr, for which a “meaningful” clustering is
obtained as part of a hierarchy of a few selected partitions.

Selecting meaningful partitions: We define the follow-
ing function of the typical cut at levelr:

T (r) =
2

N(N � 1)

X

i>j

NiNj (1)

whereNk = jAkj denotes the number of elements in the
k-th cluster.T (r), therefore, measures how many edges of
the complete graph cross over between different clusters in
ther-partition, relative to the total number of edges in the
complete graph.

Partitions which correspond to subsequentr values are
typically very similar to each other, or even identical, in
the sense that only a few nodes (if any) change the compo-
nent to which they belong. Consequently,T (r) typically
shows a very moderate increase. However, abrupt changes
in T (r) occur between different hierarchical levels of clus-
tering, when two or more large meta-nodes are merged.

We look at changes in the value ofT (r) between subse-
quentr values, and output only those partitions which are
associated with a large change inT (r). For the current pre-
sentation we set a thresholdÆ, and output a solution at level
r if and only if�T (r) > Æ. This is described in Fig. 2.

2.3 Complexity and parameter estimation
An efficient implementation of our algorithm drastical-

ly decreases the number of estimated variables (prij) from
N3 to jEj, which isO(N) for sparse graphs andN2 for
complete graphs. Moreover, we can show that one graph
contraction (one iteration of the external loop inSTAGE-
1, Fig. 1) can be implemented inO(N logN) time for s-
parse graphs. Using the Hoeffding-Chernoff bound to de-
termine the desired sample size, denotedM , we can show
thatM = O(logN=�2) for an accuracy level� (with high
probability). Hence the overall complexity ofSTAGE-1
for a fixed accuracy level isO(N log2N) for sparse graph-
s. The efficient implementation ofSTAGE-2 takes only
O(N logN) time in this case, makingO(N log2N) the
overall sparse graph complexity bound for our algorithm.

There are very few parameters in the main part of the
algorithm, and its performance is not sensitive to their ex-
act values. It is mostly the preprocessing stage, which con-
structs the weighted graphG, that critically depends on ex-
ternal parameters. These parameters are related to the def-
inition of similarity (which is task dependent), and to the
transformation from perceptual similarity to edge weight.
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procedure STAGE-2:
input: 3D array of probs prij
output: selected partitions

for r = 1 : : : N:
let G(V;E) be a complete weighed

graph of N nodes and assign
weight prij to each edge (i; j) 2 E

for each (i; j) 2 E:
if prij < 0:5 then

E  En(i; j) (remove edge)
end-if

end-loop
find connected components (A1;

A2; : : : ; As) in G(V;E)
compute �T (r) = T (r)� T (r� 1) (1)
if �T (r) > Æ then

(*) relabel small parts
report partition (A1; A2; : : : ; As)

end-if
end-loop

Figure 2. Pseudo-code which finds typical cuts, measures the
resemblance between subsequent cuts, and reports the “meaning-
ful” partitions.

Given a dissimilarity measuredij between stimulii andj,
we definewij = exp(�d2ij=a

2). Herea is a decay param-
eter which reflects some suitable local scale, and it needs
to be tuned. Sometimes the dissimilarity between stimuli
is measured along different dimensions, like in an image
segmentation task where dissimilarity between pixels is a
function of their spatial proximity and relative brightness.
In this case a different local scale parameter is defined for
every dimension� of similarity, namely:

wij =
Y

�

exp(�d(�)2ij=a(�)
2) (2)

Experiments with simulated and real data show that the re-
sults of our algorithm are quite robust with respect to the
exact transformation used to implement Equation (2).

2.4 Robustness and Comparisons
Figure 3 shows a task involving the separation of two

point sets generated by different statistical sources. The
issue addressed here is the response of various clustering
algorithms to the amount of noise in the data. The normal-
ized cut algorithm [9] performs well at low levels of noise,
but as the noise is increased it abruptly breaks down. In
this example the factorization method [6] breaks down at
a lower level of noise, while our algorithm still perform-
s well at higher levels of noise. In general, as the level
of noise is increased continuously, the performance of our

algorithm degrades gracefully and continuously, by leav-
ing more and more points unlabeled. Abrupt breakdown is
rare, and we believe that this is another beneficial result of
the stochastic nature of our method.
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0 25 50 75 100 125 150 175 200

Typical cut (highest peak)

0 50 100 150 200 250 300 350 400 450 500
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

Normalized cut (best threshold)

0 50 100 150 200 250 300 350 400 450 500
0

0.05

0.1

0.15

0.2

0.25

Factorization (threshold 0.01)

Figure 3. Robustness under data perturbation. The control pa-
rameter� defines the spread of the points, or the “width” of each
circle; results are shown for�=0.9. Both the normalized cut algo-
rithm and the factorization algorithm fail (the factorization method
fails earlier, though, for�=0.7), while our algorithm finds the de-
sired structure. For the spectral methods we show the entries of the
relevant eigenvector next to the partition found. The magnitude of
the entries are plotted versus their serial index. These methods
seek a threshold which separates between small and large entries.
The color and the symbol used for the eigenvector entries corre-
sponds with those used in the2D plot.

