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Abstract tween the visual entities. The affinity is a function of the
relevant attributes. Low level attributes may be the spa-
We use cluster analysis as a unifying principle for prob- tial location, intensity level, color composition or filter re-

lems from low, middle and high level vision. The cluster- sponse of a pixel in the image. Mid level attributes, in the
ing problem is viewed as graph partitioning, where nodes case of edge elements, may be spatial location, orientation
represent data elements and the weights of the edges rep-or curvature, and the affinity associated with them may re-
resent pairwise similarities. Our algorithm generates sam- flect properties such as proximity, symmetry, co-circuitry
ples of cuts in this graph, by using David Karger's con- and good continuity. High level attrioutes may be as com-
traction algorithm, and computes an "aksge” cut which plex as the entire shape of an object in the scene, or the
provides the basis for our solution to the clustering prob- color distribution of all the pixels in an image.
lem. The stochastic nature of our method makes it robust  The second stage in this approach follows the unifying
against noise, including accidental edges and small spu- principle, and applies cluster analysis to the organizion of
rious clusters. The complexity of our algorithm is very the visual objects (pixels, edgels, images) into coheren-
low: O(NV log® V) for N objects and a fixed accuracy lev-  t groups. These groups reflect internal structure among
el. Without additional computational cost, our algorithm  the entities, where (roughly speaking) the affinity within
provides a hierarchy of nested partitions. We demonstrate groups is larger than the affinity between groups. There-
the superiority of our method for image segmentation on fore, a cluster of pixels in the image, sharing similar loca-
a few real color images. Our second application includes tions and colors, is expected to account for an object or a
the concatenation of edges in a cluttered scene (perceptual part of an object in the scene. A cluster of edge elements is
grouping), where we show that the same clustering algo- expected to exhibit a meaningful aggregation into a com-
rithm achieves as good a grouping, if not better, as more plete edge, and a cluster of images in a database is expected
specialized methods. to be related with a common topic.

We present in Section 2 our stochastic pairwise clus-
. tering algorithm; it is an efficient, robust and model-free
1 Introduction pairwise hierarchical algorithm (see also [2]). The robust-
Awide range of tasks in computer vision may be viewed ness of our method is achieved by averaging over all the
as unsupervised partitioning of data. Image segmentation,possible interpretations of the data, giving more weight to
grouping of edge elements and image database organizadata partitions that are associated with lower cost. This
tion, are problems at different levels of visual information idea is adopted from clustering algorithms that are inspired
processing. These tasks have different application objec-by statistical mechanics, and in particular our method is
tives, and they handle very different data entities (pixels, related to [1]. Our algorithm can be analyzed analytically,
edgels, images). Nevertheless, they all come to serve aand for sparse graphs and a fixed accuracy level it runs in
common goal, which is the partitioning of the visual enti- O(NN log® N) time, whereN is the number of data-points.
ties into “coherent” parts. Clustering methods which are formulated as graph par-
The goal of this work is to use cluster analysis as a u- titioning (as we do here) involve partitioning criteria such
nifying principle for a wide range of problems from low, as the min-cut algorithm [12]. They are related to spectral
middle and high level vision. In our approach we distin- methods which identify good partitions via the eigenvec-
guish between two stages of processing. The first stage istors of the affinity matrix, or other matrices derived from it
task dependent, and defines the affinity, or similarity, be- [6, 7, 9]. These methods have been applied, in the context
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of computer vision, to image segmentation, motion estima- graph which is thus obtained has exactiyeta-nodes, and

tion and perceptual grouping. it is a multi-graph since meta-nodes may be connected to
In Sections 3,4 we describe the application of our clus- each other by more than one edge. Actuallg; ifs a com-

tering algorithm to color image segmentation and percep- plete graph, then the number of edges connecting the meta-

tual grouping of edge elements. A description of its appli- nodes representing the compone¥itsand V3 is exactly

cation to image database organization is beyond the scopgV,||V3|.

