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Abstract
Many learning algorithms use a metric defined over the input space as a principal tool, and

their performance critically depends on the quality of thismetric. We address the problem of
learning metrics using side-information in the form of equivalence constraints. Unlike labels, we
demonstrate that this type of side-information can sometimes be automatically obtained without
the need of human intervention. We show how such side-information can be used to modify the
representation of the data, leading to improved clusteringand classification.

Specifically, we present the Relevant Component Analysis (RCA) algorithm, which is a simple
and efficient algorithm for learning a Mahalanobis metric. We show that RCA is the solution of
an interesting optimization problem, founded on an information theoretic basis. If dimensionality
reduction is allowed within RCA, we show that it is optimallyaccomplished by a version of Fisher’s
linear discriminant that uses constraints. Moreover, under certain Gaussian assumptions, RCA can
be viewed as a Maximum Likelihood estimation of the within class covariance matrix. We conclude
with extensive empirical evaluations of RCA, showing its advantage over alternative methods.
Keywords: clustering, metric learning, dimensionality reduction, equivalence constraints, side
information.

1. Introduction

A number of learning problems, such as clustering and nearest neighbor classification, rely on some
a priori defined distance function over the input space. It isoften the case that selecting a “good”
metric critically affects the algorithms’ performance. Inthis paper, motivated by the wish to boost
the performance of these algorithms, we study ways to learn a“good” metric using side information.

One difficulty in finding a “good” metric is that its quality may be context dependent. For
example, consider an image-retrieval application which includes many facial images. Given a
query image, the application retrieves the most similar faces in the database according to some
pre-determined metric. However, when presenting the queryimage we may be interested in retriev-
ing other images of the same person, or we may want to retrieveother faces with the same facial
expression. It seems difficult for a pre-determined metric to be suitable for two such different tasks.

In order to learn a context dependent metric, the data set must be augmented by some additional
information, or side-information, relevant to the task at hand. For example we may have access
to the labels ofpart of the data set. In this paper we focus on another type of side-information,
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in which equivalence constraintsbetween a few of the data points are provided. More specifically
we assume knowledge about small groups of data points that are known to originate from the same
class, although their label is unknown. We term these small groups of points“chunklets”.

A key observation is that in contrast to explicit labels thatare usually provided by a human
instructor, in many unsupervised learning tasks equivalence constraints may be extracted with min-
imal effort or even automatically. One example is when the data is inherently sequential and can be
modelled by a Markovian process. Consider for example moviesegmentation, where the objective is
to find all the frames in which the same actor appears. Due to the continuous nature of most movies,
faces extracted from successive frames in roughly the same location can be assumed to come from
the same person. This is true as long as there is no scene change, which can be robustly detected
(Boreczky and Rowe, 1996). Another analogous example is speaker segmentation and recognition,
in which the conversation between several speakers needs tobe segmented and clustered according
to speaker identity. Here, it may be possible to automatically identify small segments of speech
which are likely to contain data points from a single yetunknownspeaker.

A different scenario, in which equivalence constraints arethe natural source of training data,
occurs when we wish to learn from several teachers who do not know each other and who are not
able to coordinate among themselves the use of common labels. We call this scenario ‘distributed
learning’.1 For example, assume that you are given a large database of facial images of many people,
which cannot be labelled by a small number of teachers due to its vast size. The database is therefore
divided (arbitrarily) into� parts (where� is very large), which are then given to� teachers to
annotate. The labels provided by the different teachers maybe inconsistent: as images of the same
person appear in more than one part of the database, they are likely to be given different names.
Coordinating the labels of the different teachers is almostas daunting as labelling the original data
set. However, equivalence constraints can be easily extracted, since points which were given the
same tag by a certain teacher are known to originate from the same class.

In this paper we study how to use equivalence constraints in order to learn an optimal Maha-
lanobis metric between data points. Equivalently, the problem can also be posed as learning a good
representation function, transforming the data representation by the square root of the Mahalanobis
weight matrix. Therefore we shall discuss the two problems interchangeably.

In Section 2 we describe the proposed method–the Relevant Component Analysis (RCA) algo-
rithm. Although some of the interesting results can only be proven using explicit Gaussian assump-
tions, the optimality of RCA can be shown with some relatively weak assumptions, restricting the
discussion to linear transformations and the Euclidean norm. Specifically, in Section 3 we describe a
novel information theoretic criterion and show that RCA is its optimal solution. If Gaussian assump-
tions are added the result can be extended to the case where dimensionality reduction is permitted,
and the optimal solution now includes Fisher’s linear discriminant (Fukunaga, 1990) as an inter-
mediate step. In Section 4 we show that RCA is also the optimalsolution to another optimization
problem, seeking to minimize within class distances. Viewed this way, RCA is directly compared to
another recent algorithm for learning Mahalanobis distance from equivalence constraints, proposed
by Xing et al. (2003). In Section 5 we show that under Gaussianassumptions RCA can be inter-
preted as the maximum-likelihood (ML) estimator of the within class covariance matrix. We also
provide a bound over the variance of this estimator, showingthat it is at most twice the variance of
the ML estimator obtained using the fully labelled data.

1. A related scenario (which we call ‘generalized relevancefeedback’), where users of a retrieval engine are asked to
annotate the retrieved set of data points, has similar properties.
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The successful application of RCA in high dimensional spaces requires dimensionality reduc-
tion, whose details are discussed in Section 6. An online version of the RCA algorithm is presented
in Section 7. In Section 8 we describe extensive empirical evaluations of the RCA algorithm. We
focus on two tasks–data retrieval and clustering, and use three types of data: (a) A data set of frontal
faces (Belhumeur et al., 1997); this example shows that RCA with partial equivalence constraints
typically yields comparable results to supervised algorithms which use fully labelled training data.
(b) A large data set of images collected by a real-time surveillance application, where the equiva-
lence constraints are gathered automatically. (c) Severaldata sets from the UCI repository, which
are used to compare between RCA and other competing methods that use equivalence constraints.

Related work

There has been much work on learning representations and distance functions in the supervised
learning settings, and we can only briefly mention a few examples. Hastie and Tibshirani (1996) and
Jaakkola and Haussler (1998) use labelled data to learn goodmetrics for classification. Thrun (1996)
learns a distance function (or a representation function) for classification using a “leaning-to-learn”
paradigm. In this setting several related classification tasks are learned using several labelled data
sets, and algorithms are proposed which learn representations and distance functions in a way that
allows for the transfer of knowledge between the tasks. In the work of Tishby et al. (1999) the joint
distribution of two random variables� and� is assumed to be known, and one seeks a compact
representation of� which bears high relevance to� . This work, which is further developed in
Chechik and Tishby (2003), can be viewed as supervised representation learning.

As mentioned, RCA can be justified using information theoretic criteria on the one hand, and
as an ML estimator under Gaussian assumptions on the other. Information theoretic criteria for
unsupervised learning in neural networks were studied by Linsker (1989), and have been used since
in several tasks in the neural network literature. Important examples are self organizing neural
networks (Becker and Hinton, 1992) and Independent Component Analysis (Bell and Sejnowski,
1995)). Viewed as a Gaussian technique, RCA is related to a large family of feature extraction
techniques that rely on second order statistics. This family includes, among others, the techniques
of Partial Least-Squares (PLS) (Geladi and Kowalski, 1986), Canonical Correlation Analysis (CCA)
(Thompson, 1984) and Fisher’s Linear Discriminant (FLD) (Fukunaga, 1990). All these techniques
extract linear projections of a random variable� , which are relevant to the prediction of another
variable� in various settings. However, PLS and CCA are designed for regression tasks, in which
� is a continuous variable, while FLD is used for classification tasks in which� is discrete. Thus,
RCA is more closely related to FLD, as theoretically established in Section 3.3. An empirical
investigation is offered in Section 8.1.3, in which we show that RCA can be used to enhance the
performance of FLD in the fully supervised scenario.

