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Abstract

Many learning algorithms use a metric defined over the inpate as a principal tool, and
their performance critically depends on the quality of thistric. We address the problem of
learning metrics using side-information in the form of a@lénce constraints. Unlike labels, we
demonstrate that this type of side-information can somegiime automatically obtained without
the need of human intervention. We show how such side-irdition can be used to modify the
representation of the data, leading to improved clustadjclassification.

Specifically, we present the Relevant Component AnalystRalgorithm, which is a simple
and efficient algorithm for learning a Mahalanobis metrice ¥thow that RCA is the solution of
an interesting optimization problem, founded on an infdioratheoretic basis. If dimensionality
reduction is allowed within RCA, we show that it is optimadigcomplished by a version of Fisher’s
linear discriminant that uses constraints. Moreover, updgain Gaussian assumptions, RCA can
be viewed as a Maximum Likelihood estimation of the withiasd covariance matrix. We conclude
with extensive empirical evaluations of RCA, showing itvattage over alternative methods.

Keywords: clustering, metric learning, dimensionality reductiogu&alence constraints, side
information.

1. Introduction

A number of learning problems, such as clustering and neaegghbor classification, rely on some
a priori defined distance function over the input space. tifien the case that selecting a “good”
metric critically affects the algorithms’ performance.this paper, motivated by the wish to boost
the performance of these algorithms, we study ways to leggo@d” metric using side information.

One difficulty in finding a “good” metric is that its quality mabe context dependent. For
example, consider an image-retrieval application whiatiudes many facial images. Given a
query image, the application retrieves the most similaedain the database according to some
pre-determined metric. However, when presenting the queage we may be interested in retriev-
ing other images of the same person, or we may want to retather faces with the same facial
expression. It seems difficult for a pre-determined metriod suitable for two such different tasks.

In order to learn a context dependent metric, the data setlmumugmented by some additional
information, or side-information, relevant to the task ahth. For example we may have access
to the labels ofart of the data set. In this paper we focus on another type ofisfdemation,
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in which equivalence constraintsetween a few of the data points are provided. More spedifical
we assume knowledge about small groups of data points thdnawn to originate from the same
class, although their label is unknown. We term these smailgs of points’chunklets”.

A key observation is that in contrast to explicit labels the¢ usually provided by a human
instructor, in many unsupervised learning tasks equiea@onstraints may be extracted with min-
imal effort or even automatically. One example is when tha iéainherently sequential and can be
modelled by a Markovian process. Consider for example memgenentation, where the objective is
to find all the frames in which the same actor appears. Duestodhtinuous nature of most movies,
faces extracted from successive frames in roughly the saca¢idn can be assumed to come from
the same person. This is true as long as there is no scenee;hainigh can be robustly detected
(Boreczky and Rowe, 1996). Another analogous example akgpesegmentation and recognition,
in which the conversation between several speakers nedassiegmented and clustered according
to speaker identity. Here, it may be possible to automdgidgdentify small segments of speech
which are likely to contain data points from a single yaknownspeaker.

A different scenario, in which equivalence constraints taeenatural source of training data,
occurs when we wish to learn from several teachers who dommw lkeach other and who are not
able to coordinate among themselves the use of common ladelsall this scenario ‘distributed
learning’! For example, assume that you are given a large databaseabifa@ges of many people,
which cannot be labelled by a small number of teachers due vast size. The database is therefore
divided (arbitrarily) intoP parts (whereP is very large), which are then given # teachers to
annotate. The labels provided by the different teachershmragconsistent: as images of the same
person appear in more than one part of the database, theikelsetd be given different names.
Coordinating the labels of the different teachers is almgssiaunting as labelling the original data
set. However, equivalence constraints can be easily ¢xttasince points which were given the
same tag by a certain teacher are known to originate fromatme lass.

In this paper we study how to use equivalence constraintsdardo learn an optimal Maha-
lanobis metric between data points. Equivalently, the lgrolcan also be posed as learning a good
representation function, transforming the data represient by the square root of the Mahalanobis
weight matrix. Therefore we shall discuss the two problemtarchangeably.

In Section 2 we describe the proposed method-the Relevanp@uent Analysis (RCA) algo-
rithm. Although some of the interesting results can only lmv@n using explicit Gaussian assump-
tions, the optimality of RCA can be shown with some relatiwekeak assumptions, restricting the
discussion to linear transformations and the Euclideamn@&@pecifically, in Section 3 we describe a
novel information theoretic criterion and show that RCA$sdptimal solution. If Gaussian assump-
tions are added the result can be extended to the case whagasibnality reduction is permitted,
and the optimal solution now includes Fisher’s linear dimarant (Fukunaga, 1990) as an inter-
mediate step. In Section 4 we show that RCA is also the optaolakion to another optimization
problem, seeking to minimize within class distances. Vigttgs way, RCA is directly compared to
another recent algorithm for learning Mahalanobis distdnem equivalence constraints, proposed
by Xing et al. (2003). In Section 5 we show that under Gausagsumptions RCA can be inter-
preted as the maximum-likelihood (ML) estimator of the witklass covariance matrix. We also
provide a bound over the variance of this estimator, showhiagit is at most twice the variance of
the ML estimator obtained using the fully labelled data.

1. A related scenario (which we call ‘generalized relevaiesglback’), where users of a retrieval engine are asked to
annotate the retrieved set of data points, has similar ptiepe
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The successful application of RCA in high dimensional spaeguires dimensionality reduc-
tion, whose details are discussed in Section 6. An onlingimenf the RCA algorithm is presented
in Section 7. In Section 8 we describe extensive empiricaluations of the RCA algorithm. We
focus on two tasks—data retrieval and clustering, and use tipes of data: (a) A data set of frontal
faces (Belhumeur et al., 1997); this example shows that R@A partial equivalence constraints
typically yields comparable results to supervised alpanig which use fully labelled training data.
(b) A large data set of images collected by a real-time sliavgie application, where the equiva-
lence constraints are gathered automatically. (c) Sedatal sets from the UCI repository, which
are used to compare between RCA and other competing methatdsse equivalence constraints.

Related work

There has been much work on learning representations atahcksfunctions in the supervised
learning settings, and we can only briefly mention a few eXxampHastie and Tibshirani (1996) and
Jaakkola and Haussler (1998) use labelled data to learnmetiits for classification. Thrun (1996)
learns a distance function (or a representation functionglassification using a “leaning-to-learn”
paradigm. In this setting several related classificatieskgare learned using several labelled data
sets, and algorithms are proposed which learn represemtadind distance functions in a way that
allows for the transfer of knowledge between the tasks. énatbrk of Tishby et al. (1999) the joint
distribution of two random variableX and Z is assumed to be known, and one seeks a compact
representation o which bears high relevance 6. This work, which is further developed in
Chechik and Tishby (2003), can be viewed as supervisedseptation learning.

As mentioned, RCA can be justified using information thedoretiteria on the one hand, and
as an ML estimator under Gaussian assumptions on the othfaxmiation theoretic criteria for
unsupervised learning in neural networks were studied bgkedr (1989), and have been used since
in several tasks in the neural network literature. Impdriexamples are self organizing neural
networks (Becker and Hinton, 1992) and Independent Commohealysis (Bell and Sejnowski,
1995)). Viewed as a Gaussian technique, RCA is related toge family of feature extraction
techniques that rely on second order statistics. This famdludes, among others, the techniques
of Partial Least-Squares (PLS) (Geladi and Kowalski, 198@nonical Correlation Analysis (CCA)
(Thompson, 1984) and Fisher’s Linear Discriminant (FLDJK&naga, 1990). All these techniques
extract linear projections of a random varialie which are relevant to the prediction of another
variableZ in various settings. However, PLS and CCA are designed fpession tasks, in which
Z is a continuous variable, while FLD is used for classifioatiasks in whichZ is discrete. Thus,
RCA is more closely related to FLD, as theoretically esthidd in Section 3.3. An empirical
investigation is offered in Section 8.1.3, in which we shtwttRCA can be used to enhance the
performance of FLD in the fully supervised scenario.