3 Color image segemntation
We now describe color image segmentation with the

typical cut algorithm; this application is similar to inten-
sity image segmentation, which we have explored earlier
in [2]. Now nodes in the graph represent individual pix-
els. The similarity weightwij between pixels (nodes)i
andj increases with increasing spatial proximity and col-
or resemblance, which is measured in a three dimensional
color space. If using one of the “perceptually uniform”
color spaces, CIE-LAB or CIE-LUV, color difference is
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Figure 4. Color image segmentation in CIE-LAB color s-
pace: the original image of size 122�183, the impulse graph of
�T (r), and two segmentation results which correspond to the t-
wo highest peaks.Parameter setting: Colors are represented in
CIE-LAB color space,a=8, b=3, edges with weightwij below
0.001 are eliminated, and only edges connecting each pixel with
its eight spatial nearest neighbors are included. Minimal cluster
size of interest is 100, and the sample size isM=500. The graph
contained 71,765 edges. Time per iteration: 0.89sec on Pentium
II 450 Mhz.

the Euclidean distance in the corresponding space. From
Equation (2) we have:

wij = e�
d(1)2

ij

a2
�

d(2)2
ij

b2 (3)

whered(1) is the Euclidean distance between the pixels
in the image plane,d(2) is the color difference (measured
in a 3D color space) between the two pixels, anda; b are
corresponding scale parameters. As in [6, 9], we determine
the parametersa andb manually. To reduce the number of
edges and get a sparse graph, we eliminate edges whose
weight is below some threshold and consider short range
neighborhoods (see captions of Figs. 4,5 for details).

The observation that the similarity graph is sparse is
crucial for practical image segmentation applications. In
[9] a sparse graph was obtained by randomly picking a
small number of edges for each pixel in a limited range
neighborhood. We adopt a similar approach: we consid-
er the eight nearest neighbors of each pixel, or we con-
sider the four nearest neighbors and randomly pick anoth-
er four (we do not observe significant differences between
these two methods). In addition, we eliminate edges whose
weight is below some threshold. Two examples are shown
in Figs. 4,5.

4 Perceptual grouping of line segments
We address here the separation of structure from clut-

tered background, and specifically the problem known as

0

0.01

0.02

0.03

0.04

0 5000 10000 15000 20000

r=2644 r=2902 r=2950 r=4660

Figure 5. Color image segmentation in CIE-LUV color s-
pace: the original image of size 256�192, the impulse graph of
�T (r), and the four segmentation results which correspond to the
four highest peaks.Parameter setting: Colors are represented in
CIE-LUV color space,a=8, b=3, edges with weightwij below
0.001 are eliminated, and only edges connecting each pixel with
its four spatial nearest neighbors plus four random neighbors are
included. Minimal cluster size of interest is 100. The graph con-
tained 255,837 edges. Time per iteration: 4.10sec on Pentium II
450 Mhz;M=500.

perceptual grouping of edge elements, with the same typ-
ical cut algorithm. The term perceptual grouping is usu-
ally associated with mid level vision, and more specifi-
cally with the grouping of edge elements. The history of
this problem goes back to the taxonomy of non-accidental
properties explored the Gestalt psychologists at the begin-
ning of the 20th century. Among the methods of choice
are relaxation neural networks [8], cost minimization us-
ing simulated annealing [4], spectral decomposition of the
affinity matrix [7, 3], and stochastic completion fields [10].

The raw data is a set of line segments, or edgels, and the
task is to group together a set of edgels that together de-
fine a perceptually appealing “edge”, typically expected to
have one or more of the following properties: smoothness,
closure, or convexity. Perceptual grouping algorithms con-
sist of two parts: (i) the combination of mutual proper-
ties which are usually non accidental into a pairwise affin-
ity measure, and (ii) the detection of internal structure, or
shape. In our approach, nodes in the graph represent edge
elements, edge weights represent pairwise affinities, and
the typical cut algorithm is used to detect the hidden shape.

Step (ii) above, which is the grouping step, is frequently
formulated as a problem ofsaliency detection. This salien-
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cy formulation is analogous to soft clustering: its goal is to
assign a value to each edgel, representing to what extent it
is a part of a salient shape (cluster) or a part of some back-
ground noise. In contrast with the saliency formulation,
“hard” clustering algorithms (like ours) divide the data in-
to disjoint sets. When saliency algorithms are required to
provide such dichotomic division, it is sometimes possible
to find a saliency threshold which divides the edgels into
shape and noise classes.