In recent years some work has been done on using equivalence constraints as side information.
Both positive (‘a is similar to b’) and negative (‘a is dissimilar from b’) equivalence constraints were
considered. Several authors considered the problem of semi-supervised clustering using equivalence
constraints. More specifically, positive and negative constraints were introduced into the complete
linkage algorithm (Klein et al., 2002), the K-means algorithm (Wagstaff et al., 2001) and the EM
of a Gaussian mixture model (Shental et al., 2003). A second line of research, to which this work
belongs, focuses on learning a ‘good’ metric using equivalence constraints. Learning a Mahalanobis
metric from both positive and negative constraints was addressed in the work of Xing et al. (2003),
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presenting an algorithm which uses gradient ascent and iterative projections to solve a convex non
linear optimization problem. We compare this optimizationproblem to the one solved by RCA in
Section 4, and empirically compare the performance of the two algorithms in Section 8. The initial
description of RCA was given in the context of image retrieval (Shental et al., 2002), followed by
the work of Bar-Hillel et al. (2003). Recently Bilenko et al.(2004) suggested a K-means based clus-
tering algorithm that also combines metric learning. The algorithm uses both positive and negative
constraints and learns a single or multiple Mahalanobis metrics.

2. Relevant Component Analysis: the algorithm

Relevant Component Analysis (RCA) is a method that seeks to identify and down-scale global
unwanted variability within the data. The method changes the feature space used for data repre-
sentation, by a global linear transformation which assignslarge weights to “relevant dimensions”
and low weights to “irrelevant dimensions” (see Tenenbaum and Freeman, 2000). These “relevant
dimensions” are estimated usingchunklets, that is, small subsets of points that are known to belong
to the same althoughunknownclass. The algorithm is presented below as Algorithm 1 (Matlab code
can be downloaded from the authors’ sites).

Algorithm 1 The RCA algorithm

Given a data set� � ��� ���� �
and� chunklets	
 � ��
 � ����� �  � � � � � � � do

1. Compute the within chunklet covariance matrix (Figure 1d).

�	 � ��
��


� �
����� � ��
 � � �
 � ��
 � � �
 �� (1)

where
�
 denotes the mean of the j’th chunklet.

2. If needed, apply dimensionality reduction to the data using
�	 as described in Algorithm 2

(see Section 6).

3. Compute the whitening transformation associated with
�	 : � � �	 � �� (Figure 1e), and apply

it to the data points:� ��� � � � (Figure 1f), where� refers to the data points after dimen-
sionality reduction when applicable. Alternatively, use the inverse of

�	 in the Mahalanobis
distance:� �� � � � � � �� � � � �� �	 ��

�� � � � �.

More specifically, points
� �

and
� 

are said to be related by a positive constraint if it is known
that both points share the same (unknown) label. If points

� �
and

� 
are related by a positive

constraint, and
� 

and
�!

are also related by a positive constraint, then a chunklet
�� � � �  � �! �

is formed. Generally, chunklets are formed by applying transitive closure over the whole set of
positive equivalence constraints.

The RCA transformation is intended to reduce clutter, so that in the new feature space, the
inherent structure of the data can be more easily unravelled(see illustrations in Figure 1a-f). To
this end, the algorithm estimates the within class covariance of the data"#$ �� %� � where� and�
describe the data points and their labels respectively. Theestimation is based on positive equiva-
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lence constraints only, and does not use any explicit label information. In high dimensional data,
the estimated matrix can be used for semi-supervised dimensionality reduction. Afterwards, the
data set is whitened with respect to the estimated within class covariance matrix. The whitening
transformation� (in Step 3 of Algorithm 1) assigns lower weights to directions of large variability,
since this variability is mainly due to within class changesand is therefore “irrelevant” for the task
of classification.

(a) (b) (c)

(d) (e) (f)

Figure 1: An illustrative example of the RCA algorithm applied to synthetic Gaussian data. (a)
The fully labelled data set with 3 classes. (b) Same data unlabelled; clearly the classes’
structure is less evident. (c) The set of chunklets that are provided to the RCA algorithm
(points that share the same color and marker type form a chunklet). (d) The centered
chunklets, and their empirical covariance. (e) The whitening transformation applied to
the chunklets. (f) The original data after applying the RCA transformation.

The theoretical justifications for the RCA algorithm are given in Sections 3-5. In the following
discussion, the term ‘RCA’ refers to the algorithm either with or without dimensionality reduction
(optional Step 2). Usually the exact meaning can be readily understood in context. When we
specifically discuss issues regarding the use of dimensionality reduction, we may use the explicit
terms ‘RCA with (or without) dimensionality reduction’.

RCA does not use negative equivalence constraints. While negative constraints clearly contain
useful information, they are less informative than positive constraints (see counting argument be-
low). They are also much harder to use computationally, due partly to the fact that unlike positive
constraints, negative constraints are not transitive. In our case, the naı̈ve incorporation of negative
constraints leads to a matrix solution which is the difference of two positive definite matrices, and
as a results does not necessarily produce a legitimate Mahalanobis metric. An alternative approach,
which modifies the optimization function to incorporate negative constraints, as used for example by
Xing et al. (2003), leads to a non-linear optimization problem with the usual associated drawbacks
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of increased computational load and some uncertainty aboutthe optimality of the final solution.2 In
contrast, RCA is the closed form solution of several interesting optimization problem, whose com-
putation is no more complex than a single matrix inversion. Thus, in the tradeoff between runtime
efficiency and asymptotic performance, RCA chooses the former and ignores the information given
by negative equivalence constraints.

There is some evidence supporting the view that positive constraints are more informative than
negative constraints. Firstly, a simple counting argumentshows that positive constraints exclude
more labelling possibilities than negative constraints. If for example there are� classes in the data,
two data points have�

 
possible label combinations. A positive constraint between the points

reduces this number to� combinations, while a negative constraint gives a much moremoderate
reduction to� �� � �� combinations. (This argument can be made formal in information theoretic
terms.) Secondly, empirical evidence from clustering algorithms which use both types of constraints
shows that in most cases positive constraints give a much higher performance gain (Shental et al.,
2003; Wagstaff et al., 2001). Finally, in most cases in whichequivalence constraints are gathered
automatically, only positive constraints can be gathered.

Step 2 of the RCA algorithm applies dimensionality reduction to the data if needed. In high
dimensional spaces dimensionality reduction is almost always essential for the success of the algo-
rithm, because the whitening transformation essentially re-scales the variability in all directions so
as to equalize them. Consequently, dimensions with small total variability cause instability and, in
the zero limit, singularity.

As discussed in Section 6, the optimal dimensionality reduction often starts with Principal Com-
ponent Analysis (PCA). PCA may appear contradictory to RCA,since it eliminates principal dimen-
sions with small variability, while RCA emphasizes principal dimensions with small variability.
One should note, however, that the principal dimensions arecomputed in different spaces. The
dimensions eliminated by PCA have small variability in the original data space (corresponding to	 #$ �� �), while the dimensions emphasized by RCA have low variability in a space where each
point is translated according to the centroid of its own chunklet (corresponding to	 #$ �� %� �). As
a result, the method ideally emphasizes those dimensions with large total variance, but small within
class variance.

3. Information maximization with chunklet constraints

How can we use chunklets to find a transformation of the data which improves its representation?
In Section 3.1 we state the problem for general families of transformations and distances, present-
ing an information theoretic formulation. In Section 3.2 werestrict the family of transformation to
non-singular linear maps, and use the Euclidean metric to measure distances. The optimal solution
is then given by RCA. In Section 3.3 we widen the family of permitted transformations to include
non-invertible linear transformations. We show that for normally distributed data RCA is the opti-
mal transformation when its dimensionality reduction is obtained with a constraints based Fisher’s
Linear Discriminant (FLD).

2. Despite the problem’s convexity, the proposed gradient based algorithm needs tuning of several parameters, and is
not guaranteed to find the optimum without such tuning. See Section 8.1.5 for relevant empirical results.
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3.1 An information theoretic perspective

Following Linsker (1989), an information theoretic criterion states that an optimal transformation of
the input� into its new representation� , should seek to maximize the mutual information� �� � � �
between� and� under suitable constraints. In the general case a set� � ��� �

of data points in� �
is transformed into the set� � �� ��� �� of points in

� �
. We seek a deterministic function� � �

that maximizes� �� � � �, where
�

is the family of permitted transformation functions (a
“hypotheses family”).