of the present short report. Our good results (both absolute  The grouping procedure described above yields@a:

and relative to other methods), and the results of extensivetracted graphwhich hasr meta-nodes, denote®.. Note

experiments not described here, demonstrate that we carthat this notation does not characterize the contracted graph,

handle successfully problems in low- and mid-level vision since there are many ways to group the node§ @fto r

in this unified way. In comparison, other successful algo- disjoint sets. However, any contracted graghrepresents

rithms have been shown to be more specific; for example, anr-way cut in the original graph. The edges@f are

it has been shown in [6] that the normalized cut algorithm the edges which cross the correspondingay cut in the

[9]is not suitable for figure/ground segregation (or percep- original graph.

tual grouping), while the factorization method in [6] is less

suitable for image segmentation. 2.2 Outline of algorithm

This section provides a simplified concise description of

2 Thetypical cut algorithm . IR - : :
Wi ¢ th | h and th .. the algorithm, ignoring implementation issues which arise
€ present now the general approach and the princi- ¢, ., - ngiderations of space and time complexity, and em-

ples of our clustering method. After defining the termi- phasizing the general principles. The algorithm is divided

?ologyzlngectl(l)n Ztl V\('je descrlbte tt:e glgonthrg_ln Sec-d into two stages, described in pseudo-code in Figs. 1,2 and
ion 2.2. Complexity and parameter tuning are discusse explained below.

in Section 2.3.
2.1 Notations and Definitions Generating typical cuts: For a given value of (r =
Our clustering algorithm uses pairwise similarities, which1 ... N) our algorithm generates a sampledf possible
are represented as a weighted gréffl, £): the noded” r-way cuts, and uses this sample to estimate the probability

represent data items, and the positive weightof an edge p;; that(é, j) is not a crossing edge of a randerway cut.
(i,7) represents the similarity between nodes (data items) The pseudo-code in Fig. 1 counts, for every pair of nodes
i andj. The graphG(V, E) may be incomplete, due to 4,5 € V and for every integer between 1 andV, the
missing data or due to edge dilution (whose purpose is to number ofr-way cuts (out ofdf) in which the two nodes
increase efficiency). The weighis; may violate metric ~ are on the same side. These accumulators are divided by
properties, and in general they may reflect either similarity }/ to estimate for every two nodes the probabifify that
or dissimilarity values. In the current work, however, we they are on the same side.
assume that the weights reflect symmetric similarity rela-  In this pseudo-code the proced @&NTRACT gener-
tions (hencew;;=w;;, andw;;=0 fori and; that are com-  ates ther-way cutG!. from the previously generated cut
pletely dissimilar). We do not assume that the similarity G7., ;. The procedur€ONTRACT selects two meta-nodes
weights obey the triangle inequality, and self similarities of G}, ; and merges them into one meta-nodé:of while
wy; are not defined. discarding the edges which previously connected these t-
A cut (V1,V5) in a graphG(V, E) is a partition ofV wo meta-nodes. The selection of the nodes to be unified is
into two disjoint setd/; andV,. The capacity of the cutis  probabilistic: an edgé, j) of G'.  ; is selected for contrac-
the sum of weights of all edges that cross the cut, namely: tion with probability proportional to its weighb;;. Then,

c(V1,V2) = 3 icv, jew, wij- A minimal cuthas the min-  the two meta-nodes which are adjacent to the selected edge
imal capacity. We use the term “cut” also for the general- are merged.