In order to quantitatively compare between different salien-
cy algorithms, while not being able to rely on the availabil-
ity of a “salient” saliency threshold, Williams and Thorn-
ber (WT), in an extensive comparative study [11], used the
number of edgels in the shape they were looking for as
given apriori. Assuming that the hidden contour consists
of n edgels, they selected then edgels with highest salien-
cy values and labeled them as “shape” edgels. Based on
this somewhat artificial partitioning into shape and back-
ground, they defined thefalse positive ratioas the percent
of noise edgels in the set labeled as “shape”. The false
positive ratio served to compare between several grouping
methods (see below).

Our approach has the advantage that it does not involve
thresholding, nor does it assume prior knowledge of the
number of signal elements. Our typical cut algorithm re-
turns, at differentr levels, a set of edgels which is the shape
candidate. In Section 4.2 we explain how the shape hy-
pothesis is selected. Once this is done, and in order to com-
pare our results with the quantitative study of WT, we com-
pute our false positive ratio as the percent of noise edgels
in the selected shape cluster (which might be of any size).
Alternatively, we can feed the cluster we find into a salien-
cy algorithm, and boost its performance as measured by
WT’s false positive ratio.

4.1 Experimental framework

a) b) c)

Figure 6. a) Peach silhouette;b) ’bark’ natural texture;c) the
combineda andb test pattern, withSNR0.1

The experimental setting follows [11]. In this frame-
work the test set included a series of patterns similar to the
one shown in Fig. 6c: one of 9 fruit or vegetable silhouettes

(like the peach in Fig. 6a) was superimposed on one of 9
natural textures (like the texture in Fig. 6b). An additional
parameter determined the Signal-To-Noise ratio (SNR) of
the pattern, using 5 levels: 0.25, 0.2, 0.15, 0.1 and 0.05.
SNRwas defined as the number of signal (fruit) edgels di-
vided by the total number of edgels. With the lowestSNR
the test pattern consisted of approximately 900 edgels.

WT measured how well the signal - the fruit or veg-
etable silhouette - can be segregated from the background
texture pattern by different saliency methods. Since the
evaluation targeted only the saliency measure, a pairwise
affinity matrixA was generated in advance and served as
input to all the methods. Specifically, for each test pat-
ternAij was the similarity between the pair of edgelsi
and j. The affinity computation used the relative posi-
tions and orientations ofi and j, and produced a mea-
sure of similarity according to the Gestalt principles of
good continuation and proximity. Several grouping meth-
ods [3, 4, 7, 8, 10, 11] were applied to the same affinity
matrix A, and every edgel was assigned a saliency value
according to each method. Performance was quantified us-
ing the false positive ratio, as discussed above. Results are
shown in Fig. 7.

In our experiments we repeated the computation of the
affinity matrixA for each one of the 81 test patterns and
for each one of the 5SNRvalues. The affinity matrices
were fed into our typical cut algorithm, and the results were
interpreted as discussed below.

0.25 0.2 0.15 0.1 0.05
0

10

20

30

40

50

60

70

80

90

100
Fruit and Textures

Signal to Noise Ratio

P
er

ce
nt

 F
al

se
−P

os
iti

ve
s

SB    
GM    
HH    
SU    
WJ    
WT    
GSW+WT
GSW   

Figure 7. False-Positive-Ratio as a function ofSNRfor dif-
ferent saliency methods, calculated over 81 test patterns for each
SNRvalue. The results of applying the methods of [7] (SB), [3]
(GM), [4] (HH), [8] (SU) and [10] (WJ), were taken from [11].
The results of applying the method of [11] (WT) was taken from
our own simulations, as well as the results of our boosted method
(GSW+WT) and partial results of our own method (GSW) (see
text).
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4.2 The typical cut for edgel grouping
The affinity values are used to assign weights to the

edges of a graph, whose nodes represent edge elements
(edgels). The typical cut algorithm providesN partition-
s of this graph, each corresponds with a differentr value.
A partition of the graph consists of a variable number of
clusters. However, since it is assumed in this domain that
there is only one significant structure in the data, we use
the largest cluster as the signal hypothesis for each value
of r. The experiments show that forall test patterns, as
long as the edgels of the fruit (vegetable) silhouette are in
one cluster, this cluster is the largest one.

50 100 150 200 250 300 350 400
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

r=223

r

a)

r=43 r=56 r=68 r=70 r=73

r=81 r=122 r=127 r=223 r=231

b)

Figure 8. a) The resulting impulse graph of�T (r) for the
image in Fig. 6c. b) Edgels that belong to the largest cluster, for a
few selected peaks from a).