First, note that since
�

is deterministic, maximizing� �� � � � is achieved by maximizing the
entropy� �� � alone. To see this, recall that by definition

� �� � � � � � �� � � � �� %� �
where � �� � and � �� %� � are differential entropies, as� and � are continuous random vari-
ables. Since

�
is deterministic, the uncertainty concerning� when� is known is minimal, thus� �� %� � achieves its lowest possible value at

�	
.3 However, as noted by Bell and Sejnowski

(1995), � �� %� � does not depend on
�

and is constant for every finite quantization scale. Hence
maximizing� �� � � � with respect to

�
can be done by considering only the first term� �� �.

Second, note also that� �� � can be increased by simply ‘stretching’ the data space. For exam-
ple, if � � � �� � for an invertible continuous function, we can increase� �� � simply by choosing� � 
� �� � for any 
 � �. In order to avoid the trivial solution
 � 	

, we can limit the dis-
tances between points contained in a single chunklet . This can be done by constraining the average
distance between a point in a chunklet and the chunklet’s mean. Hence the optimization problem is:

 ��� �� � �� � � � �� � ��
��


� �
����� � %%�
 � � � �
 %% � � (2)

where
��
 � �� � ��
 � � ��� �

denote the set of points in� chunklets after the transformation,
� �
 denotes the

mean of chunklet


after the transformation, and� is a constant.

3.2 RCA: the optimal linear transformation for the Euclidean norm

Consider the general problem (2) for the family
�

of invertible linear transformations, and using
the squared Euclidean norm to measure distances. Since

�
is invertible, the connection between the

densities of� � � �� � and� is expressed by� � �� � � � � �� � ! �� �  , where %" �� � % is the Jacobian of the
transformation. From� � �� ��� � � � �� ���

, it follows that� �� � and� �� � are related as follows:

� �� � � � #
� � �� � $%& � �� ��� � � #

�
� �� � $%& � �� �

%" �� � %�
� � � �� � ' ($%& %" �� � %)�

For the linear map� � *� the Jacobian is constant and equals%* %, and it is the only term in� �� � that depends on the transformation* . Hence Problem (2) is reduced to

 ��+ ,#- %* % � �� � ��
��


� �
����� � %%�
 � � � �
 %%  � �

3. This non-intuitive divergence is a result of the generalization of information theory to continuous variables, thatis,
the result of ignoring the discretization constant in the definition of differential entropy.
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Multiplying a solution matrix* by 
 � � increases both the,#- %* % argument and the con-
strained sum of within chunklet distances. Hence the maximum is achieved at the boundary of
the feasible region, and the constraint becomes an equality. The constant� only determines the
scale of the solution matrix, and is not important in most clustering and classification tasks, which
essentially rely on relative distances. Hence we can set� � � and solve

 ��+ ,#- %* % � �� � ��
��


� �
����� � %%�
 � � � �
 %%  � � (3)

Let � � * �* ; since� is positive definite and$%& %* % � � $%& %� %, Problem (3) can be rewritten
as

 ��� �� ,#- %� % � �� � ��
��


� �
����� � %%�
 � � �
 %% � � � (4)

where %%� %%� denotes the Mahalanobis distance with weight matrix� . The equivalence between the
problems is valid since for any� � � there is an* such that� � * �* , and so a solution to (4)
gives us a solution to (3) (and vice versa).

The optimization problem (4) can be solved easily, since theconstraint is linear in� . The
solution is� � �� �	 ��

, where
�	 is the average chunklet covariance matrix (1) and� is the dimen-

sionality of the data space. This solution is identical to the Mahalanobis matrix compute by RCA
up to a global scale factor, or in other words, RCA is a scaled solution of (4).

3.3 Dimensionality reduction

We now solve the optimization problem (4) for the family of general linear transformations, that is,� � *� where* � � � �� and	 � � . In order to obtain workable analytic expressions, we
assume that the distribution of� is a multivariate Gaussian, from which it follows that� is also
Gaussian with the following entropy

� �� � � �
 $%& 
� � ' �
 $%& %� % � �
 $%& 
� � ' �
 $%& %* � * � %
Following the same reasoning as in Section 3.2 we replace theinequality with equality and let� � �. Hence the optimization problem becomes

 ��+ $%& %* � * � % � �� � ��
��


� �
����� � %%�
 � � �
 %% + �+ � � (5)

For a given target dimensionality	 , the solution of the problem is Fisher linear discriminant
(FLD),4 followed by the whitening of the within chunklet covariancein the reduced space. A sketch
of the proof is given in Appendix A. The optimal RCA proceduretherefore includes dimensionality
reduction. Since the FLD transformation is computed based on the estimated within chunklet co-
variance matrix, it is essentially a semi-supervised technique, as described in Section 6. Note that
after the FLD step, the within class covariance matrix in thereduced space is always diagonal, and
Step 3 of RCA amounts to the scaling of each dimension separately.

4. Fisher Linear Discriminant is a linear projection� from � � to � � with � � � , which maximizes the determinant
ratio � ��� �� � ��

�� � 
��! � , where"� and"# denote the total covariance and the within class covariancerespectively.
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4. RCA and the minimization of within class distances

In order to gain some intuition about the solution provided by the information maximization crite-
rion (2), let us look at the optimization problem obtained byreversing the roles of the maximization
term and the constraint term in problem (4):

 ���
��

��

� �

����� � %%�
 � � �
 %% � � �� � %� % � � (6)

We interpret problem (6) as follows: a Mahalanobis distance� is sought, which minimizes
the sum of all within chunklet squared distances, while%� % � � prevents the solution from being
achieved by “shrinking” the entire space. Using the Kuhn-Tucker theorem, we can reduce (6) to

 ���
��


� �
����� � %%�
 � � �
 %% � � 
 $%& %� % � �� � 
 � � � 
 $%& %� % � � (7)

Differentiating this Lagrangian shows that the minimum is given by� � % �	 % �� �	 ��
, where

�	 is the
average chunklet covariance matrix. Once again, the solution is identical to the Mahalanobis matrix
in RCA up to a scale factor.

It is interesting, in this respect, to compare RCA with the method proposed recently by Xing
et al. (2003). They consider the related problem of learninga Mahalanobis distance using side
information in the form of pairwise constraints (Chunkletsof size � 


are not considered). It is
assumed that in addition to the set of positive constraints�� , one is also given access to a set of
negative constraints�� –a set of pairs of points known to be dissimilar. Given these sets, they pose
the following optimization problem.

 ���
�

�� � �� � ���� %%� � � � %% � � �� � �
�� � �� � ���� %%� � � � %%� � �� � � � (8)

This problem is then solved using gradient ascent and iterative projection methods.
In order to allow a clear comparison of RCA with (8), we reformulate the argument of (6) using

only within chunklet pairwise distances. For each point
�
 � in chunklet


we have:

�
 � � �
 � �
 � � �
�


���
	� � �
 	 � �

�

���
	� � ��
 � � �
 	 �

Problem (6) can now be rewritten as

 ���
��

��

� � �

� 



����� � %%� ��
 � � �
 	 � %% � � �� � %� % � � (9)

When only chunklets of size 2 are given, as in the case studiedby Xing et al. (2003), (9) reduces to

 ���
�
�

��

�� %%�
 � � �
  %% � � �� � %� % � � (10)
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Clearly the minimization terms in problems (10) and (8) are identical up to a constant (
� � ).

The difference between the two problems lies in the constraint term: the constraint proposed by
Xing et al. (2003) uses pairs of dissimilar points, whereas the constraint in the RCA formulation
affects global scaling so that the ‘volume’ of the Mahalanobis neighborhood is not allowed to shrink
indefinitely. As a result Xing et al. (2003) are faced with a much harder optimization problem,
resulting in a slower and less stable algorithm.