ized case of multi-way cuts. A partition df into r disjoint The contraction procedure is the cornerstone of our method,
sets(Vi, ..., V,) is calledr-way cut, and in accordance its  since it defines the sample 8f cuts, according to which

capacity is defined a5, Vi a8 Wij- Every one of the empirical probabilities;; are computed. Thus the con-
ther components may be referred to as a “side” of the cut. traction procedure is our sampling tool, typically assigning
Letthe nodes which belongto eachslde(a=1...r) higher probability to cuts with lower capacity as is shown
be grouped together into ongeta-nodeand discard allthe  in [5]. In fact, [5] proves that the minimal cut can be
edges which form self loops within meta-nodes (hamely, found using this sampling method in polynomial time, even
discard the inner edges of each component, which connec-though the overall number of possible cuts is exponential.
t two inner nodes belonging to the same component). The In summary, the contraction process induces a probability
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procedure STAGE-1:
i nput : wei ght ed graph G(V,E), N nodes
output: 3D array p of probabilities

si; +— 0 for 4,5,r=1...N
for m=1...M:
~n < G(V,E)
for r=(N-1)...1
G, « CONTRACT(G;y.1)
for i,7=1...N:
if ¢ and j belong to the sane
met a- node of G, then
si; + s+l
end-if
end- | oop
end- | oop
end- | oop
pi; «si/M for i,j,r=1...N
return array p.

(init counters)

(r-way cut)

Figure 1. Pseudo-code which transforms similarity weights
into pairing probabilities.

distribution over cuts, and under this distribution we esti-
matep;; — the marginal probability that nodésindj are

on the same side of a randenway cut.

The number of--way cuts in a graph aNV nodes is the

Sterling number of the second kind, denotéd, V). Let
a(r) = 1...7(r, N) be an index to the set of attway

cuts inG(V, E). Fix r and letP, denote the probability
that the contraction algorithm generates the @utFor a

fixedr value,) P, = 1. Define an indicator variablﬁ’j

to be 1 if the edgéi, j) crosses the cut and O otherwise.

Itis readily seen that

Z wij (1 sz

(1,j)€E (t.j)eE a

wherec,, is the capacity of cut, and{c(r)) is the expect-
ed value of the-way capacity. We can therefore interpret
1-pj; as the probability that edde, j) is a crossing edge in
an “average cut”. We use this observation for the following

definition.

For every integer between 1 andV we define theyp-
ical cut(Ay, A, ...
nected components, such that for everg 4,, j € Ag
(¢ # B,a,8 = .s(r)) we havep;; < 0.5. To find
the typical cut for every integer between 1 andV we
first remove all the edges whose transformed weights

Z Wi Ze” — Z caPo = {c(r))

, A(ry) @s the partition ol into con-

this is an extremely small number compared with the ex-
ponential number of possible partitions, we still need to
select only a few interesting solutions out of tNecandi-
dates. The question that remains is to define and choose
“good” values ofr, for which a “meaningful” clustering is
obtained as part of a hierarchy of a few selected partitions.

Selecting meaningful partitions: We define the follow-
ing function of the typical cut at levet

T(r) = N0 Z N;N; (1)

whereN; = |A| denotes the number of elements in the
k-th cluster.T'(r), therefore, measures how many edges of
the complete graph cross over between different clusters in
ther-partition, relative to the total number of edges in the
complete graph.

Partitions which correspond to subsequertlues are
typically very similar to each other, or even identical, in
the sense that only a few nodes (if any) change the compo-
nent to which they belong. Consequenfly) typically
shows a very moderate increase. However, abrupt changes
in T'(r) occur between different hierarchical levels of clus-
tering, when two or more large meta-nodes are merged.

We look at changes in the valueB{r) between subse-
qguentr values, and output only those partitions which are
associated with a large chang€li(r). For the current pre-
sentation we set a thresh@dldand output a solution at level
rif and only if AT'(r) > §. This is described in Fig. 2.