In recent years some work has been done on using equivalens&ants as side information.
Both positive (‘a is similar to b’) and negative (‘a is disglian from b’) equivalence constraints were
considered. Several authors considered the problem ofsgmervised clustering using equivalence
constraints. More specifically, positive and negative traigts were introduced into the complete
linkage algorithm (Klein et al., 2002), the K-means aldumit (Wagstaff et al., 2001) and the EM
of a Gaussian mixture model (Shental et al., 2003). A secimaddf research, to which this work
belongs, focuses on learning a ‘good’ metric using equiaeonstraints. Learning a Mahalanobis
metric from both positive and negative constraints wasestdrd in the work of Xing et al. (2003),
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presenting an algorithm which uses gradient ascent aratiiterprojections to solve a convex non
linear optimization problem. We compare this optimizatmoblem to the one solved by RCA in
Section 4, and empirically compare the performance of tleealgorithms in Section 8. The initial
description of RCA was given in the context of image retrid@&hnental et al., 2002), followed by
the work of Bar-Hillel et al. (2003). Recently Bilenko et ¢2004) suggested a K-means based clus-
tering algorithm that also combines metric learning. Thyeathm uses both positive and negative
constraints and learns a single or multiple Mahalanobigioset

2. Relevant Component Analysis: the algorithm

Relevant Component Analysis (RCA) is a method that seeksdntify and down-scale global
unwanted variability within the data. The method changesf#ature space used for data repre-
sentation, by a global linear transformation which assignge weights to “relevant dimensions”
and low weights to “irrelevant dimensions” (see TenenbandhEreeman, 2000). These “relevant
dimensions” are estimated usiogunkletsthat is, small subsets of points that are known to belong
to the same althouginknownclass. The algorithm is presented below as Algorithm 1 (Matiode
can be downloaded from the authors’ sites).

Algorithm 1 The RCA algorithm
Given a data seX = {z;}¥, andn chunkletsC; = {z;;};?, j=1...n, do

1. Compute the within chunklet covariance matrix (Figurg 1d

n nj

C= %ZZ(W —mj)(wji — m;)" (1)

j=11i=1
wherem; denotes the mean of the j'th chunklet.

2. If needed, apply dimensionality reduction to the datagi§i as described in Algorithm 2
(see Section 6).

3. Compute the whitening transformation associated With’ = C > (Figure 1e), and apply
it to the data pointsX,.,, = WX (Figure 1f), whereX refers to the data points after dimen-
sionality reduction when applicable. Alternatively, uke fnverse of” in the Mahalanobis
distanced(x1, zo) = (z1 — z2)'C Yy — zy).

More specifically, pointa; andzs are said to be related by a positive constraint if it is known
that both points share the same (unknown) label. If paintand z» are related by a positive
constraint, andc, and z3 are also related by a positive constraint, then a chunldetzs, z3}
is formed. Generally, chunklets are formed by applying ditire closure over the whole set of
positive equivalence constraints.

The RCA transformation is intended to reduce clutter, sd ithahe new feature space, the
inherent structure of the data can be more easily unravédled illustrations in Figure la-f). To
this end, the algorithm estimates the within class covagasf the dataov(X|Z) whereX andZ
describe the data points and their labels respectively. eBtienation is based on positive equiva-
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lence constraints only, and does not use any explicit latfefrnation. In high dimensional data,
the estimated matrix can be used for semi-supervised dioraliy reduction. Afterwards, the
data set is whitened with respect to the estimated withiasctavariance matrix. The whitening
transformatiord¥ (in Step 3 of Algorithm 1) assigns lower weights to directiafi large variability,
since this variability is mainly due to within class changesl is therefore “irrelevant” for the task
of classification.

. P B
& G
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Figure 1: An illustrative example of the RCA algorithm agpglito synthetic Gaussian data. (a)
The fully labelled data set with 3 classes. (b) Same datebetitad; clearly the classes’
structure is less evident. (c) The set of chunklets that eveigied to the RCA algorithm
(points that share the same color and marker type form a ¢¢tdinkd) The centered
chunklets, and their empirical covariance. (e) The whitgrtransformation applied to
the chunklets. (f) The original data after applying the R@aasformation.

The theoretical justifications for the RCA algorithm areagivin Sections 3-5. In the following
discussion, the term ‘RCA refers to the algorithm eithethadr without dimensionality reduction
(optional Step 2). Usually the exact meaning can be readiljetstood in context. When we
specifically discuss issues regarding the use of dimenigipmaduction, we may use the explicit
terms ‘RCA with (or without) dimensionality reduction’.

RCA does not use negative equivalence constraints. Whiative constraints clearly contain
useful information, they are less informative than positbonstraints (see counting argument be-
low). They are also much harder to use computationally, dutypto the fact that unlike positive
constraints, negative constraints are not transitive.uincase, the naive incorporation of negative
constraints leads to a matrix solution which is the diffeesnf two positive definite matrices, and
as a results does not necessarily produce a legitimate ktablgic metric. An alternative approach,
which modifies the optimization function to incorporate atd¢ge constraints, as used for example by
Xing et al. (2003), leads to a non-linear optimization pesblwith the usual associated drawbacks
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of increased computational load and some uncertainty a@heutptimality of the final solutiod.In
contrast, RCA is the closed form solution of several intimgsoptimization problem, whose com-
putation is no more complex than a single matrix inversiohudl, in the tradeoff between runtime
efficiency and asymptotic performance, RCA chooses thedoand ignores the information given
by negative equivalence constraints.

There is some evidence supporting the view that positivetcaimts are more informative than
negative constraints. Firstly, a simple counting argunsdaws that positive constraints exclude
more labelling possibilities than negative constraintord example there aré/ classes in the data,
two data points havé/? possible label combinations. A positive constraint betwtee points
reduces this number td/ combinations, while a negative constraint gives a much muderate
reduction toM (M — 1) combinations. (This argument can be made formal in infolonaheoretic
terms.) Secondly, empirical evidence from clustering @lgms which use both types of constraints
shows that in most cases positive constraints give a mudtehjgerformance gain (Shental et al.,
2003; Wagstaff et al., 2001). Finally, in most cases in whaghivalence constraints are gathered
automatically, only positive constraints can be gathered.

Step 2 of the RCA algorithm applies dimensionality reduttio the data if needed. In high
dimensional spaces dimensionality reduction is almosagdvwessential for the success of the algo-
rithm, because the whitening transformation essentialigaales the variability in all directions so
as to equalize them. Consequently, dimensions with small variability cause instability and, in
the zero limit, singularity.

As discussed in Section 6, the optimal dimensionality rédn®ften starts with Principal Com-
ponent Analysis (PCA). PCA may appear contradictory to R€IGe it eliminates principal dimen-
sions with small variability, while RCA emphasizes prirgiglimensions with small variability.
One should note, however, that the principal dimensionscameputed in different spaces. The
dimensions eliminated by PCA have small variability in thigimal data space (corresponding to
Cov(X)), while the dimensions emphasized by RCA have low varighiti a space where each
point is translated according to the centroid of its own d¢etn(corresponding t6'ov(X|Z)). As
a result, the method ideally emphasizes those dimensidhdaxgje total variance, but small within
class variance.

3. Information maximization with chunklet constraints

How can we use chunklets to find a transformation of the datiatwimproves its representation?
In Section 3.1 we state the problem for general familiesarigformations and distances, present-
ing an information theoretic formulation. In Section 3.2 kestrict the family of transformation to
non-singular linear maps, and use the Euclidean metric tmsare distances. The optimal solution
is then given by RCA. In Section 3.3 we widen the family of pited transformations to include
non-invertible linear transformations. We show that formally distributed data RCA is the opti-
mal transformation when its dimensionality reduction isaited with a constraints based Fisher’s
Linear Discriminant (FLD).