5. RCA and Maximum Likelihood: the effect of chunklet size

We now consider the case where the data consists of several normally distributed classes sharing
the same covariance matrix. Under the assumption that the chunklets are sampled i.i.d. and that
points within each chunklet are also sampled i.i.d., the likelihood of the chunklets’ distribution can
be written as:

��

 � �

����� � �
�
� � �� % % �� �

�� �� �� ��� ��� � ���� � ��� ��� � ��
Writing the log-likelihood while neglecting constant terms and denoting� �  ��

, we obtain:

��

 � �

����� � %%�
 � � �
 %% � � � $%& %� % (11)

where
�

is the total number of points in chunklets. Maximizing the log-likelihood is equivalent
to minimizing (11), whose minimum is obtained when� equals the RCA Mahalanobis matrix (1).
Note, moreover, that (11) is rather similar to the Lagrangian in (7), where the Lagrange multiplier
is replaced by the constant

�
. Hence, under Gaussian assumptions, the solution of Problem (7) is

probabilistically justified by a maximum likelihood formulation.
Under Gaussian assumptions, we can further define anunbiasedversion of the RCA estimator.

Assume for simplicity that there are
�

constrained data points divided into� chunklets of size�
each. TheunbiasedRCA estimator can be written as:

�	 �� � � � � �
�

��

� � �

� � �
	���� ��
 � � � � � ��
 � � � � ��

where
�	 �� � � � denotes the empirical mean of the covariance estimators produced by each chunklet.

It is shown in Appendix B that the variance of the elements
�	�
 of the estimating matrix is bounded

by

� 	
 � �	�
 �� � � �� � �� ' �
� � � �� 	
 � �	�
 ��� �� �� (12)

where
�	�
 ��� �� � is the estimator when all the

� � �� points are known to belong to the same
class, thus forming the best estimate possible from

�
points. This bound shows that the variance

of the RCA estimator rapidly converges to the variance of thebest estimator, even for chunklets of
small size. For the smallest possible chunklets, of size 2, the variance is only twice as high as the
best possible.

10
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6. Dimensionality reduction

As noted in Section 2, RCA may include dimensionality reduction. We now turn to address this
issue in detail. Step 3 of the RCA algorithm decreases the weight of principal directions along
which the within class covariance matrix is relatively high, and increases the weight of directions
along which it is low. This intuition can be made precise in the following sense:

Denote by
�
� ���� �

the eigenvalues of the within class covariance matrix, and consider the
squared distance between two points from the same class%%� � � � %% . We can diagonalize the
within class covariance matrix using an orthonormal transformation which does not change the
distance. Therefore, let us assume without loss of generality that the covariance matrix is diagonal.

Before whitening, the average squared distance is� �%%� � � � %% � � 
 � �
 � � 

 and the average
squared distance in direction� is � ���

�� � �� � � � 

 �
. After whitening these values become


�
and



, respectively. Let us define the weight of dimension�, � ��� � �� � ��, as

� ��� � � ���
�� � �� � �

� �%%� � � � %% �
Now the ratio between the weight of each dimension before andafter whitening is given by

� ��� ��� ���� �� ��� ��� � 
�
�� � �
 � � 

 (13)

In Equation (13) we observe that the weight of each principaldimension increases if its initial
within class variance was lower than the average, and vice versa. When there is high irrelevant
noise along several dimensions, the algorithm will indeed scale down noise dimensions. However,
when the irrelevant noise is scattered among many dimensions with low amplitude in each of them,
whitening will amplify these noisy dimensions, which is potentially harmful. Therefore, when the
data is initially embedded in a high dimensional space, the optional dimensionality reduction in
RCA (Step 2) becomes mandatory.

We have seen in Section 3.3 that FLD is the dimensionality reduction technique which maxi-
mizes the mutual information under Gaussian assumptions. Traditionally FLD is computed from
fully labelled training data, and the method therefore falls within supervised learning. We now ex-
tend FLD, using the same information theoretic criterion, to the case of partial supervision in the
form of equivalence constraints. Specifically, denote by	 � and	� the estimators of the total co-
variance and the within class covariance respectively. FLDmaximizes the following determinant
ratio

 ��+ �

� ��

*	 �* �*	� * � (14)

by solving a generalized eigenvector problem. The row vectors of the optimal matrix* are the first
	 eigenvectors of	 ��� 	 � . In our case the optimization problem is of the same form as in(14), with
the within chunklet covariance matrix from (1) playing the role of 	� . We compute the projection
matrix using SVD in the usual way, and term this FLD variant cFLD (constraints based FLD).

To understand the intuition behind cFLD, note that both PCA and cFLD remove dimensions
with small total variance, and hence reduce the risk of RCA amplifying irrelevant dimensions with
small variance. However, unsupervised PCA may remove dimensions that are important for the

11
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discrimination between classes, if their total variability is low. Intuitively, better dimensionality
reduction can be obtained by comparing the total covariancematrix (used by PCA) to the within
class covariance matrix (used by RCA), and this is exactly what the partially supervised cFLD is
trying to accomplish in (14).

The cFLD dimensionality reduction can only be used if the rank of the within chunklet covari-
ance matrix is higher than the dimensionality of the initialdata space. If this condition does not hold,
we use PCA to reduce the original data dimensionality as needed. The procedure is summarized
below in Algorithm 2.

Algorithm 2 Dimensionality reduction: Step 2 of RCA
Denote by� the original data dimensionality. Given a set of chunklets

�	
 ��
 � �
do

1. Compute the rank of the estimated within chunklet covariance matrix� � � �
 � � �%	
 % � ��,
where %	
 % denotes the size of the j’th chunklet.

2. If (� � � ), apply PCA to reduce the data dimensionality to�� , where� � � � � (to ensure
that cFLD provides stable results).

3. Compute the total covariance matrix estimate	 �, and estimate the within class covariance
matrix using	� � �	 from (1). Solve (14), and use the resulting* to achieve the target data
dimensionality.

7. Online implementation of RCA

The standard RCA algorithm presented in Section 2 is a batch algorithm which assumes that all
the equivalence constraints are available at once, and thatall the data is sampled from a stationary
source. Such conditions are usually not met in the case of biological learning systems, or artificial
sensor systems that interact with a gradually changing environment. Consider for example a system
that tries to cluster images of different people collected by a surveillance camera in gradually chang-
ing illumination conditions, such as those caused by night and day changes. In this case different
distance functions should be used during night and day times, and we would like the distance used
by the system to gradually adapt to the current illuminationconditions. An online algorithm for
distance function learning is required to achieve such a gradual adaptation.

Here we briefly present an online implementation of RCA, suitable for a neural-network-like
architecture. In this implementation a weight matrix� � � � �� , initiated randomly, is gradually
developed to become the RCA transformation matrix. In Algorithm 3 we present the procedure for
the simple case of chunklets of size 2. The extension of this algorithm to general chunklets is briefly
described in Appendix C.

Assuming local stationarity, the steady state of this stochastic process can be found by equating
the mean update to�, where the expectation is taken over the next example pair��� �

�� � �� � � �.
Using the notations of Algorithm 3, the resulting equation is

� �� �� � � � �� �� � � � � �� � � � � � � � � � � ��� � �� � � � � � � � � ��� � �� ��
where� is an orthonormal matrix� � � � � . The steady state� is the whitening transformation of
the correlation matrix of

�
. Since

� � 
 �� � � �� ��� � � �, it is equivalent (up to the constant 2) to the
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Algorithm 3 Online RCA for point pairs

Input: a stream of pairs of points���� � �� �, where
��� �� 

are known to belong to the same class.
Initialize � to a symmetric random matrix with%%� %% �� �.
At time step T do:

� receive pair
��� � �� ;

� let
� � ��� � �� 

;

� apply� to
�
, to get� � � �

;

� update� � � ' � �� � � � �� �.
where� � � determines the step size.

distance of a point from the center of its chunklet. The correlation matrix of
�

is therefore equivalent
to the within chunklet covariance matrix. Thus� converges to the RCA transformation of the
input population up to an orthonormal transformation. The resulting transformation is geometrically
equivalent to RCA, since the orthonormal transformation� preserves vector norms and angles.

