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Efficient high-throughput SARS-CoV-2 testing to detect 
asymptomatic carriers
Noam Shental1*†, Shlomia Levy2,3‡, Vered Wuvshet2,3‡, Shosh Skorniakov2,3‡, Bar Shalem4, 
Aner Ottolenghi2,3, Yariv Greenshpan2,3, Rachel Steinberg5, Avishay Edri2,3, Roni Gillis6, 
Michal Goldhirsh6, Khen Moscovici6, Sinai Sachren3, Lilach M. Friedman2,3, Lior Nesher5, 
Yonat Shemer-Avni2,5, Angel Porgador2,3*, Tomer Hertz2,3,7*

Recent reports suggest that 10 to 30% of severe acute respiratory syndrome coronavirus 2 (SARS- CoV-2) infected 
patients are asymptomatic and that viral shedding may occur before symptom onset. Therefore, there is an urgent 
need to increase diagnostic testing capabilities to prevent disease spread. We developed P-BEST, a method for 
Pooling-Based Efficient SARS-CoV-2 Testing, which identifies all positive subjects within a set of samples using a 
single round of testing. Each sample is assigned into multiple pools using a combinatorial pooling strategy based 
on compressed sensing. We pooled sets of 384 samples into 48 pools, providing both an eightfold increase in 
testing efficiency and an eightfold reduction in test costs, while identifying up to five positive carriers. We then used 
P-BEST to screen 1115 health care workers using 144 tests. P- BEST provides an efficient and easy-to-implement 
solution for increasing testing capacity that can be easily integrated into diagnostic laboratories.

INTRODUCTION
The coronavirus disease 2019 (COVID-19) pandemic is rapidly 
spreading throughout the world. Recent reports suggest that 10 to 
30% of severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2)–infected patients are asymptomatic (1–5). Other studies 
report that some subjects have substantial viral shedding before 
symptom onset (6). There have been multiple recent studies that 
identified asymptomatic carriers and have attempted to estimate 
their rate and contribution to disease spread. A study of 2685 tourists 
in the New York area conducted over two seasons found that 6.2% 
of subjects tested positive for at least one respiratory virus, and 
38.7% of these were infected with circulating human corona viruses 
(7). Rothe et al. (5) described transmission of SARS-CoV-2 from a 
German patient who was infected by a Chinese businesswoman 
who visited Germany. Two other German co-workers were infected 
but only came in contact with the German patient who was asymp-
tomatic. Mizumoto et al. (3) reported that 50.5% of infected patients 
on board the Diamond Princess cruise ship were asymptomatic at 
time of diagnosis. Using a model, they found that the estimated 
asymptomatic proportion (among all infected cases) was 17.9% [95% 
confidence interval (CI), 15.5 to 20.2%]. A study of evacuated Japanese 
nationals from Wuhan China, estimated that 30.8% of subjects were 
asymptomatic (95% CI, 7.7 to 53.8%) (8). A recent modeling study 
estimated that COVID-19 may be most transmissible in the 2 days 
before symptom onset (9). Another recent study of 3184 infections 
in Japan identified 61 case clusters at various public events (10). Since 

both asymptomatic and presymptomatic subjects can spread the 
disease (1, 2), identifying these individuals is critical for effective 
control of the SARS-CoV-2 pandemic.

A major bottleneck of managing the COVID-19 pandemic in 
many countries is diagnostic testing, which is performed primarily 
on symptomatic patients, because of limited laboratory capabilities 
and limited access to genome-extraction and polymerase chain 
reaction (PCR) reagents. On the other hand, there is an urgent need 
to increase diagnostic testing capabilities to allow screening of 
asymptomatic and presymptomatic populations. These tests will be 
routinely required until a vaccine is developed.