2. Despite the problem’s convexity, the proposed gradiesed algorithm needs tuning of several parameters, and is
not guaranteed to find the optimum without such tuning. Seti@e8.1.5 for relevant empirical results.
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3.1 Aninformation theoretic per spective

Following Linsker (1989), an information theoretic critar states that an optimal transformation of
the inputX into its new representatioi, should seek to maximize the mutual informati&iX, V')
betweenX andY under suitable constraints. In the general case &set {z;} of data points in
RP is transformed into the s&f = {f(x;)} of points iINRX. We seek a deterministic function
f € F that maximizes/(X,Y), whereF is the family of permitted transformation functions (a
“hypotheses family”).

First, note that sincg is deterministic, maximizind (X,Y") is achieved by maximizing the
entropyH (Y') alone. To see this, recall that by definition

I(X,Y)=H(Y) - HY|X)

where H(X) and H(Y'|X) are differential entropies, a& andY are continuous random vari-
ables. Sincef is deterministic, the uncertainty concerniligwhen X is known is minimal, thus
H(Y|X) achieves its lowest possible value-ato.> However, as noted by Bell and Sejnowski
(1995), H(Y|X) does not depend ofi and is constant for every finite quantization scale. Hence
maximizing(X,Y") with respect tof can be done by considering only the first tefhfY").

Second, note also th&f(Y") can be increased by simply ‘stretching’ the data space. ¥ane
ple, if Y = f(X) for an invertible continuous function, we can increds€”) simply by choosing
Y = Af(X) forany A > 1. In order to avoid the trivial solution. — oo, we can limit the dis-
tances between points contained in a single chunklet . Em$e done by constraining the average
distance between a point in a chunklet and the chunklet'sangance the optimization problem is:

1 s
max H(Yy) st —> Y |lyi—m!|| <k 2)
feF N &~ &
j=11=1
Where{yji}?:’lsil denote the set of points imchunklets after the transformatiom denotes the

mean of chunklej after the transformation, andis a constant.

3.2 RCA: theoptimal linear transformation for the Euclidean norm

Consider the general problem (2) for the famiyof invertible linear transformations, and using
the squared Euclidean norm to measure distances. $iisc@vertible, the connection between the
densities ot” = f(X) and X is expressed by, (y) = f’f(%)|, where|J(z)| is the Jacobian of the
transformation. From, (y)dy = p.(z)dz, it follows that H(Y') and H(X) are related as follows:

H(Y)= —/p(y) log p(y)dy = — /p(:v) log ‘i((i)ﬂdw = H(X) + (log |J(z)|)

Yy T

For the linear mapy’ = AX the Jacobian is constant and eqyal§ and it is the only term in
H(Y) that depends on the transformatidn Hence Problem (2) is reduced to

. _ mY|?
mgxlog|A\ s.t. N E 1 E 1 llyji —millz <k
J=1 1=

3. This non-intuitive divergence is a result of the genesdion of information theory to continuous variables, fisat
the result of ignoring the discretization constant in théniion of differential entropy.
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Multiplying a solution matrixA by A > 1 increases both thkg|A| argument and the con-
strained sum of within chunklet distances. Hence the maxinsiachieved at the boundary of
the feasible region, and the constraint becomes an equdlitg constank only determines the
scale of the solution matrix, and is not important in mosstdting and classification tasks, which
essentially rely on relative distances. Hence we car setl and solve

1 &
maxlog|A|  s.t. N_legllyji—mi’H%:l ©)
j=li=

Let B = A'A; sinceB is positive definite antbg |A| =  log | B|, Problem (3) can be rewritten
as
n nj

1 2
maxlog|B| .. N;;IIM —mjl|lp =1 4)

where||.|| p denotes the Mahalanobis distance with weight ma#ixThe equivalence between the
problems is valid since for an - 0 there is and such thatB = A'A, and so a solution to (4)
gives us a solution to (3) (and vice versa).

The optimization problem (4) can be solved easily, sincectastraint is linear inB. The
solution isB = %C’*l, whereC is the average chunklet covariance matrix (1) @&his the dimen-
sionality of the data space. This solution is identical t® khahalanobis matrix compute by RCA
up to a global scale factor, or in other words, RCA is a scatdation of (4).

3.3 Dimensionality reduction

We now solve the optimization problem (4) for the family ohgeal linear transformations, that is,
Y = AX whereA € Mg«p andK < D. In order to obtain workable analytic expressions, we
assume that the distribution &f is a multivariate Gaussian, from which it follows tHgtis also
Gaussian with the following entropy

D 1 D 1
HY) = B log 2me + 3 log |3,| = B log 2me + 2 log |AX, AY|

Following the same reasoning as in Section 3.2 we replacéntgality with equality and let
k = 1. Hence the optimization problem becomes

1 Gn &
max log |AS, A s.t. N Z Z zji —mj|[5eq =1 (5)
j=1::=1
For a given target dimensionaliti(, the solution of the problem is Fisher linear discriminant
(FLD),*followed by the whitening of the within chunklet covariaringhe reduced space. A sketch
of the proof is given in Appendix A. The optimal RCA procedtinerefore includes dimensionality
reduction. Since the FLD transformation is computed basethe estimated within chunklet co-
variance matrix, it is essentially a semi-supervised tipghe) as described in Section 6. Note that
after the FLD step, the within class covariance matrix inréguced space is always diagonal, and
Step 3 of RCA amounts to the scaling of each dimension segbarat

4. Fisher Linear Discriminant is a linear projectidrfrom R” to R¥ with K < D, which maximizes the determinant

. t . c . .
ratio  max 454 whereS; andS,, denote the total covariance and the within class covarisgsgectively.
EMKxD v
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4. RCA and the minimization of within class distances

In order to gain some intuition about the solution providgdhe information maximization crite-
rion (2), let us look at the optimization problem obtained&yersing the roles of the maximization
term and the constraint term in problem (4):

n
mln—ZZHxﬂ m;||% st |Bl>1 (6)

j=11=1

We interpret problem (6) as follows: a Mahalanobis distaBces sought, which minimizes
the sum of all within chunklet squared distances, whi¥¢¢ > 1 prevents the solution from being
achieved by “shrinking” the entire space. Using the Kuhiekas theorem, we can reduce (6) to

n 7nj

mBinZZ \|lzji —mj||% — Aog |B| s.t. A>0, Mog|B| =0 7)
j=11i=1

Differentiating this Lagrangian shows that the minimumiiseg by B = |CA’|%CA'*1, whereC is the
average chunklet covariance matrix. Once again, the saligiidentical to the Mahalanobis matrix
in RCA up to a scale factor.

It is interesting, in this respect, to compare RCA with thethod proposed recently by Xing
et al. (2003). They consider the related problem of lear@irigdahalanobis distance using side
information in the form of pairwise constraints (Chunklefssize > 2 are not considered). It is
assumed that in addition to the set of positive constrajits one is also given access to a set of
negative constraint§) y—a set of pairs of points known to be dissimilar. Given thexte, shey pose
the following optimization problem.

min S e - xll3 st. Y lz;i—=llz>1, B=0 (8)
(w1,22)EQP (x1,22)EQN

This problem is then solved using gradient ascent andiiterptojection methods.
In order to allow a clear comparison of RCA with (8), we refoitate the argument of (6) using
only within chunklet pairwise distances. For each paintin chunkletj we have:

nj
Tj; —Mj = Tj; — — E Tjk = _'Z(xji_wjk)
" =1 " =1

Problem (6) can now be rewritten as

mln—z Z||Z zji — zjp)|[5 st |B|>1 (9)

le

When only chunklets of size 2 are given, as in the case stuieting et al. (2003), (9) reduces to

mén—ZHz]l zjol|% st |B|>1 (10)
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Clearly the minimization terms in problems (10) and (8) atentical up to a constan%).
The difference between the two problems lies in the comdttarm: the constraint proposed by
Xing et al. (2003) uses pairs of dissimilar points, wherdesdonstraint in the RCA formulation
affects global scaling so that the ‘volume’ of the Mahaldaaateighborhood is not allowed to shrink
indefinitely. As a result Xing et al. (2003) are faced with aamunarder optimization problem,
resulting in a slower and less stable algorithm.