In order to evaluate the stability of the online algorithm weconducted simulations which con-
firmed that the algorithm converges to the RCA estimator (up to the transformation� ), if the gradi-
ent steps decrease with time (� � �� �� ). However, the adaptation of the RCA estimator for such a
step size policy can be very slow. Keeping� constant avoids this problem, at the cost of producing
a noisy RCA estimator, where the noise is proportional to� . Hence� can be used to balance this
tradeoff between adaptation, speed and accuracy.

8. Experimental Results

The success of the RCA algorithm can be measured directly by measuring neighborhood statistics,
or indirectly by measuring whether it improves clustering results. In the following we tested RCA
on three different applications using both direct and indirect evaluations.

The RCA algorithm uses only partial information about the data labels. In this respect it is
interesting to compare its performance to unsupervised andsupervised methods for data represen-
tation. Section 8.1 compares RCA to the unsupervised PCA andthe fully supervised FLD on a
facial recognition task, using the YaleB data set (Belhumeur et al., 1997). In this application of
face recognition, RCA appears very efficient in eliminatingirrelevant variability caused by varying
illumination. We also used this data set to test the effect ofdimensionality reduction using cFLD,
and the sensitivity of RCA to average chunklet size and the total amount of points in chunklets.

Section 8.2 presents a more realistic surveillance application in which equivalence constraints
are gathered automatically from a Markovian process. In Section 8.3 we conclude our experimental
validation by comparing RCA with other methods which make use of equivalence constraints in a
clustering task, using a few benchmark data sets from the UCIrepository (Blake and Merz, 1998).
The evaluation of different metrics below is presented using cumulative neighbor puritygraphs,
which display the average (over all data points) percentageof correct neighbors among the first�
neighbors, as a function of�.

13
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Figure 2: A subset of the YaleB database which contains��
� frontal face images of�� individuals
taken under different lighting conditions.

8.1 Applying RCA to facial recognition

The task here is to classify facial images with respect to theperson photographed. In these exper-
iments we consider a retrieval paradigm reminiscent of nearest neighbor classification, in which a
query image leads to the retrieval of its nearest neighbor orits K-nearest neighbors in the data set.
Using a facial image database, we begin by evaluating nearest neighbor classification with the RCA
distance, and compare its performance to supervised and unsupervised learning methods. We then
move on to address more specific issues: In 8.1.4 we look more closely at the two steps of RCA,
Step 2 (cFLD dimensionality reduction) and Step 3 (whitening w.r.t.

�	 ), and study their contribu-
tion to performance in isolation. In 8.1.5 the retrieval performance of RCA is compared with the
algorithm presented by Xing et al. (2003). Finally in 8.1.6 we evaluate the effect of chunklets sizes
on retrieval performance, and compare it to the predicted effect of chunklet size on the variance of
the RCA estimator.

8.1.1 THE DATA SET

We used a subset of the yaleB data set (Belhumeur et al., 1997), which contains facial images of 30
subjects under varying lighting conditions. The data set contains a total of 1920 images, including
64 frontal pose images of each subject. The variability between images of the same person is mainly
due to different lighting conditions. These factors causedthe variability among images belonging to
the same subject to be greater than the variability among images of different subjects (Adini et al.,
1997). As preprocessing, we first automatically centered all the images using optical flow. Images
were then converted to vectors, and each image was represented using its first�� PCA coefficients.
Figure 2 shows a few images of four subjects.

8.1.2 OBTAINING EQUIVALENCE CONSTRAINTS

We simulated the‘distributed learning’scenario presented in Section 1 in order to obtain equiva-
lence constraints. In this scenario, we obtain equivalenceconstraints using the help of� teachers.
Each teacher is given a random selection of� data points from the data set, and is asked to give
his own labels to all the points, effectively partitioning the data set into equivalence classes. Each
teacher therefore provides both positive and negative constraints. Note however that RCA only uses
the positive constraints thus gathered. The total number ofpoints in chunklets grows linearly with
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� � , the number of data points seen by all teachers. We control this amount, which provides a loose
bound on the number of points in chunklets, by varying the number of teachers� and keeping�
constant. We tested a range of values of� for which � � is ��� , ��� , or ��� of the points in the
data set.5

The parameter� controls the distribution of chunklet sizes. More specifically, we show in
Appendix D that this distribution is controlled by the ratio


 � �� where� is the number of
classes in the data. In all our experiments we have used


 � 

. For this value the expected chunklet

size is roughly

 �� and we typically obtain many small chunklets. Figure 3 showsa histogram of

typical chunklet sizes, as obtained in our experiments.6
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Figure 3: Sample chunklet size distribution obtained usingthe distributed learning scenario on a
subset of the yaleB data set with��
� images from� � �� classes. L is chosen such
that


 � �� � 

. The histogram is plotted for distributed learning with��� of the data

points in chunklets.

8.1.3 RCAON THE CONTINUUM BETWEEN SUPERVISED AND UNSUPERVISED LEARNING

The goal of our main experiment in this section was to assess the relative performance of RCA as
a semi-supervised method in a face recognition task. To thisextent we compared the following
methods:

� Eigenfaces (Turk and Pentland, 1991): this unsupervised method reduces the dimensionality
of the data using PCA, and compares the images using the Euclidean metric in the reduced
space. Images were normalized to have zero mean and unit variance.

� Fisherfaces (Belhumeur et al., 1997): this supervised method starts by applying PCA dimen-
sionality reduction as in the Eigenfaces method. It then uses all the data labels to compute the
FLD transformation (Fukunaga, 1990), and transforms the data accordingly.

5. In this scenario one usually obtains mostly ‘negative’ equivalence constraints, which are pairs of points that are
known to originate from different classes. RCA doesnot use these ‘negative’ equivalence constraints.

6. We used a different sampling scheme in the experiments which address the effect of chunklet size, see Section 8.1.6.
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� RCA: the RCA algorithm with dimensionality reduction as described in Section 6, that is,
PCA followed by cFLD. We varied the amount of data in constraints provided to RCA, using
thedistributed learningparadigm described above.
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Figure 4: Left: Cumulative purity graphs for the following algorithms and experimental conditions:
Eigenface (PCA), RCA��� , RCA ��� , RCA ��� , and Fisherface (FLD). The percent-
ages stated for RCA are the fractions of data points presented to the ‘distributed learning’
oracle, as discussed in Section 8.1.2. The data was reduced to dimension 60 using PCA
for all the methods. It was then further reduced to dimension30 using cFLD in the three
RCA variants, and using FLD for the Fisherface method. Results were averaged over��
constraints realizations. The error bars give the StandardErrors of the Mean (SEMs).
Right: Cumulative purity graphs for the fully supervised FLD, with and without fully
labelled RCA. Here RCA dramatically enhances the performance of FLD.

The left panel in Figure 4 shows the results of the different methods. The graph presents the
performance of RCA for low, moderate and high amounts of constrained points. As can be seen,
even with low amounts of equivalence constraints the performance of RCA is much closer to the
performance of the supervised FLD than to the performance ofthe unsupervised PCA. With Mod-
erate and high amounts of equivalence constraints RCA achieves neighbor purity rates which are
higher than those achieved by the fully supervised Fisherfaces method, while relying only on frag-
mentary chunklets with unknown class labels. This somewhatsurprising result stems from the fact
that the fully supervised FLD in these experiments was not followed by whitening.

In order to clarify this last point, note that RCA can also be used when given a fully labelled
training set. In this case, chunklets correspond uniquely and fully to classes, and the cFLD algorithm
for dimensionality reduction is equivalent to the standardFLD. In this setting RCA can be viewed
as an augmentation of the standard, fully supervised FLD, which whitens the output of FLD w.r.t
the within class covariance. The right panel in Figure 4 shows comparative results of FLD with and
without whitening in the fully labelled case.