2.3 Complexity and parameter estimation
An efficient implementation of our algorithm drastical-
ly decreases the number of estimated varialghgg (rom
N3 to |E|, which isO(N) for sparse graphs andi? for
complete graphs. Moreover, we can show that one graph
contraction (one iteration of the external loopSmAGE-
1, Fig. 1) can be implemented B(N log N) time for s-
parse graphs. Using the Hoeffding-Chernoff bound to de-
termine the desired sample size, denatédwe can show
thatM = O(log N/e€?) for an accuracy level (with high
probability). Hence the overall complexity &TAGE- 1
for a fixed accuracy level I©(NN log” N) for sparse graph-
s. The efficient implementation STAGE- 2 takes only
O(Nlog N) time in this case, makin@(N log® N) the
overall sparse graph complexity bound for our algorithm.
There are very few parameters in the main part of the
algorithm, and its performance is not sensitive to their ex-

smaller thar0.5, and we then compute the connected com- act values. It is mostly the preprocessing stage, which con-
ponents in the remaining graph. Note that the humber of structs the weighted gragh, that critically depends on ex-

parts,s(r), in the typical cut can be different from
The N typical cuts correspondingto=1...

N are the

ternal parameters. These parameters are related to the def-
inition of similarity (which is task dependent), and to the

candidate solutions to our clustering problem. Although transformation from perceptual similarity to edge weight.
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algorithm degrades gracefully and continuously, by leav-

procedur e STAGE- 2: ing more and more points unlabeled. Abrupt breakdown is
i nput: 3D array of probs pj; rare, and we believe that this is another beneficial result of
output: selected partitions the stochastic nature of our method.

for r=1...N:
let G(V,E) be a conpl ete wei ghed

graph of N nodes and assign 03

wei ght pj; to each edge (i,j) € E e
for each (i,j) € E: TR o2

if p; <05 then G,

E «< E\(i,j) (renove edge) et *

end- i f . ‘ |y
end- | oop O T e s
find connected conponents (A, Typical cut (highest peak)

Az, ..., As) in G(V,E)
conmpute AT(r)=T(r)—T(r—1) (1)
if AT(r)>d then
(*) relabel small parts
report partition (A, As, ..., As)
end-if
end- | oop

N LRSS
ey o,

t (best threshold)

Figure 2. Pseudo-code which finds typical cuts, measures the
resemblance between subsequent cuts, and reports the “meaning-
ful” partitions.

Given a dissimilarity measui; between stimuli andj,
we definew;; = exp(—dj;/a*). Herea is a decay param-
eter which reflects some suitable local scale, and it needs .

to be tuned. Sometimes the dissimilarity between stimuli S St
is measured along different dimensions, like in an image Factorization (threshold 0.01)
segmentation task where dissimilarity between pixels is a

function of their spatial proximity and relative brightness.

In this case a different local scale parameter is defined for ~ F19uré 3. Robustness under data perturbation. The control pa-
dimension: of similarity. namelv: rametern defines the spread of the points, or the “width” of each
every M Y, y: circle; results are shown fey=0.9. Both the normalized cut algo-

) . rithm and the factorization algorithm fail (the factorization method
wij = H exp(—d(u)fj Ja(p)?) 2 fails earlier, though, fon=0.7), while our algorithm finds the de-
1 sired structure. For the spectral methods we show the entries of the
relevant eigenvector next to the partition found. The magnitude of

Experiments with simulated and real data show that the re-  the entries are plotted versus their serial index. These methods

. ] . seek a threshold which separates between small and large entries.
sults of our algorithm are quite robust with respect to the The color and the symbol used for the eigenvector entries corre-

exact transformation used to implement Equation (2). sponds with those used in thé plot.

24 Robustnessand Comparisons ) _

Figure 3 shows a task involving the separation of two 3 Color image segemntation
point sets generated by different statistical sources. The We now describe color image segmentation with the
issue addressed here is the response of various clusteringypical cut algorithm; this application is similar to inten-
algorithms to the amount of noise in the data. The normal- sity image segmentation, which we have explored earlier
ized cut algorithm [9] performs well at low levels of noise, in [2]. Now nodes in the graph represent individual pix-
but as the noise is increased it abruptly breaks down. Inels. The similarity weightv;; between pixels (nodes)
this example the factorization method [6] breaks down at andj increases with increasing spatial proximity and col-
a lower level of noise, while our algorithm still perform-  or resemblance, which is measured in a three dimensional
s well at higher levels of noise. In general, as the level color space. If using one of the “perceptually uniform”
of noise is increased continuously, the performance of our color spaces, CIE-LAB or CIE-LUV, color difference is
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Figure 4. Color image segmentation in CIE-LAB color s-