5. RCA and Maximum Likelihood: the effect of chunklet size

We now consider the case where the data consists of severably distributed classes sharing
the same covariance matrix. Under the assumption that tiiektgis are sampled i.i.d. and that
points within each chunklet are also sampled i.i.d., theliliood of the chunklets’ distribution can
be written as:

1
—5 1 €XP (=3 (zji—m;)' =~ (zj;—m;))
2

IS
|

Writing the log-likelihood while neglecting constant tesrand denoting? = X!, we obtain:

n Nj
>3 e — myl[f — Nlog| Bl (1)

j=1i=1

whereN is the total number of points in chunklets. Maximizing thg-likelihood is equivalent
to minimizing (11), whose minimum is obtained wh8nequals the RCA Mahalanobis matrix (1).
Note, moreover, that (11) is rather similar to the Lagrangia(7), where the Lagrange multiplier
is replaced by the consta™. Hence, under Gaussian assumptions, the solution of Pnofdleis
probabilistically justified by a maximum likelihood formaition.

Under Gaussian assumptions, we can further definesnarasedversion of the RCA estimator.
Assume for simplicity that there at¥ constrained data points divided intochunklets of size;
each. ThainbiasedRCA estimator can be written as:

n k
A 1 1
C(n,k) = - E = E (@5 — mg) (i — my)'
i=1

=1

whereC(n, k) denotes the empirical mean of the covariance estimatodsipenl by each chunklet.
It is shown in Appendix B that the variance of the elemefitsof the estimating matrix is bounded

by

Var(Cij(n, k) < (1+ ﬁ)V&T(C‘ij(l,nk)) (12)
whereC‘ij(l,nk:) is the estimator when all th& = nk points are known to belong to the same
class, thus forming the best estimate possible fférpoints. This bound shows that the variance
of the RCA estimator rapidly converges to the variance ot estimator, even for chunklets of
small size. For the smallest possible chunklets, of sizé&@yariance is only twice as high as the
best possible.

10
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6. Dimensionality reduction

As noted in Section 2, RCA may include dimensionality reduct We now turn to address this
issue in detail. Step 3 of the RCA algorithm decreases thghwaeif principal directions along
which the within class covariance matrix is relatively higimd increases the weight of directions
along which it is low. This intuition can be made precise ia thllowing sense:

Denote by{\‘}2, the eigenvalues of the within class covariance matrix, aomsider the
squared distance between two points from the same flass- z5||>. We can diagonalize the
within class covariance matrix using an orthonormal tramsftion which does not change the
distance. Therefore, let us assume without loss of gehethht the covariance matrix is diagonal.

Before whitening, the average squared distandgfjisc; — 2||?] = 2 Zle M and the average
squared distance in directiaris E[(z% — z%)?] = 2X%. After whitening these values becor2®
and2, respectively. Let us define the weight of dimensipW (i) € [0, 1], as

L E[(] — 2})’]
W) = =——=—-
D= Bl 2l
Now the ratio between the weight of each dimension beforeaftied whitening is given by

Wbefore (Z) _ N

N = ; 13
Wafte'r (Z) % Zle A ( )

In Equation (13) we observe that the weight of each prinaifi@ension increases if its initial
within class variance was lower than the average, and viceaveWhen there is high irrelevant
noise along several dimensions, the algorithm will indezmadesdown noise dimensions. However,
when the irrelevant noise is scattered among many dimessiith low amplitude in each of them,
whitening will amplify these noisy dimensions, which is @atially harmful. Therefore, when the
data is initially embedded in a high dimensional space, fht@oal dimensionality reduction in
RCA (Step 2) becomes mandatory.

We have seen in Section 3.3 that FLD is the dimensionalityeton techniqgue which maxi-
mizes the mutual information under Gaussian assumptionaditionally FLD is computed from
fully labelled training data, and the method thereforesfalithin supervised learning. We now ex-
tend FLD, using the same information theoretic criterianthte case of partial supervision in the
form of equivalence constraints. Specifically, denoteShynd S,, the estimators of the total co-
variance and the within class covariance respectively. Ridximizes the following determinant
ratio

AS A

Aemre.p AS, At (14)
by solving a generalized eigenvector problem. The row weatbthe optimal matrix4 are the first
K eigenvectors 0f,,1S;. In our case the optimization problem is of the same form #&4#, with
the within chunklet covariance matrix from (1) playing tleder of S,,. We compute the projection
matrix using SVD in the usual way, and term this FLD variantBRconstraints based FLD).

To understand the intuition behind cFLD, note that both P@A aFLD remove dimensions
with small total variance, and hence reduce the risk of RCAldying irrelevant dimensions with
small variance. However, unsupervised PCA may remove difoes that are important for the
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discrimination between classes, if their total variapiig low. Intuitively, better dimensionality
reduction can be obtained by comparing the total covariamatix (used by PCA) to the within
class covariance matrix (used by RCA), and this is exactlgtvithe partially supervised cFLD is
trying to accomplish in (14).

The cFLD dimensionality reduction can only be used if thekrahthe within chunklet covari-
ance matrix is higher than the dimensionality of the inidiata space. If this condition does not hold,
we use PCA to reduce the original data dimensionality asewedhe procedure is summarized
below in Algorithm 2.

Algorithm 2 Dimensionality reduction: Step 2 of RCA
Denote byD the original data dimensionality. Given a set of chunkfgf$}”_; do

1. Compute the rank of the estimated within chunklet covagamatrixR = »°7_, (|C;| — 1),
where|C;| denotes the size of the j'th chunklet.

2. If (D > R), apply PCA to reduce the data dimensionalityy®, where) < a < 1 (to ensure
that cFLD provides stable results).

3. Compute the total covariance matrix estim&je and estimate the within class covariance
matrix usingS,, = C from (1). Solve (14), and use the resultidgo achieve the target data
dimensionality.

7. Onlineimplementation of RCA

The standard RCA algorithm presented in Section 2 is a bdggridam which assumes that all
the equivalence constraints are available at once, analihthe data is sampled from a stationary
source. Such conditions are usually not met in the case @idiaal learning systems, or artificial
sensor systems that interact with a gradually changing@mvient. Consider for example a system
that tries to cluster images of different people collected Burveillance camera in gradually chang-
ing illumination conditions, such as those caused by niglt@day changes. In this case different
distance functions should be used during night and day tiaveswe would like the distance used
by the system to gradually adapt to the current illuminationditions. An online algorithm for
distance function learning is required to achieve such dugiladaptation.

Here we briefly present an online implementation of RCA,ahlé for a neural-network-like
architecture. In this implementation a weight mafiixe M py p, initiated randomly, is gradually
developed to become the RCA transformation matrix. In Atbar 3 we present the procedure for
the simple case of chunklets of size 2. The extension of thaithm to general chunklets is briefly
described in Appendix C.

Assuming local stationarity, the steady state of this sistib process can be found by equating
the mean update 0, where the expectation is taken over the next example (pdit ', z3 ™).
Using the notations of Algorithm 3, the resulting equatisn i

En(W —yy'W)]=0 = E[I-yyt|=1-WERMW!=0 = W =PE[Rh] :

whereP is an orthonormal matri®® P* = I. The steady staté is the whitening transformation of
the correlation matrix ok. Sinceh = 2(z; — W), it is equivalent (up to the constant 2) to the

12



MAHALANOBIS METRIC FROMEQUIVALENCE CONSTRAINTS

Algorithm 3 Online RCA for point pairs

Input: a stream of pairs of pointa?, 21'), wherezT 21 are known to belong to the same class.
Initialize W to a symmetric random matrix withi || << 1.

At time step T do:

e receive paiz?, z1;

o leth =27 — 27

e applyW to h, to gety = Wh;

o updateW =W + n(W — yy'W).

wheren > 0 determines the step size.

distance of a point from the center of its chunklet. The dati@en matrix ofh is therefore equivalent
to the within chunklet covariance matrix. ThiB converges to the RCA transformation of the
input population up to an orthonormal transformation. Tdwmuiting transformation is geometrically
equivalent to RCA, since the orthonormal transformatfdpreserves vector norms and angles.