In order to visualize the effect of RCA in this task we also created some “RCAfaces”, following
Belhumeur et al. (1997): We ran RCA on the images after applying PCA, and then reconstructed the
images. Figure 5 shows a few images and their reconstruction. Clearly RCA dramatically reduces
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the effect of varying lighting conditions, and the reconstructed images of the same individual look
very similar to each other. The Eigenfaces (Turk and Pentland, 1991) method did not produce
similar results.

Figure 5: Top: Several facial images of two subjects under different lighting conditions. Bottom:
the same images from the top row after applying PCA and RCA andthen reconstructing
the images. Clearly RCA dramatically reduces the effect of different lighting conditions,
and the reconstructed images of each person look very similar to each other.

8.1.4 SEPARATING THE CONTRIBUTION OF THE DIMENSIONALITY REDUCTION AND

WHITENING STEPS INRCA

Figure 4 presents the results of RCA including the semi-supervised dimensionality reduction of
cFLD. While this procedure yields the best results, it mixesthe separate contributions of the two
main steps of the RCA algorithm, that is, dimensionality reduction via cFLD (Step 2) and whitening
of the inner chunklet covariance matrix (Step 3). In the leftpanel of Figure 6 these contributions are
isolated.

It can be seen that when cFLD and whitening are used separately, they both provide considerable
improvement in performance. These improvements are only partially dependent, since the perfor-
mance gain when combining both procedures is larger than either one alone. In the right panel of
Figure 6 we present learning curves which show the performance of RCA with and without dimen-
sionality reduction, as a function of the amount of supervision provided to the algorithm. For small
amounts of constraints, both curves are almost identical. However, as the number of constraints
increases, the performance of RCA dramatically improves when using cFLD.

8.1.5 COMPARISON WITH THE METHOD OFX ING ET AL.

In another experiment we compared the algorithm of Xing et al. (2003) to RCA on the YaleB data
set using code obtained from the author’s web site. The experimental setup was the one described in
Section 8.1.2, with��� of the data points presented to the distributed learning oracle. While RCA
uses only the positive constraints obtained, the algorithmof Xing et al. (2003) was given both the
positive and negative constraints, as it can make use of both. Results are shown in Figure 7, showing
that this algorithm failed to converge when given high dimensional data, and was outperformed by
RCA in lower dimensions.
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Figure 6: Left: Cumulative purity graphs for� experimental conditions: original space, RCA with-
out cFLD, cFLD only, and RCA with cFLD (using the Euclidean norm in all cases).
The data was reduced to�� dimensions using unsupervised PCA. The semi supervised
techniques used constraints obtained by distributed learning with ��� of the data points.
RCA without cFLD was performed in the space of 60 PCA coefficients, while in the last
2 conditions dimensionality was further reduced to�� using the constraints. Results were
averaged over�� constraints realizations. Right: Learning curves–neighbor purity per-
formance for 64 neighbors as a function of the amount of constraints. The performance is
measured by averaging (over all data points) the percentageof correct neighbors among
the first 64 neighbors. The amount of constraints is measuredusing the percentage of
points given to the distributed learning oracle. Results are averaged over 15 constraints
realizations. Error bars in both graphs give the standard errors of the mean.

8.1.6 THE EFFECT OF DIFFERENT CHUNKLET SIZES

In Section 5 we showed that RCA typically provides an estimator for the within class covariance
matrix, which is not very sensitive to the size of the chunklets. This was done by providing a
bound on the variance of the elements in the RCA estimator matrix

�	 �� � � �. We can expect that
lower variance of the estimator will go hand in hand with higher purity performance. In order to
empirically test the effect of chunklets’ size, we fixed the number of equivalence constraints, and
varied the size of the chunklets	 in the range

�
 � ���
. The chunklets were obtained by randomly

selecting��� of the data (total of� � ��
� points) and dividing it into chunklets of size	 .7

The results can be seen in Figure 8. As expected the performance of RCA improves as the size of
the chunklets increases. Qualitatively, this improvementagrees with the predicted improvement in
the RCA estimator’s variance, as most of the gain in performance is already obtained with chunklets
of size 	 � �. Although the bound presented is not tight, other reasons may account for the
difference between the graphs, including the weakness of the Gaussian assumption used to derive
the bound (see Section 9), and the lack of linear connection between the estimator’s variance and
purity performance.

7. When necessary, the remaining��� �� ��� 	 " 
 points were gathered into an additional smaller chunklet.

18



MAHALANOBIS METRIC FROM EQUIVALENCE CONSTRAINTS

10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Number of neighbors

%
 o

f c
or

re
ct

 n
ei

gh
bo

rs

Before FLD − High dimesion

Euclid
RCA
Xing

10 20 30 40 50 60

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of neighbors

%
 o

f c
or

re
ct

 n
ei

gh
bo

rs

After FLD − Low dimesion

Euclid
RCA
Xing

Figure 7: The method of Xing et al. (2003) and RCA on the YaleB facial image data set. Left:
Neighbor purity results obtained using 60 PCA coefficients.The algorithm of Xing et al.
(2003) failed to converge and returned a metric with chance level performance. Right:
Results obtained using a�� dimensional representation, obtained by applying cFLD to
the �� PCA coefficients. Results are averaged over�� constraints realizations. The error
bars give the standard errors of the mean.
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Figure 8: Left: Mean error rate on all 64 neighbors on the yaleB data set when using��� of the data
in chunklets. In this experiment we varied the chunklet sizes while fixing the total amount
of points in chunklets. Right: the theoretical bound over the ratio between the variance of
the RCA matrix elements and the variance of the best possibleestimator using the same
number of points (see inequality 12). The qualitative behavior of the graphs is similar,
seemingly because a lower estimator variance tends to implybetter purity performance.

8.2 Using RCA in a surveillance application

In this application, a stationary indoor surveillance camera provided short video clips whose begin-
ning and end were automatically detected based on the appearance and disappearance of moving
targets. The database therefore included many clips, each displaying only one person of unknown
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Figure 9: Left: several images from a video clip of one intruder. Right: cumulative neighbor purity
results before and after RCA.

identity. Effectively each clip provided a chunklet. The task in this case was to cluster together all
clips in which a certain person appeared.

The task and our approach: The video clips were highly complex and diversified, for several
reasons. First, they were entirely unconstrained: a personcould walk everywhere in the scene,
coming closer to the camera or walking away from it. Therefore the size and resolution of each
image varied dramatically. In addition, since the environment was not constrained, images included
varying occlusions, reflections and (most importantly fromour perspective) highly variable illu-
mination. In fact, the illumination changed dramatically across the scene both in intensity (from
brighter to darker regions), and in spectrum (from neon light to natural lighting). Figure 9 shows
several images from one input clip.

We sought to devise a representation that would enable the effective clustering of clips, focusing
on color as the only low-level attribute that could be reliably used in this application. Therefore our
task was to accomplish some sort of color constancy, that is,to overcome the general problem of
irrelevant variability due to the varying illumination. This is accomplished by the RCA algorithm.

Image representation and RCA Each image in a clip was represented by its color histogram
in � �

	
�
�
� space (we used 5 bins for each dimension). We used the clips aschunklets in order to

compute the RCA transformation. We then computed the distance between pairs of images using
two methods:L1 and RCA (Mahalanobis). We used over 6000 images from 130 clips (chunklets) of
20 different people. Figure 9 shows the cumulative neighborpurity over all 6000 images. One can
see that RCA makes a significant contribution by bringing ‘correct’ neighbors closer to each other
(relative to other images). However, the effect of RCA on retrieval performance here is lower than
the effect gained with the YaleB data base. While there may beseveral reasons for this, an important
factor is the difference between the way chunklets were obtained in the two data sets. The automatic
gathering of chunklets from a Markovian process tends to provide chunklets with dependent data
points, which supply less information regarding the withinclass covariance matrix.
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8.3 RCA and clustering

In this section we evaluate RCA’s contribution to clustering, and compare it to alternative algorithms
that use equivalence constraints. We used six data sets fromthe UCI repository. For each data set
we randomly selected a set�� of pairwise positive equivalence constraints (or chunklets of size 2).
We compared the following clustering algorithms:

	
. K-means using the default Euclidean metric and no side-information (Fukunaga, 1990).