page: the original image of size 12283, the impulse graph of r=2644 r=2902 r=2950 r=4660
AT(r), and two segmentation results which correspond to the t-

wo highest peaksParameter setting: Colors are represented in

CIE-LAB color spacea=8, b=3, edges with weightv;; below Figure 5. Color image segmentation in CIE-LUV color s-

0.001 are eliminated, and only edges connecting each pixel with
its eight spatial nearest neighbors are included. Minimal cluster
size of interest is 100, and the sample siz&4s500. The graph

contained 71,765 edges. Time per iteration: 0.89sec on Pentium

pace: the original image of size 28692, the impulse graph of
AT (r), and the four segmentation results which correspond to the
four highest peaksParameter setting: Colors are represented in
CIE-LUV color spacea=8, b=3, edges with weightv;; below

11450 Mhz. 0.001 are eliminated, and only edges connecting each pixel with
its four spatial nearest neighbors plus four random neighbors are
included. Minimal cluster size of interest is 100. The graph con-

tained 255,837 edges. Time per iteration: 4.10sec on Pentium Il

450 Mhz; M =500.

the Euclidean distance in the corresponding space. From
Equation (2) we have:

d(1)2.  d(2)2.
i
Wi =€ e b (3

perceptual grouping of edge elements, with the same typ-
whered(1) is the Euclidean distance between the pixels jcal cut algorithm. The term perceptual grouping is usu-
in the image plane](2) is the color difference (measured ally associated with mid level vision, and more specifi-
in a 3D color space) between the two pixels, and are  cally with the grouping of edge elements. The history of
corresponding scale parameters. As in [6, 9], we determinethis problem goes back to the taxonomy of non-accidental
the parameters andb manually. To reduce the number of  properties explored the Gestalt psychologists at the begin-
edges and get a sparse graph, we eliminate edges whosfiing of the 20th century. Among the methods of choice
weight is below some threshold and consider short range are relaxation neural networks [8], cost minimization us-
neighborhoods (see captions of Figs. 4,5 for details). ing simulated annealing [4], spectral decomposition of the
The observation that the similarity graph is sparse is affinity matrix [7, 3], and stochastic completion fields [10].

crucial for practical image segmentation appIicati_on;. I The raw data is a set of line segments, or edgels, and the
[9] a sparse graph was obtained by randomly picking a 54 s to group together a set of edgels that together de-
small number of edges for each pixel in a limited range e 4 perceptually appealing “edge”, typically expected to

neighborhood. We adopt a similar approach: we consid- e one or more of the following properties: smoothness,

er the eight nearest “e'ghb"fs of each pixel, or We Con- c15sure, or convexity. Perceptual grouping algorithms con-
sider the four nearest neighbors and randomly pick anoth-siSt of two parts: #) the combination of mutual proper-

er four (we do not observe significant differences between yjoq \hich are usually non accidental into a pairwise affin-
the_se two methods). In addition, we eliminate edges whos;eity measure, andi{) the detection of internal structure, or
yvelght is below some threshold. Two examples are shown shape. In our approach, nodes in the graph represent edge
in Figs. 4,5. elements, edge weights represent pairwise affinities, and
4  Perceptual grouping of line segments the typical cut algorithm is used to detect the hidden shape.
We address here the separation of structure from clut-  Step (i) above, which is the grouping step, is frequently
tered background, and specifically the problem known as formulated as a problem shliency detectionThis salien-
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cy formulation is analogous to soft clustering: its goal is to (like the peach in Fig. 6a) was superimposed on one of 9
assign a value to each edgel, representing to what extent itnatural textures (like the texture in Fig. 6b). An additional
is a part of a salient shape (cluster) or a part of some back-parameter determined the Signal-To-Noise raBblR of
ground noise. In contrast with the saliency formulation, the pattern, using 5 levels: 0.25, 0.2, 0.15, 0.1 and 0.05.
“hard” clustering algorithms (like ours) divide the data in- SNRwas defined as the number of signal (fruit) edgels di-
to disjoint sets. When saliency algorithms are required to vided by the total number of edgels. With the lowS&tR
provide such dichotomic division, it is sometimes possible the test pattern consisted of approximately 900 edgels.