In order to evaluate the stability of the online algorithm eaducted simulations which con-
firmed that the algorithm converges to the RCA estimator dubé transformatio®), if the gradi-
ent steps decrease with timg-€ 1y /7). However, the adaptation of the RCA estimator for such a
step size policy can be very slow. Keepipgonstant avoids this problem, at the cost of producing
a noisy RCA estimator, where the noise is proportionaj.tddiencen can be used to balance this
tradeoff between adaptation, speed and accuracy.

8. Experimental Results

The success of the RCA algorithm can be measured directlydasuoring neighborhood statistics,
or indirectly by measuring whether it improves clusterieguits. In the following we tested RCA
on three different applications using both direct and iectievaluations.

The RCA algorithm uses only partial information about théadabels. In this respect it is
interesting to compare its performance to unsupervisedsapdrvised methods for data represen-
tation. Section 8.1 compares RCA to the unsupervised PCAttendully supervised FLD on a
facial recognition task, using the YaleB data set (Belhuretual., 1997). In this application of
face recognition, RCA appears very efficient in eliminatimglevant variability caused by varying
illumination. We also used this data set to test the effedimiensionality reduction using cFLD,
and the sensitivity of RCA to average chunklet size and tte gonount of points in chunklets.

Section 8.2 presents a more realistic surveillance apfjgitén which equivalence constraints
are gathered automatically from a Markovian process. Ini@e8.3 we conclude our experimental
validation by comparing RCA with other methods which make atequivalence constraints in a
clustering task, using a few benchmark data sets from therejiisitory (Blake and Merz, 1998).
The evaluation of different metrics below is presented gisinmulative neighbor puritgraphs,
which display the average (over all data points) percentdg®rrect neighbors among the first
neighbors, as a function &f

13
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Figure 2: A subset of the YaleB database which conta@2¢ frontal face images df0 individuals
taken under different lighting conditions.

8.1 Applying RCA to facial recognition

The task here is to classify facial images with respect tqp#irson photographed. In these exper-
iments we consider a retrieval paradigm reminiscent ofesareighbor classification, in which a
guery image leads to the retrieval of its nearest neighbdts df-nearest neighbors in the data set.
Using a facial image database, we begin by evaluating neaeggbor classification with the RCA
distance, and compare its performance to supervised anghemssed learning methods. We then
move on to address more specific issues: In 8.1.4 we look nmaselg at the two steps of RCA,
Step 2 (cFLD dimensionality reduction) and Step 3 (whitgninr.t. ), and study their contribu-
tion to performance in isolation. In 8.1.5 the retrievalfpanance of RCA is compared with the
algorithm presented by Xing et al. (2003). Finally in 8.1.6 @valuate the effect of chunklets sizes
on retrieval performance, and compare it to the predictietebdf chunklet size on the variance of
the RCA estimator.

8.1.1 THE DATA SET

We used a subset of the yaleB data set (Belhumeur et al., 18Bich contains facial images of 30
subjects under varying lighting conditions. The data setaios a total of 1920 images, including
64 frontal pose images of each subject. The variability betmimages of the same person is mainly
due to different lighting conditions. These factors caubedvariability among images belonging to
the same subject to be greater than the variability amongésaf different subjects (Adini et al.,
1997). As preprocessing, we first automatically centerkthalimages using optical flow. Images
were then converted to vectors, and each image was repedsesing its firs60 PCA coefficients.
Figure 2 shows a few images of four subjects.

8.1.2 BTAINING EQUIVALENCE CONSTRAINTS

We simulated thédistributed learning’ scenario presented in Section 1 in order to obtain equiva-
lence constraints. In this scenario, we obtain equival@atestraints using the help @f teachers.
Each teacher is given a random selectionLadata points from the data set, and is asked to give
his own labels to all the points, effectively partitioningetdata set into equivalence classes. Each
teacher therefore provides both positive and negativetaints. Note however that RCA only uses
the positive constraints thus gathered. The total numbppiits in chunklets grows linearly with
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T L, the number of data points seen by all teachers. We confissathount, which provides a loose
bound on the number of points in chunklets, by varying the lmemof teacherd” and keepingL
constant. We tested a range of valueg'dbr whichT'L is 10%, 30%, or 75% of the points in the
data se®.

The parameted. controls the distribution of chunklet sizes. More specificave show in
Appendix D that this distribution is controlled by the ratio= % where M is the number of
classes in the data. In all our experiments we have tse@. For this value the expected chunklet
size is roughly2.9 and we typically obtain many small chunklets. Figure 3 shawsstogram of
typical chunklet sizes, as obtained in our experiménts.

30% of points in chunkelts
120 ——

1001
801
601
40¢

201

2 3 4 5 6 7 8 9 10

Figure 3: Sample chunklet size distribution obtained ushegdistributed learning scenario on a
subset of the yaleB data set with20 images fromM = 30 classes. L is chosen such
thatr = % = 2. The histogram is plotted for distributed learning wat% of the data
points in chunklets.

8.1.3 RCAON THE CONTINUUM BETWEEN SUPERVISED AND UNSUPERVISED LEARING

The goal of our main experiment in this section was to as$essalative performance of RCA as
a semi-supervised method in a face recognition task. Toetktisnt we compared the following
methods:

e Eigenfaces (Turk and Pentland, 1991): this unsupervisdtiodeeduces the dimensionality
of the data using PCA, and compares the images using thedeanlimetric in the reduced
space. Images were normalized to have zero mean and uiheari

e Fisherfaces (Belhumeur et al., 1997): this supervised odesharts by applying PCA dimen-
sionality reduction as in the Eigenfaces method. It theis afiehe data labels to compute the
FLD transformation (Fukunaga, 1990), and transforms th& decordingly.

5. In this scenario one usually obtains mostly ‘negativaliegjence constraints, which are pairs of points that are
known to originate from different classes. RCA does use these ‘negative’ equivalence constraints.
6. We used a different sampling scheme in the experimentshndddress the effect of chunklet size, see Section 8.1.6.
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¢ RCA: the RCA algorithm with dimensionality reduction as ciésed in Section 6, that is,
PCA followed by cFLD. We varied the amount of data in constiaprovided to RCA, using
thedistributed learningparadigm described above.

YaleB YaleB
1 1
0.9 Sy oof TTTteeel
o T
o o
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Ry Ry
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Figure 4: Left: Cumulative purity graphs for the followintgarithms and experimental conditions:
Eigenface (PCA), RCA0%, RCA30%, RCA75%, and Fisherface (FLD). The percent-
ages stated for RCA are the fractions of data points predd¢atie ‘distributed learning’
oracle, as discussed in Section 8.1.2. The data was redoc@ehénsion 60 using PCA
for all the methods. It was then further reduced to dimen8i@wising cFLD in the three
RCA variants, and using FLD for the Fisherface method. Resutre averaged ovéf
constraints realizations. The error bars give the StanBarors of the Mean (SEMs).
Right: Cumulative purity graphs for the fully supervisedxLwith and without fully
labelled RCA. Here RCA dramatically enhances the perfooaarf FLD.

The left panel in Figure 4 shows the results of the differesthads. The graph presents the
performance of RCA for low, moderate and high amounts of wamed points. As can be seen,
even with low amounts of equivalence constraints the perdmce of RCA is much closer to the
performance of the supervised FLD than to the performandbeofinsupervised PCA. With Mod-
erate and high amounts of equivalence constraints RCA \ahieeighbor purity rates which are
higher than those achieved by the fully supervised Fishesfanethod, while relying only on frag-
mentary chunklets with unknown class labels. This somewstgdrising result stems from the fact
that the fully supervised FLD in these experiments was ntivied by whitening.