Here, we developed P-BEST, a method for Pooling-Based Efficient 
SARS-CoV-2 Testing, using a single-stage nonadaptive group-testing 
approach, which significantly reduces the number of tests required 
to identify all positive subjects within a large set of samples. P-BEST 
can be configured on the basis of the carrier rate of a given population, 
and as we show below, if the carrier rate is below 1.3%, then the 
method provides both an eightfold improvement in testing efficiency 
and an eightfold reduction in test costs.

RESULTS
P-BEST overview
To reduce the number of tests required for identifying all carriers, 
P-BEST uses a single-step (nonadaptive) group-testing design. 
Instead of testing each sample separately, samples are pooled into 
groups, and each pool is tested for SARS-CoV-2 using a standard 
clinically approved PCR-based diagnostic assay. Each sample is part 
of multiple pools, using a combinatorial pooling strategy designed 
for maximizing the ability to identify all positive individuals (11, 12). 
PCR results for each of the pools are provided to the detection algo-
rithm (see Methods), which identifies all positive carriers without 
the need for an additional testing stage (Fig. 1, A to C). Pooling is 
performed on samples before RNA extraction. The efficiency of 
group testing (i.e., the ratio of the number of samples to the number 
of pools) is affected by the positive carrier rate of the population 
tested. As the carrier rate increases, the efficiency is reduced, since 
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more pools are required to correctly identify all positive subjects. If 
the percentage of carriers in the tested set of samples is ~1%, then 
our method can correctly identify all positive individuals using an 
eightfold reduction in the number of diagnostic tests as compared 
to testing each individual sample separately.

P-BEST correctly identified all positive carriers in a set of 
384 samples using only 48 pools
We tested P-BEST using a pooling design constructed for carrier rates 
of up to ~1% (i.e., four positive carriers within a set of 384 samples). 
We evaluated P-BEST using leftover samples that were previously 
clinically tested for COVID-19. A total of 384 samples diluted in 
lysis buffer were pooled into 48 pools, each containing a set of 
48 unique samples. Pooled samples were then tested by the clinical 
diagnostic laboratory of the Soroka University Medical Center 
(SUMC) using a clinically approved COVID-19 PCR-based diagnostic 
protocol that included an RNA extraction stage. We tested P-BEST 

using four sets of 384 samples, each containing an increasing number of 
positive carriers ranging from two to five. We found that P-BEST was 
able to correctly identify all positive carriers within these four sets of 
384 samples using only 48 tests per set, providing an eightfold increase 
in testing efficiency (Fig. 1D). Only in the case of five carriers (carrier 
rate of 1.3%), one additional false-positive carrier was detected.

PCR sensitivity of pooled samples
A key issue with sample pooling is loss of sensitivity due to sample 
dilution. In general, pooling a positive sample with additional 
negative samples will result in dilution of the viral RNA concentra-
tion within the pool. Theoretically, pooling eight samples will result 
in a reduction of ~3 PCR cycles, and pooling 16 samples will lead to 
a reduction of ~4 PCR cycles, etc. Since in P-BEST, samples are 
diluted into pools of 48 subjects, there is an inherent drop in PCR 
sensitivity of about five to six cycles (a factor of 25 to 26), which was 
observed experimentally. In retrospective analysis, we found that 
only a single pool that included a carrier yielded a negative PCR 
result (of 70 positive pools across four experiments). Similarly, only 
1 of 122 of the negative pools was positively identified by the PCR-
based assay. These two errors had no effect on the detection capabilities 
of P-BEST, which is robust to both of these types of errors.