to find a saliency threshold which divides the edgels into  \y 1 measured how well the signal - the fruit or veg-

shape and noise classes. . __etable silhouette - can be segregated from the background
In order to quantitatively compare between different saliefayyyre pattern by different saliency methods. Since the
cy algorithms, while not being able to rely on the availabil- - gyajyation targeted only the saliency measure, a pairwise
ity of a "salient” saliency threshold, Williams and Thorn-  affinjty matrix A was generated in advance and served as
ber (WT), in an extensive comparative study [11], used the jnnt to all the methods. Specifically, for each test pat-
number of edgels in the shape they were looking for as grp A;; was the similarity between the pair of edgeéls
given apriori. Assuming that the h|dd§n contour Consists g j. " The affinity computation used the relative posi-
of n edgels, they selected theedgels with highest salien-  +jons and orientations of and j, and produced a mea-
cy values and labeled them as “shape” edgels. Based ongre of similarity according to the Gestalt principles of
this somewhat a_rt|f|C|aI partitioning into shape and back- good continuation and proximity. Several grouping meth-
ground, they defl.ned thialse positive ratiaas the percent g [3, 4, 7, 8, 10, 11] were applied to the same affinity
of noise edgels in the set labeled as “shape”. The false matrix 4, and every edgel was assigned a saliency value
positive ratio served to compare between several groupingaccording to each method. Performance was quantified us-

methods (see below). . . ing the false positive ratio, as discussed above. Results are
Our approach has the advantage that it does not involveghown in Fig. 7.

thresholding, nor does it assume prior knowledge of the
number of signal elements. Our typical cut algorithm re-

turns, at different levels, a set of edgels which is the shape

candidate. In Section 4.2 we explain how the shape hy-
pothesisis selected. Once this is done, and in order to com
pare our results with the quantitative study of WT, we com-

pute our false positive ratio as the percent of noise edgels

in the selected shape cluster (which might be of any size). Fruit and Textures
Alternatively, we can feed the cluster we find into a salien- [
cy algorithm, and boost its performance as measured by
WT's false positive ratio. 80

In our experiments we repeated the computation of the
affinity matrix A for each one of the 81 test patterns and
for each one of the BNRvalues. The affinity matrices
_were fed into our typical cut algorithm, and the results were
interpreted as discussed below.

70

4.1 Experimental framework o

50
4
40

Percent False—Positives

30

10g —— GSW+WT
* GSW

1 1 1 ;
0.25 0.2 0.15 0.1 0.05
Signal to Noise Ratio

a) Figure 7. False-Positive-Ratio as a function 8NRfor dif-
ferent saliency methods, calculated over 81 test patterns for each
. SNRvalue. The results of applying the methods of [7] (SB), [3]
Flgu_re 6. a) Peach silhouetteh) bark’ natural texturer) the (GM), [4] (HH), [8] (SU) and [10] (W.J), were taken from [11].
combineda andb test pattern, wittSNRO.1 The results of applying the method of [11] (WT) was taken from

. . . our own simulations, as well as the results of our boosted method
The experimental setting follows [11]. In this frame- (GSW+WT) and partial results of our own method (GSW) (see

work the test set included a series of patterns similar to the  text).
one shown in Fig. 6¢: one of 9 fruit or vegetable silhouettes
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4.2 Thetypical cut for edgel grouping