In order to clarify this last point, note that RCA can also Isediwhen given a fully labelled
training set. In this case, chunklets correspond uniquadyfally to classes, and the cFLD algorithm
for dimensionality reduction is equivalent to the standakdD. In this setting RCA can be viewed
as an augmentation of the standard, fully supervised FLDgwivhitens the output of FLD w.r.t
the within class covariance. The right panel in Figure 4 shoamparative results of FLD with and
without whitening in the fully labelled case.

In order to visualize the effect of RCA in this task we alscateel some “RCAfaces”, following
Belhumeur et al. (1997): We ran RCA on the images after apglpiCA, and then reconstructed the
images. Figure 5 shows a few images and their reconstrucitearly RCA dramatically reduces
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the effect of varying lighting conditions, and the reconsted images of the same individual look
very similar to each other. The Eigenfaces (Turk and Pedtla891) method did not produce
similar results.

Figure 5: Top: Several facial images of two subjects undiéergint lighting conditions. Bottom:
the same images from the top row after applying PCA and RCAtlaenl reconstructing
the images. Clearly RCA dramatically reduces the effectftérént lighting conditions,
and the reconstructed images of each person look very sitaikach other.

8.1.4 FEPARATING THE CONTRIBUTION OF THE DIMENSIONALITY REDUCTION AND
WHITENING STEPS INRCA

Figure 4 presents the results of RCA including the semi+stigexd dimensionality reduction of
cFLD. While this procedure yields the best results, it mittess separate contributions of the two
main steps of the RCA algorithm, that is, dimensionalityue@n via cFLD (Step 2) and whitening
of the inner chunklet covariance matrix (Step 3). In thepeftel of Figure 6 these contributions are
isolated.

It can be seen that when cFLD and whitening are used sepatatey both provide considerable
improvement in performance. These improvements are ontyapp dependent, since the perfor-
mance gain when combining both procedures is larger thaereitne alone. In the right panel of
Figure 6 we present learning curves which show the perfocmah RCA with and without dimen-
sionality reduction, as a function of the amount of supémigrovided to the algorithm. For small
amounts of constraints, both curves are almost identicalwdy¥er, as the number of constraints
increases, the performance of RCA dramatically improvesnising cFLD.

8.1.5 GOMPARISON WITH THE METHOD OFXING ET AL.

In another experiment we compared the algorithm of Xing et28103) to RCA on the YaleB data
set using code obtained from the author’s web site. The @rpatal setup was the one described in
Section 8.1.2, witt80% of the data points presented to the distributed learningl@raVhile RCA
uses only the positive constraints obtained, the algoritfiding et al. (2003) was given both the
positive and negative constraints, as it can make use of Rathults are shown in Figure 7, showing
that this algorithm failed to converge when given high disienal data, and was outperformed by
RCA in lower dimensions.
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Figure 6: Left: Cumulative purity graphs fdrexperimental conditions: original space, RCA with-
out cFLD, cFLD only, and RCA with cFLD (using the Euclideanrmoin all cases).
The data was reduced 69 dimensions using unsupervised PCA. The semi supervised
techniques used constraints obtained by distributedileg@mith 30% of the data points.
RCA without cFLD was performed in the space of 60 PCA coeffitsewhile in the last
2 conditions dimensionality was further reduce@@ausing the constraints. Results were
averaged oveb0 constraints realizations. Right: Learning curves—neighturity per-
formance for 64 neighbors as a function of the amount of caims. The performance is
measured by averaging (over all data points) the percemthgerrect neighbors among
the first 64 neighbors. The amount of constraints is measused) the percentage of
points given to the distributed learning oracle. Resulesaeraged over 15 constraints
realizations. Error bars in both graphs give the standaaisof the mean.

8.1.6 THE EFFECT OF DIFFERENT CHUNKLET SIZES

In Section 5 we showed that RCA typically provides an estimé&ir the within class covariance
matrix, which is not very sensitive to the size of the chutkleThis was done by providing a
bound on the variance of the elements in the RCA estimatorixm@i(n, k). We can expect that
lower variance of the estimator will go hand in hand with gpurity performance. In order to
empirically test the effect of chunklets’ size, we fixed thanber of equivalence constraints, and
varied the size of the chunklesin the range{2 — 10}. The chunklets were obtained by randomly
selecting30% of the data (total of? = 1920 points) and dividing it into chunklets of siz&’

The results can be seen in Figure 8. As expected the perfommdiRCA improves as the size of
the chunklets increases. Qualitatively, this improvenagmees with the predicted improvement in
the RCA estimator’s variance, as most of the gain in perfoceas already obtained with chunklets
of size § = 3. Although the bound presented is not tight, other reasong awaount for the
difference between the graphs, including the weaknesseoGtssian assumption used to derive
the bound (see Section 9), and the lack of linear connecttwden the estimator’s variance and
purity performance.

7. When necessary, the remainimgd(0.3P, S) points were gathered into an additional smaller chunklet.

18



MAHALANOBIS METRIC FROMEQUIVALENCE CONSTRAINTS

Before FLD — High dimesion After FLD — Low dimesion
1 1
0.95
1%} » 0.9
5 o
£ 3
._5’ gO.BS
§ 2 o8
Q °
g 2075
g 8 07
< ° — Euclid
S = 0.65 RCA
= Xin
____________ e 0.6 g
0 . . . . . .
10 20 30 40 50 60 10 20 30 40 50 60
Number of neighbors Number of neighbors

Figure 7: The method of Xing et al. (2003) and RCA on the YalaBidl image data set. Left:
Neighbor purity results obtained using 60 PCA coefficiemtse algorithm of Xing et al.
(2003) failed to converge and returned a metric with chaegellperformance. Right:
Results obtained using 3 dimensional representation, obtained by applying cFLD to
the 60 PCA coefficients. Results are averaged difeconstraints realizations. The error
bars give the standard errors of the mean.
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Figure 8: Left: Mean error rate on all 64 neighbors on theBalata set when usirt)% of the data
in chunklets. In this experiment we varied the chunkletsizhile fixing the total amount
of points in chunklets. Right: the theoretical bound overrttio between the variance of
the RCA matrix elements and the variance of the best poss#timator using the same
number of points (see inequality 12). The qualitative bavasf the graphs is similar,
seemingly because a lower estimator variance tends to ibgtter purity performance.

8.2 Using RCA in asurveillance application

In this application, a stationary indoor surveillance cearprovided short video clips whose begin-
ning and end were automatically detected based on the apmeaand disappearance of moving
targets. The database therefore included many clips, d@aplaging only one person of unknown
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Figure 9: Left: several images from a video clip of one ingudRight: cumulative neighbor purity
results before and after RCA.

identity. Effectively each clip provided a chunklet. Thekan this case was to cluster together all
clips in which a certain person appeared.

Thetask and our approach: The video clips were highly complex and diversified, for sale
reasons. First, they were entirely unconstrained: a pecsofd walk everywhere in the scene,
coming closer to the camera or walking away from it. Thereftire size and resolution of each
image varied dramatically. In addition, since the envirentrwas not constrained, images included
varying occlusions, reflections and (most importantly froor perspective) highly variable illu-
mination. In fact, the illumination changed dramaticallyr@ss the scene both in intensity (from
brighter to darker regions), and in spectrum (from neontlighmatural lighting). Figure 9 shows
several images from one input clip.

We sought to devise a representation that would enable fihetigé clustering of clips, focusing
on color as the only low-level attribute that could be rdijalised in this application. Therefore our
task was to accomplish some sort of color constancy, thab isyercome the general problem of
irrelevant variability due to the varying illumination. iBhs accomplished by the RCA algorithm.