�
. Constrained K-means + Euclidean metric: the K-means version suggested by Wagstaff et al.

(2001), in which a pair of points��� � �
 � � �� is always assigned to the same cluster.

". Constrained K-means + the metric proposed by Xing et al. (2003): The metric is learnt from
constraints in�� . For fairness we replicated the experimental design employed by Xing
et al. (2003), and allowed the algorithm to treat all unconstrained pairs of points as negative
constraints (the set�� ).

�. Constrained K-means + RCA: Constrained K-means using the RCA Mahalanobis metric learned
from �� .

�
. EM: Expectation Maximization of a Gaussian Mixture model (using no side-information).�
. Constrained EM: EM using side-information in the form of equivalence constraints (Shental

et al., 2003), when using the RCA distance metric as the initial metric.

Clustering algorithms
	

and
�

are unsupervised and provide respective lower bounds for comparison
with our algorithms� and

�
. Clustering algorithms

�
and " compete fairly with our algorithm�,

using the same kind of side information.

Experimental setup To ensure fair comparison with Xing et al. (2003), we used exactly the same
experimental setup as it affects the gathering of equivalence constraints and the evaluation score
used. We tested all methods using two conditions, with: (i) “little” side-information�� , and (ii)
“much” side-information. The set of pairwise similarity constraints�� was generated by choosing
a random subset of all pairs of points sharing the same class identity "� . Initially, there are

�
‘connected components’ of unconstrained points, where

�
is the number of data points. Randomly

choosing a pairwise constraint decreases the number of connected components by� at most. In
the case of “little” (“much”) side-information, pairwise constraints are randomly added until the
number of different connected components	 � is roughly � ��� (� ��� ). As in the work of Xing
et al. (2003), no negative constraints were sampled.

Following Xing et al. (2003) we used a normalized accuracy score, the ”Rand index” (Rand,
1971), to evaluate the partitions obtained by the differentclustering algorithms. More formally,
with binary labels (or two clusters), the accuracy measure can be written as:

��
�


����"� � "
 � � �� �"� � �"
 ��
� ��� �� � ��

where �� ��
denotes the indicator function���� 
� �� � ��� ��� 	 ,��� � � �, � �"� ���� �

denotes the
cluster to which point

��
is assigned by the clustering algorithm, and"� denotes the “correct” (or
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desirable) assignment. The score above is the probability that the algorithm’s decision regarding the
label equivalence of two points agrees with the decision of the “true” assignment". 8
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Figure 10: Clustering accuracy on 6 UCI data sets. In each panel, the six bars on the left correspond
to an experiment with ”little” side-information, and the six bars on the right correspond
to ”much” side-information. From left to right the six bars correspond respectively to
the algorithms described in the text, as follows: (a) K-means over the original feature
space (without using any side-information). (b) Constrained K-means over the original
feature space. (c) Constrained K-means over the feature space suggested by Xing et al.
(2003). (d) Constrained K-means over the feature space created by RCA. (e) EM over
the original feature space (without using any side-information). (f) Constrained EM
(Shental et al., 2003) over the feature space created by RCA.Also shown are� –the
number of points,� –the number of classes,� –the dimensionality of the feature space,
and 	 �–the mean number of connected components. The results were averaged over
� realizations of side-information. The error bars give the standard deviations. In all
experiments we used K-means with multiple restarts as in done by Xing et al. (2003).

Figure 10 shows comparative results using six different UCIdata sets. Clearly the RCA met-
ric significantly improved the results over the original K-means algorithms (both the constrained
and unconstrained versions). Generally in the context of K-means, we observe that using equiva-
lence constraints to find a better metric improves results much more than using this information to
constrain the algorithm. RCA achieves comparable results to those reported by Xing et al. (2003),
despite the big difference in computational cost between the two algorithms (see Section 9.1).

8. As noted by Xing et al. (2003), this score should be normalized when the number of clusters is larger than 2. Nor-
malization is achieved by sampling the pairs�� � 	 �� 
 such that� � and�� are from the same cluster with probability
0.5 and from different clusters with probability 0.5, so that “matches” and “mismatches” are given the same weight.

22



MAHALANOBIS METRIC FROM EQUIVALENCE CONSTRAINTS

The last two algorithms in our comparisons use the EM algorithm to compute a generative
Gaussian Mixture Model, and are therefore much more computationally intensive. We have added
these comparisons because EM implicitly changes the distance function over the input space in a
locally linear way (that is, like a Mahalanobis distance). It may therefore appear that EM can do
everything that RCA does and more, without any modification.The histogram bins marked by (e)
in Figure 10 clearly show that this is not the case. Only when we add constraints to the EM, and
preprocess the data with RCA, do we get improved results as shown by the histogram bins marked
by (f) in Figure 10.

9. Discussion

We briefly discuss running times in Section 9.1. The applicability of RCA in general conditions is
then discussed in 9.2.

9.1 Runtime performance

Computationally RCA relies on a few relatively simple matrix operations (inversion and square root)
applied to a positive-definite square matrix, whose size is the reduced dimensionality of the data.
This can be done fast and efficiently and is a clear advantage of the algorithm over its competitors.

9.2 Using RCA when the assumptions underlying the method are violated
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Figure 11: Extracting the shared component of the covariance matrix using RCA: In this exam-
ple the data originates from 2 Gaussian sources with the following diagonal covariance
matrices:��	- �	 � � � �� � �� 
� and��	- �	 � � ��� � � 
�. (a) The original data points
(b) The transformed data points when using RCA. In this example we used all of the
points from each class as a single chunklet and therefore thechunklet covariance matrix
is the average within-class covariance matrix. As can be seen RCA clearly down-scales
the irrelevant variability in the Z axis, which is the sharedcomponent of the 2 classes
covariance matrices. Specifically, the eigenvalues of the covariance matrices for the
two classes are as follows (for� � � ��): class 1–�� ���� � ����� � � ���� � before RCA,
and ������ � ���� �� � �� ��� after RCA; class 2–�� ���� � ����� � � �� �� � before RCA, and

������ � ���� �� � ��

� after RCA. In this example, the condition numbers increasedby a
factor of� ��� and� �
� respectively for both classes.
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In order to obtain a strict probabilistic justification for RCA, we listed in Section 5 the following
assumptions:

1. The classes have multi-variate normal distributions.

2. All the classes share the same covariance matrix.

3. The points in each chunklet are an i.i.d sample from the class.

What happens when these assumptions do not hold?

The first assumption gives RCA its probabilistic justification. Without it, in a distribution-free
model, RCA is the best linear transformation optimizing thecriteria presented in Sections 3-4:
maximal mutual information, and minimal within-chunklet distance. These criteria are reasonable
as long as the classes are approximately convex (as assumed by the use of the distance between
chunklet’s points and chunklet’s means). In order to investigate this point empirically, we used
Mardia’s statistical tests for multi-variate normality (Mardia, 1970). These tests (which are based on
skewness and kurtosis) showed that all of the data sets used in our experiments are significantly non-
Gaussian (except for the Iris UCI data set). Our experimental results therefore clearly demonstrate
that RCA performs well when the distribution of the classes in the data is not multi-variate normal.

The second assumption justifies RCA’s main computational step, which uses the empirical aver-
age of all the chunklets covariance matrices in order to estimate the global within class covariance
matrix. When this assumption fails, RCA effectively extracts the shared component of all the classes
covariance matrices, if such component exists. Figure 11 presents an illustrative example of the use
of RCA on data from two classes with different covariance matrices. A quantitative measure of
RCA’s partial success in such cases can be obtained from the change in thecondition number(the
ratio between the largest and smallest eigenvalues) of the within-class covariance matrices of each
of the classes, before and after applying RCA. Since RCA attempts to whiten the within-class co-
variance, we expect the condition number of the within-class covariance matrices to decrease. This
is indeed the case for the various classes in all of the data sets used in our experimental results.