The affinity values are used to assign weights to the- -
edges of a graph, whose nodes represent edge elemer:i
(edgels). The typical cut algorithm provid@é partition- :
s of this graph, each corresponds with a differemtilue. .
A partition of the graph consists of a variable number of .
clusters. However, since it is assumed in this domain that - .
there is only one significant structure in the data, we use
the largest cluster as the signal hypothesis for each value
of r. The experiments show that fall test patterns, as Figure 9. An example taken from http://iris.usc.edu/” tensorvt
long as the edgels of the fruit (vegetable) silhouette are in  (courtesy of MS Leeja) The image consists of 551 edgels, 109 of

| his cl is the | which belong to the tilted '8’ signalSNRof 0.2). b) The output
one cluster, this cluster Is the largest one. of “grouping by clustering”, with affinity matrix4 calculated as

above: the percent false positive and false negative is 22 and 0,
respectively.c) The output of “grouping by saliency”: WT’s 109

0.1 most salient edgels.

o1 alone, and the peaks in7T'(r) serve to provide a small set

of candidate partitions to choose from.

To address this problem we designed a selection oper-

‘ ator, which automatically identifies the “best” peak in the
L graph of AT(r). This operator checks whether a closed

50 100 150 200 250 300 350 400
T

curve that exists at levet,.,; breaks into parts at level

a) rpeak + 1. In the example of Fig. 8b, our operator correct-

ly findsr = 223.
- 100
r=223 g sol-
% 60
ig a0}
Figure 8. a) The resulting impulse graph d{7'(r) for the o I;i .
0.25 0.2 0.1 0.05

0.15
Signal to Noise Ratio

image in Fig. 6¢. b) Edgels that belong to the largest cluster, for a
few selected peaks from a).

Fig. 8 shows the results for the peach test pattern of  Figure 10. Percent false positive (top curve) and false negative
Fig. 6c, including the impulse graph Q}T(r) and the (bottom curve) of the edgels in the signal hypothesis found by our
corresponding signal identified at each peak. It is easy to method. The plots show mean performance and standard deviation

. . . . over 81 test patterns, for each valueSiR

see that every peak iAT(r) is associated with remov-
ing a 'chunk’ of noise elements from the identified signal. Fig. 10 shows the performance of this procedure over
At r=223 the identified signal is rather clean, and it then the test patterns, showing false positive (i.e., the percentage
breaks into sub-parts. Another example is shown in Fig. 9. of noise edgels within the final result) and false negative

The results in Fig. 8 are typical, illustrating the qual- (i.e., the percent of signal edgels not identified) rates.
itative behavior of our algorithm faall test patterns, and
demonstrating the problem with our selection criterion. Our 4.3  Clustering vs. saliency
heuristic identifies meaningful partition levels by measur- Clustering has one crucial advantage over saliency, for
ing variations inT'(r). When the clusters of interest are the purpose of grouping: a signal hypothesis (for the cor-
large in size, it is possible to relate meaningful partitions rect silhouette) can be readily generated from the set of
with large variation irfl'(r). In problems of edgel grouping  edgels in the largest output cluster. Saliency, on the other
this is typically not the case, as the cluster of interest con- hand, is a measure assigned to all edgels, from which edgel
tains only a few elements in comparison with the number segmentation should be derived. Thus, unless the number
of elements in the background (the clutter). In this case, the of edgels in the signal is known in advance, or the saliency
interesting peak id\7T'(r) cannot be detected by its height values of noise edgels is much lower than the saliency of
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signal hypothesis produced by our algorithm is not larg-
er thanl.1 x n, suggest that our algorithm does better
P 1 than saliency methods (see curve GSW in Fig. 7). Alter-
7 I, natively, we may combine clustering with saliency. We use
the largest cluster, obtained by our method, as input to a
saliency algorithm to boost the performance of both meth-
ods. Using the WT’s saliency method we obtain the curve
b) (GSW+WT) in Fig.7; when compared with the partial clus-

‘ tering results (GSW), the boosted algorithm does not show
o Lo improvement.
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