Image representation and RCA Each image in a clip was represented by its color histogram
in L*a*b* space (we used 5 bins for each dimension). We used the clipsuaklets in order to
compute the RCA transformation. We then computed the distéetween pairs of images using
two methodsi 1 and RCA (Mahalanobis). We used over 6000 images from 138 @dipunklets) of
20 different people. Figure 9 shows the cumulative neigloity over all 6000 images. One can
see that RCA makes a significant contribution by bringingrect’ neighbors closer to each other
(relative to other images). However, the effect of RCA omiegal performance here is lower than
the effect gained with the YaleB data base. While there masebseral reasons for this, an important
factor is the difference between the way chunklets weremddan the two data sets. The automatic
gathering of chunklets from a Markovian process tends teigeochunklets with dependent data
points, which supply less information regarding the witbliss covariance matrix.
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8.3 RCA and clustering

In this section we evaluate RCA's contribution to clustgriand compare it to alternative algorithms
that use equivalence constraints. We used six data setstfi@itdCI repository. For each data set
we randomly selected a @t of pairwise positive equivalence constraints (or chursktdtsize 2).
We compared the following clustering algorithms:

a. K-means using the default Euclidean metric and no sideqimétion (Fukunaga, 1990).

b. Constrained K-means + Euclidean metric: the K-means versiggested by Wagstaff et al.
(2001), in which a pair of pointér;, z;) € Qp is always assigned to the same cluster.

¢. Constrained K-means + the metric proposed by Xing et al. 30The metric is learnt from
constraints inQp. For fairness we replicated the experimental design enapldyy Xing
et al. (2003), and allowed the algorithm to treat all unc@ised pairs of points as negative
constraints (the se&py).

d. Constrained K-means + RCA: Constrained K-means using th& R&halanobis metric learned
from Qp.

e. EM: Expectation Maximization of a Gaussian Mixture modeifig no side-information).

f. Constrained EM: EM using side-information in the form of ®glence constraints (Shental
et al., 2003), when using the RCA distance metric as thelmitietric.

Clustering algorithmsg ande are unsupervised and provide respective lower bounds fopadson
with our algorithmsd and f. Clustering algorithm$ andc compete fairly with our algorithnd,
using the same kind of side information.

Experimental setup To ensure fair comparison with Xing et al. (2003), we usedtyahe same
experimental setup as it affects the gathering of equiealaronstraints and the evaluation score
used. We tested all methods using two conditions, with: Ififi¢” side-information@p, and (ii)
“much” side-information. The set of pairwise similarityrigiraints@) p was generated by choosing
a random subset of all pairs of points sharing the same ots¥ity ¢;. Initially, there areN
‘connected components’ of unconstrained points, wiélie the number of data points. Randomly
choosing a pairwise constraint decreases the number okcteth components bl at most. In
the case of “little” (“much”) side-information, pairwiseonstraints are randomly added until the
number of different connected componeiifs is roughly0.9N (0.7N). As in the work of Xing
et al. (2003), no negative constraints were sampled.

Following Xing et al. (2003) we used a normalized accuraeyescthe "Rand index” (Rand,
1971), to evaluate the partitions obtained by the diffeduastering algorithms. More formally,
with binary labels (or two clusters), the accuracy measarele written as:

3 H{ei = ¢} = 1{é = ¢}}

= 0.5m(m — 1)

where1{} denotes the indicator functiofl {True} = 1),1{False} = 0), {¢;}*, denotes the
cluster to which pointz; is assigned by the clustering algorithm, apdlenotes the “correct” (or
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desirable) assignment. The score above is the probaltiitythe algorithm’s decision regarding the
label equivalence of two points agrees with the decisiomeftrue” assignment. &
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Figure 10: Clustering accuracy on 6 UCI data sets. In eacélptne six bars on the left correspond

to an experiment with "little” side-information, and thexdiars on the right correspond
to "much” side-information. From left to right the six barsreespond respectively to
the algorithms described in the text, as follows: (a) K-ngeawer the original feature
space (without using any side-information). (b) Conseédii-means over the original
feature space. (c) Constrained K-means over the featuoe spggested by Xing et al.
(2003). (d) Constrained K-means over the feature spaceeckéy RCA. (e) EM over
the original feature space (without using any side-infdiom. (f) Constrained EM
(Shental et al., 2003) over the feature space created by RGA. shown areP—the
number of pointspM—the number of classef—the dimensionality of the feature space,
and K.—the mean number of connected components. The results weragad over
20 realizations of side-information. The error bars give ttendard deviations. In all
experiments we used K-means with multiple restarts as i dgrXing et al. (2003).

Figure 10 shows comparative results using six different d&h sets. Clearly the RCA met-
ric significantly improved the results over the original Keams algorithms (both the constrained
and unconstrained versions). Generally in the context ofidéans, we observe that using equiva-
lence constraints to find a better metric improves resultshnmore than using this information to
constrain the algorithm. RCA achieves comparable resniltsdse reported by Xing et al. (2003),
despite the big difference in computational cost betweertwo algorithms (see Section 9.1).

8. As noted by Xing et al. (2003), this score should be noredliwhen the number of clusters is larger than 2. Nor-
malization is achieved by sampling the pai#s, =;) such that; andz; are from the same cluster with probability
0.5 and from different clusters with probability 0.5, sotttraatches” and “mismatches” are given the same weight.
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The last two algorithms in our comparisons use the EM algorito compute a generative
Gaussian Mixture Model, and are therefore much more cortipodly intensive. We have added
these comparisons because EM implicitly changes the distmction over the input space in a
locally linear way (that is, like a Mahalanobis distance)mhby therefore appear that EM can do
everything that RCA does and more, without any modificatibhe histogram bins marked by (e)
in Figure 10 clearly show that this is not the case. Only whenagd constraints to the EM, and
preprocess the data with RCA, do we get improved results@grsby the histogram bins marked
by (f) in Figure 10.

9. Discussion

We briefly discuss running times in Section 9.1. The appilitplof RCA in general conditions is
then discussed in 9.2.
9.1 Runtime performance

Computationally RCA relies on a few relatively simple matperations (inversion and square root)
applied to a positive-definite square matrix, whose siz@éeasreéduced dimensionality of the data.
This can be done fast and efficiently and is a clear advantbiie @algorithm over its competitors.

9.2 Using RCA when the assumptions underlying the method are violated

Figure 11: Extracting the shared component of the covagianatrix using RCA: In this exam-
ple the data originates from 2 Gaussian sources with theviolg diagonal covariance
matrices:diag(C1) = (e, 1,2) anddiag(C2) = (1,€,2). (a) The original data points
(b) The transformed data points when using RCA. In this exame used all of the
points from each class as a single chunklet and thereforehtingklet covariance matrix
is the average within-class covariance matrix. As can be B&A clearly down-scales
the irrelevant variability in the Z axis, which is the shammponent of the 2 classes
covariance matrices. Specifically, the eigenvalues of theiance matrices for the
two classes are as follows (fer= 0.1): class 143.947,1.045,0.009) before RCA,
and (1.979,1.001,0.017) after RCA; class 2(3.953,1.045,0.010) before RCA, and
(1.984,1.001, 0.022) after RCA. In this example, the condition numbers incredsed
factor of3.78 and4.24 respectively for both classes.
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In order to obtain a strict probabilistic justification foCR, we listed in Section 5 the following
assumptions:

1. The classes have multi-variate normal distributions.

2. All the classes share the same covariance matrix.

3. The points in each chunklet are an i.i.d sample from thescla

What happens when these assumptions do not hold?

The first assumption gives RCA its probabilistic justifioati Without it, in a distribution-free
model, RCA is the best linear transformation optimizing thiéeria presented in Sections 3-4:
maximal mutual information, and minimal within-chunklesnce. These criteria are reasonable
as long as the classes are approximately convex (as asswtbd bse of the distance between
chunklet’s points and chunklet's means). In order to irge$e¢ this point empirically, we used
Mardia’s statistical tests for multi-variate normality &lia, 1970). These tests (which are based on
skewness and kurtosis) showed that all of the data setssed éxperiments are significantly non-
Gaussian (except for the Iris UCI data set). Our experinheataults therefore clearly demonstrate
that RCA performs well when the distribution of the classethe data is not multi-variate normal.