To test the effect of pool size on PCR sensitivity, we conducted 
two independent experiments in which positive samples were diluted 
into sets of negative samples. In our first experiment, a set of five 
positive samples {with cycle threshold [C(t)] values ranging from 
26.2 to 34.2} was individually mixed into a set of 7, 15, 19, and 23 
negative samples generating pools of size 8, 16, 20, and 24 samples, 
respectively. Each single sample and pools were then tested for 
SARS-Cov-2 using an in-house PCR kit based on the E gene. We 
found that all pools were PCR positive, yet in some cases, larger 
pool size actually yielded a lower C(t) (Fig. 2A). In a second experi-
ment, another set of five samples [with C(t) values ranging from 
25.2 to 30.8] was mixed with three distinct sets of 15 and 47 negative 
samples, resulting in pools of sizes 16 and 48, respectively. RNA was 
extracted from each single sample and pools and was then tested for 
SARS-CoV-2 using the Seegene COVID-19 diagnostic kit. We found 
that all five samples were positively detected in all of the pools of 
both sizes 16 and 48 (Fig. 2B). The level of variability within each 
triplicate differed by sample.

In silico evaluation of P-BEST
The performance of P-BEST was also evaluated using in silico sim-
ulations. In each simulation, a certain number of carriers (ranging 
from one to five) were randomly selected within sets of 384 samples, 
and a P-BEST experiment was simulated using the reported pooling 
design. Simulations included two sources of noise: (i) PCR failure, 
which can lead to dropped pools; and (ii) liquid dispensing volume 
errors corresponding to 50% error in the amount of RNA. In each 
such simulation, we quantified the number of false negatives, false 
positives, and true positives returned by our method. Simulations 
demonstrated that the method can correctly identify up to 5 of 384 
(1.3%) carriers, with an average number of false positives that was 
less than 2.75 and an average number of false negatives that was less 
than 0.33 (Fig. 3).

P-BEST robustness
To test the robustness of P-BEST, we considered two types of 
potential noise factors. First, variation in initial RNA levels may 

Fig. 1. P-BEST design and detection results obtained for a set of 384 samples 
with a carrier rate of ~1%. (A) Pooling design: Pools are generated using a combi-
natorial pooling design based on an error-correcting code that optimizes carrier 
detection. The P-BEST pooling design for a carrier rate of ~1% uses 48 pools to simul-
taneously test 384 subjects providing both an eightfold increase in testing efficiency 
and an eightfold reduction in testing reagent costs. Each sample is distributed to 
six pools, and there are a total of 48 subjects per pool. Subjects in red represent the 
four unidentified infected individuals within the set of 384 samples. (B) Pooled samples 
are then treated as individual samples—RNA is extracted, followed by a standard 
PCR amplification. Positive pools are designated by red circles. (C) P-BEST identifies 
the positive samples of the 384 samples using an optimization-based algorithm 
based on compressed sensing. (D) Results of the four experiments performed, 
containing 2, 3, 4, or 5 positive samples, respectively. All positive carriers were correctly 
identified in all experiments. When five positive carriers were tested (carrier rate of 
1.3%), a single false-positive sample was added to the true-positive ones.
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cause samples to “disappear” from all or part of the pools. Variation 
in RNA levels was estimated from Qubit measurements of 48 sam-
ples. The average RNA concentration was 15 ng/l, with an SD of 
7 ng/l (fig. S1A). These values were used in our simulations. A 
second possible source of noise is due to PCR amplification, which 
may fail in a certain number of pools. Figures 4 and 5 display the 
effects of these two noise factors on our decoding accuracy. The 
average number of false negatives and false positives did not change 
substantially.

Using P-BEST to screen asymptomatic health care workers
We are conducting an ongoing clinical study to screen asymptomatic 
health care personnel of the SUMC using P-BEST. Thus far, we have 
approached 1118 health care employees; of these, 1115 agreed to par-
ticipate and signed an informed consent form. Within the cohort, 
690 (62%) were female and 425 (38%) were male. Subjects were 
recruited across all SUMC staff and included physicians (n = 165, 
14.8%), nurses (n = 157, 14.1%), nurse assistants (n = 43, 3.9%), other 
clinical staff (n = 119, 10.7%), and administrative staff (n = 631, 