Fig. 8 shows the results for the peach test pattern of
Fig. 6c, including the impulse graph of�T (r) and the
corresponding signal identified at each peak. It is easy to
see that every peak in�T (r) is associated with remov-
ing a ’chunk’ of noise elements from the identified signal.
At r=223 the identified signal is rather clean, and it then
breaks into sub-parts. Another example is shown in Fig. 9.

The results in Fig. 8 are typical, illustrating the qual-
itative behavior of our algorithm forall test patterns, and
demonstrating the problem with our selection criterion. Our
heuristic identifies meaningful partition levels by measur-
ing variations inT (r). When the clusters of interest are
large in size, it is possible to relate meaningful partitions
with large variation inT (r). In problems of edgel grouping
this is typically not the case, as the cluster of interest con-
tains only a few elements in comparison with the number
of elements in the background (the clutter). In this case, the
interesting peak in�T (r) cannot be detected by its height

Figure 9. An example taken from http://iris.usc.edu/˜ tensorvt
(courtesy of MS Lee).a) The image consists of 551 edgels, 109 of
which belong to the tilted ’8’ signal (SNRof 0.2). b) The output
of “grouping by clustering”, with affinity matrixA calculated as
above: the percent false positive and false negative is 22 and 0,
respectively.c) The output of “grouping by saliency”: WT’s 109
most salient edgels.

alone, and the peaks in�T (r) serve to provide a small set
of candidate partitions to choose from.

To address this problem we designed a selection oper-
ator, which automatically identifies the “best” peak in the
graph of�T (r). This operator checks whether a closed
curve that exists at levelrpeak breaks into parts at level
rpeak +1. In the example of Fig. 8b, our operator correct-
ly findsr = 223.
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Figure 10. Percent false positive (top curve) and false negative
(bottom curve) of the edgels in the signal hypothesis found by our
method. The plots show mean performance and standard deviation
over 81 test patterns, for each value ofSNR.

Fig. 10 shows the performance of this procedure over
the test patterns, showing false positive (i.e., the percentage
of noise edgels within the final result) and false negative
(i.e., the percent of signal edgels not identified) rates.

4.3 Clustering vs. saliency
Clustering has one crucial advantage over saliency, for

the purpose of grouping: a signal hypothesis (for the cor-
rect silhouette) can be readily generated from the set of
edgels in the largest output cluster. Saliency, on the other
hand, is a measure assigned to all edgels, from which edgel
segmentation should be derived. Thus, unless the number
of edgels in the signal is known in advance, or the saliency
values of noise edgels is much lower than the saliency of
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Figure 11. a) The peach test pattern withSNR0.05;b) result
(signal hypothesis) of our method.c) WT’s saliency value com-
puted for the edgels in patterna), where the edgels corresponding
to the peach are numbered 1–44; thefalse positive ratioin this
example is0:95.

the signal (which is often not the case), one cannot easily
generate a signal hypothesis from saliency maps.

An example is given in Fig. 11, which shows a peach
test pattern and the signal as identified by our method. Fig. 11c
shows WT’s saliency values for the edgels of the test pat-
tern in Fig. 11a, where the edgels corresponding to the
peach silhouette are numbered 1–44. It is clearly difficult
to isolate those edgels based on the saliency map alone.
Our clustering method, however, readily identifies a rather
’clean’ signal hypothesis (Fig. 11b). A similar point is
made by the example in Fig. 9.

This difference between clustering and saliency makes
it difficult to compare the two approaches. In the analysis
summarized in Fig. 7, the number of edgelsn in the sig-
nal is assumed to be known, and thus percent false positive
can be computed from then most salient edgels. Cluster-
ing, however, returns a complete hypothesis for the signal,
and this hypothesis typically has a number of edgels differ-
ent fromn. When we compute percent false positive with
respect to the cluster found (as in Fig. 10) wedo notas-
sume prior knowledge ofn. Even with this handicap and
ignoring the difference in the analysis, when comparing
the results in Fig. 7 to our results in Fig. 10, we see that
our results are similar or better than the results of the best
saliency method (WT).

Partial results, including only cases where the size of the

signal hypothesis produced by our algorithm is not larg-
er than1:1 � n, suggest that our algorithm does better
than saliency methods (see curve GSW in Fig. 7). Alter-
natively, we may combine clustering with saliency. We use
the largest cluster, obtained by our method, as input to a
saliency algorithm to boost the performance of both meth-
ods. Using the WT’s saliency method we obtain the curve
(GSW+WT) in Fig.7; when compared with the partial clus-
tering results (GSW), the boosted algorithm does not show
improvement.
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