The second assumption justifies RCA's main computatiomgl, sthich uses the empirical aver-
age of all the chunklets covariance matrices in order tanedé the global within class covariance
matrix. When this assumption fails, RCA effectively extsaihe shared component of all the classes
covariance matrices, if such component exists. Figure é&gmts an illustrative example of the use
of RCA on data from two classes with different covariancerioes. A quantitative measure of
RCA's partial success in such cases can be obtained fromhtrge in thecondition numbethe
ratio between the largest and smallest eigenvalues) of ititwnvelass covariance matrices of each
of the classes, before and after applying RCA. Since RCArgite to whiten the within-class co-
variance, we expect the condition number of the withinglemvariance matrices to decrease. This
is indeed the case for the various classes in all of the dégaised in our experimental results.

The third assumption may break down in many practical apptios, when chunklets are auto-
matically collected and the points within a chunklet areomger independent of one another. As a
result chunklets may be composed of points which are ratbse ¢to each other, and whose distribu-
tion does not reflect all the typical variance of the truerdistion. In this case RCA's performance
is not guaranteed to be optimal (see Section 8.2).

10. Conclusion

We have presented an algorithm which uses side-informatitre form of equivalence constraints,
in order to learn a Mahalanobis metric. We have shown thahmthod is optimal under several
criteria. Our empirical results show that RCA reduces éveht variability in the data and thus
leads to considerable improvements in clustering andrdisthased retrieval.
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Appendix A. Information Maximization with non-invertible linear transfor mations

Here we sketch the proof of the claim made in Section 3.3. Asrbewe denote by the average
covariance matrix of the chunklets. We can rewrite the caimstd expression from Equation 5 as:

1 & . .
~ S (mji — my) AP Az — my) = tr(A'AC) = tr(A'CA)
j=1i=1
Hence the Lagrangian can be written as:
log |AS, AY| — A(tr(ACAY) — 1)
Differentiating the Lagrangian w.r.t A gives
Y ANAS AN = MCA!

Multiplying by A and rearranging terms, we gét:: ACAt. Hence as in RCA4 must whiten

the data with respect to the chunklet covaria6tim a yet to be determined subspace. We can now
use the equality in (5) to find.

tr(A(:*At):tr(é) :%:1:> A=K
N 1

ACA = —T

= AC I

whereK is the dimension of the projection subspace.
Next, since in our solution spackC' A* = X1, it follows thatlog | AC A?| = K log = holds for
all points. Hence we can modify the maximization argumerfobews

AX AY 1
log |AX Al = lo |A7w+Klo —
g |AZ, A’ 8 AC AT 8%

Now the optimization argument has a familiar form. Itis kmoffukunaga, 1990) that maximiz-
ing the determinant ratio can be done by projecting the spagke span of the firdk eigenvectors
of C~13,. Denote byG the solution matrix for this unconstrained problem. Thignixaorthogo-
nally diagonalizes botly' andX,, soGCG* = A; andGX, G = A, for A, A, diagonal matrices.
In order to enforce the constraints we define the matrix /+A7%°G and claim thatd is the
solution of the constrained problem. Notice that the valihe® maximization argument does not
change when we switch from to G since A is a product ofG and another full ranked matrix. It
can also be shown that satisfies the constraints and is thus the solution of thel&rolb).

Appendix B. Variance bound on the RCA covariance estimator

In this appendix we prove Inequality 12 from Section 5. Asswme haveV = nk data pointsX =
{xji}?:’kl,j:l in n chunklets of sizé each. We assume that all chunklets are drawn independently
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from Gaussian sources with the same covariance matrix. tibgnby m; the mean of chunklet i,
the unbiased RCA estimator of this covariance matrix is

) 13 1 &
C(’I’L, k) = 5 Z m Z(fﬂgz - mz)(xgz - mi)T
j=1 1

1=

It is more convenient to estimate the convergence of ther@nee estimate for data with a
diagonal covariance matrix. We hence consider a diagathiizrsion of the covariance, and return
to the original covariance matrix toward the end of the prooét U denote the diagonalization
transformation of the covariance matiix of the Gaussian sources, that 8CU? = A where
A is a diagonal matrix with{\;}2, on the diagonal. LeZ = UX = {zji}?jl,j:l denote the
transformed data. Denote the transformed within classrizvge matrix estimation bg™(n, k) =
UC(n,k)U*, and denote the chunklet meansrayf = Um,;. We can analyze the variance@f as
follows:

n k
var(é’”(n, k) = var[% Z ﬁ Z(ij‘ —m;') (i — mg)T]
=1 =1
1 1 i u u\T'
= var[z— D (#i —m)(z; —m})"] (15)
i=1

The last equality holds since the summands of the extermalsse sample covariance matrices of
independent chunklets drawn from sources with the sameiaoeca matrix.

The variance of the sample covariance, assessedArpaints, for diagonalized Gaussian data
is known to be (Fukunaga, 1990)

A 2)2 A A\ A oa
var(Ci;) = Z _11; var(Cj;) = Zk]; cov(Cij,Cy) =0
hence (15) is simply:
2)7 -

var(é’{é) = var( A“) = /\72 J. cov(Cy C’;‘l) =0

n(k—l);

ReplacingN = nk, we can write

A 2)\? A A ry A
var(Cj) = ]\/.(17_1%); var(Cjj) = ;V-J; cov(C;, Cpp) =0
and for the diagonal ternG:
oy N 222k 2X ko 2x2 k

'uar(C”(Z, k)i;) = var(C*(1, N);;)

TNI-1) E-IN “k-IN-1 k-1

This inequality trivially holds for the off-diagonal covance elements.
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Getting back to the original data covariance, we note thahatrix elements notatioﬁ?’ij =

Zf’r:l C‘}I‘TUiqu,« whereD is the data dimension. Therefore

varCij(n, k)] Lgret var[C®(n, k)gUigUjs) - Y oret B7var[C(1L,nk) o UiUy ] k

var[éij(l,nk)] Z(frzl var[Cu(1,nk) g UigUsr] ~ EZTZI var[Cu(1,nk) e UsqUjr] k-1

~

where the first equality holds because (C%, C%) = 0

YR

Appendix C. Online RCA with chunklets of general size

The online RCA algorithm can be extended to handle a streaohwiklets of varying size. The
procedure is presented in Algorithm 4.

Algorithm 4 Online RCA for chunklets of variable size

Input: a stream of chunklets where the points in a chunkkekaown to belong to the same class.
Initialize W to a symmetric random matrix witiV || << 1.

At time step T do:

o receive a chunklefz? ..., zZ'} and compute its mean” = 1 3" | 27T,
o computen difference vectorg! = z7 — mT;

e transformh! usingW, to gety! = Wh!;

o updateW = W + 137 (W — yf (4] )'W).

wheren > 0 determines the step size.

The steady state of the weight matiiX can be analyzed in a way similar to the analysis in
Section 3. The result & = PE[L Y (a7 — mT) (2] — mT)*~2 whereP is an orthonormal
matrix, and sd¥ is equivalent to the RCA transformation of the current disition.

Appendix D. The expected chunklet sizein the distributed learning paradigm

We estimate the expected chunklet size obtained when usindistributed learning paradigm in-
troduced in Section 8. In this scenario, we use the help tdachers, each of which is provided
with a random selection of. data points. Let us assume that the data contadnequiprobable
classes, and that the size of the data set is large relatie ©efine the random variables as
the number of points from clagsobserved by teachgr Due to the symmetry among classes and
among teachers, the distribution of is independent of andj, thus defined as. It can be well
approximated by a Bernoulli distributioB (L, ﬁ), while considering onlyz > 2 (sincez = 0,1

do not form chunklets). Specifically,

plz = ils #0,1) = — ! 5 ( L ) (%)1(1_%%1 i=23,.
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We can approximatg(z = 0) andp(z = 1) as
1 L

Ple=0)=(1--) ~e ¥ , pla=1)=1-01-2) m~ e n

Using these approximations, we can derive an approximdgiothe expected chunklet size as
a function of the ratio- = &

b —plo=1 =)
(z

E(x|m7é0,a:7é1)=1_ :0)_p($:1):1—(r+1)e"“
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