The third assumption may break down in many practical applications, when chunklets are auto-
matically collected and the points within a chunklet are no longer independent of one another. As a
result chunklets may be composed of points which are rather close to each other, and whose distribu-
tion does not reflect all the typical variance of the true distribution. In this case RCA’s performance
is not guaranteed to be optimal (see Section 8.2).

10. Conclusion

We have presented an algorithm which uses side-informationin the form of equivalence constraints,
in order to learn a Mahalanobis metric. We have shown that ourmethod is optimal under several
criteria. Our empirical results show that RCA reduces irrelevant variability in the data and thus
leads to considerable improvements in clustering and distance based retrieval.
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Appendix A. Information Maximization with non-invertible linear transformations

Here we sketch the proof of the claim made in Section 3.3. As before, we denote by
�	 the average

covariance matrix of the chunklets. We can rewrite the constrained expression from Equation 5 as:

��
��


� �
����� � ��
 � � �
 ��* �* ��
 � � �
 � � �
 �* �* �	 � � �
 �* � �	 * �

Hence the Lagrangian can be written as:

$%& %* � * � % � 
 ��
 �* �	 * � � � ��
Differentiating the Lagrangian w.r.t A gives

� * � �*  � * � ��� � 
 �	 * �
Multiplying by * and rearranging terms, we get:

�� � * �	 * �. Hence as in RCA,* must whiten
the data with respect to the chunklet covariance

�	 in a yet to be determined subspace. We can now
use the equality in (5) to find
.

�
 �* �	 * � � � �
 � �
 � � 	
 � � �� 
 � 	

�� * �	 * � � �
	 �

where	 is the dimension of the projection subspace.
Next, since in our solution space* �	 * � � �� � , it follows that $%& %* �	 * � % � 	 $%& �� holds for

all points. Hence we can modify the maximization argument asfollows

$%& %* � * � % � $%& %* � * � %
%* �	 * � % ' 	 $%& �

	

Now the optimization argument has a familiar form. It is known (Fukunaga, 1990) that maximiz-
ing the determinant ratio can be done by projecting the spaceon the span of the first	 eigenvectors
of

�	 �� � . Denote by
�

the solution matrix for this unconstrained problem. This matrix orthogo-
nally diagonalizes both

�	 and
� , so

� �	� � � � �
and

� �� � � �  
for � � ��  

diagonal matrices.

In order to enforce the constraints we define the matrix* � � �� ��� ��� �
and claim that* is the

solution of the constrained problem. Notice that the value of the maximization argument does not
change when we switch from* to

�
since* is a product of

�
and another full ranked matrix. It

can also be shown that* satisfies the constraints and is thus the solution of the Problem (5).

Appendix B. Variance bound on the RCA covariance estimator

In this appendix we prove Inequality 12 from Section 5. Assume we have
� � �� data points� ���
 � �� �	�� � �
 � �

in � chunklets of size� each. We assume that all chunklets are drawn independently
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from Gaussian sources with the same covariance matrix. Denoting by
� �

the mean of chunklet i,
the unbiased RCA estimator of this covariance matrix is

�	 �� � � � � �
�

��

� � �

� � �
	���� ��
 � � � � � ��
 � � � � ��

It is more convenient to estimate the convergence of the covariance estimate for data with a
diagonal covariance matrix. We hence consider a diagonalized version of the covariance, and return
to the original covariance matrix toward the end of the proof. Let � denote the diagonalization
transformation of the covariance matrix	 of the Gaussian sources, that is,� 	 � � � � where
� is a diagonal matrix with

�
 � ���� �
on the diagonal. Let� � �� � ��
 � �� �	�� � �
 � �

denote the

transformed data. Denote the transformed within class covariance matrix estimation by
�	 � �� � � � �

�
�	 �� � � �� � , and denote the chunklet means by

� �� � � � �
. We can analyze the variance of

�	 � as
follows:

$	
 � �	 � �� � � �� � $	
 � ��
���� � �

� � �
	�


�� ��
 � � � �� � ��
 � � � �� �� �

� �
� $	
 � �

� � �
	�


�� ��
 � � � �� � ��
 � � � �� �� � (15)

The last equality holds since the summands of the external sum are sample covariance matrices of
independent chunklets drawn from sources with the same covariance matrix.

The variance of the sample covariance, assessed from� points, for diagonalized Gaussian data
is known to be (Fukunaga, 1990)

$	
 � �	�� � �


 �
� � � � $	
 � �	�
 � � 
 �



�
� "#$ � �	�
 � �		 � � � �

hence (15) is simply:

$	
 � �	 ��� � �


 �

� �� � �� � $	
 � �	 ��
 � � 
�


�� � "#$ � �	 ��
 � �	 �	 � � � �

Replacing
� � �� , we can write

$	
 � �	 ��� � �


 �

� �� � �
	 � � $	
 � �	 ��
 � � 
 � 

� � "#$ � �	 ��
 � �	 �	 � � � �

and for the diagonal terms
�	 ���

$	
 � �	 � �
�
� � � ��� � �



 �
� �� � �

	 � � �
� � �



 �� � �
� � �



 �� � � � �
� � �$	
 � �	 � ��� � ��� �

This inequality trivially holds for the off-diagonal covariance elements.
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Getting back to the original data covariance, we note that inmatrix elements notation
�	�
 �� �� ��� � �	 ��� ����
 � where� is the data dimension. Therefore

$	
 � �	�
 �� � � ��
$	
 � �	�
 ��� �� �� �

� �� ��� � $	
 � �	 � �� � � ��� � ���
 � �� �� ��� � $	
 � �	 � ��� �� ��� ����
 � � � � �� ��� � 		��$	
 � �	 � ��� �� ��� � ���
 � �� �� ��� � $	
 � �	 � ��� �� ��� ����
 � � � �
� � �

where the first equality holds because"#$ � �	 ��
 � �	 �	 � � � �.

Appendix C. Online RCA with chunklets of general size

The online RCA algorithm can be extended to handle a stream ofchunklets of varying size. The
procedure is presented in Algorithm 4.

Algorithm 4 Online RCA for chunklets of variable size
Input: a stream of chunklets where the points in a chunklet are known to belong to the same class.
Initialize � to a symmetric random matrix with%%� %% �� �.
At time step T do:

� receive a chunklet
���� � ���� ��� �

and compute its mean
� � � �

� � ��� � ���
;

� compute� difference vectors
��� � ��� � � �

;

� transform
���

using� , to get��� � � ���
;

� update� � � ' � � ��� � �� � ��� ���� ��� �.
where� � � determines the step size.

The steady state of the weight matrix� can be analyzed in a way similar to the analysis in
Section 3. The result is� � � � �

�
� � ��� � ���� � � � � ���� � � � �� �� �� where� is an orthonormal

matrix, and so� is equivalent to the RCA transformation of the current distribution.

Appendix D. The expected chunklet size in the distributed learning paradigm

We estimate the expected chunklet size obtained when using the distributed learning paradigm in-
troduced in Section 8. In this scenario, we use the help of� teachers, each of which is provided
with a random selection of� data points. Let us assume that the data contains� equiprobable
classes, and that the size of the data set is large relative to� . Define the random variables

�
�
as

the number of points from class� observed by teacher

. Due to the symmetry among classes and

among teachers, the distribution of
�
�

is independent of� and

, thus defined as

�
. It can be well

approximated by a Bernoulli distribution� �� � �
� �, while considering only

� � 

(since

� � � � �
do not form chunklets). Specifically,

� �� � � %� �� � � �� � �
� � � �� � � � � � �� � ��

�
�
� � � �

� �� �� � �
� ����

� � 
 � � � ��
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We can approximate� �� � � � and� �� � �� as

� �� � � � � �� � �
� �� � �� �

� � � �� � �� � �
� �� � �

� ����
� �
�

�� �
�

Using these approximations, we can derive an approximationfor the expected chunklet size as
a function of the ratio


 � ��

� �� %� �� � � � �� �� � �� � � �� � ��
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