Fig. 2. Effect of sample dilution on C(t) values. (A) Five positive samples from the SUMC virology laboratory were heat inactivated (70°C, 60 min) and tested as individ-
ual samples and in pools of sizes 8, 16, 20, and 24. For each pool size, the set of negative samples used was identical across all five samples tested, e.g., the same seven 
negative samples were used to create all pools of size 8. Sample’s de-identified study IDs appear above each subplot. Each pool size is plotted in a different color. All 
samples, including those with C(t) > 34 were identified in all pool sizes, yet in some cases, the C(t) value does not monotonically increase with pool size. Samples were 
tested using an in-house PCR kit based on the SARS-CoV-2 E gene. (B) Five positive samples were mixed into three pools of sizes 16 and 48, each containing a distinct set 
of negative samples. Sample de-identified study IDs appear above each subplot. RNA was extracted from all single samples and pools and subsequently tested for SARS-
CoV-2 using the Seegene diagnostic kit. All five samples were identified across all pools of both sizes, yet triplicates sometime display variation in C(t).

Fig. 3. P-BEST in silico performance. A small number of carriers were randomly assigned to 384 samples, and a P-BEST experiment was simulated using the reported 
pooling scheme designed for a carrier rate of ~1%. Simulations accounted for the estimated variation in RNA amounts based on measurements of n = 48 individual sam-
ples and also assumed that 1 of the 48 pools failed PCR amplification. Samples reported by P-BEST were compared to the true simulated sample labels to estimate the 
P-BEST’s success rate. Results were averaged over 3000 simulations. Error bars correspond to 95% CIs. (A) Average number of samples reported by P-BEST as a function of 
the number of true carriers. For example, P-BEST reports exactly two samples when simulating two carriers and retrieves an average of ~7.4 samples when the simulated 
set contains five carriers. (B) Average number of true positives, false negatives, and false positives identified for a given number of simulated carriers. Even for five carriers, 
the number of false negatives is lower than 1, and the average number of false positives remains low (<3).
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56.6%). A total of 296 (26.5%) subjects worked in direct contact 
with patients with COVID-19. Within the cohort, 926 (93.1%) partici-
pants reported themselves as totally asymptomatic, 71 (6.3%) reported 
a mild cough, and 70 (6.3%) reported rhinorrhea. The 1115 partici-
pants were tested using three rounds of P-BEST using a total of 3 × 
48 testing kits. All of the pools tested were negative. Because of the 
increasingly lower carrier rates in Israel during April 2020, the 
third batch was blindly spiked with a sample from a patient with 
COVID-19. As in our preliminary validation studies, we correctly 
identified this patient using the P-BEST method.

DISCUSSION
Here, we described P-BEST, a novel method for efficient SARS-
Cov-2 diagnostic testing that is based on single-stage nonadaptive 
group testing. Using a pooling scheme designed for a carrier rate of 
~1%, we showed that our method correctly identified all positive 

carriers in sets of 384 samples pooled into 48 pools, thereby provid-
ing an eightfold reduction in the number of required tests.

Any long-term mitigation strategy that will allow our society to 
exit from stringent lockdowns will require significant increases in 
testing capacity (13, 14). While it is clear that in many regions 
around the world, the current carrier rates are substantially higher 
than 8%, the lockdown periods imposed in many places are slowly 
reducing infection rates. Therefore, we anticipate that in the near 
future, carrier rates are likely to drop below this threshold in many 
countries. P-BEST may then be used for conducting efficient routine 
screens of, e.g., health care workers and staff in nursing homes, as 
well as general population screens to identify new hotspots of the 
SARS-CoV-2.

Recently, several studies reported preliminary results using adaptive 
two-stage group-testing methods for SARS-CoV-2 testing (13, 15, 16). 
Additional reports have analyzed the efficiency gain of implement-
ing pooled testing (14, 17, 18). Furthermore, the U.S. Food and Drug 

Fig. 4. Evaluating the effect of variation in RNA levels on P-BEST performance. To assess the effects of variations in RNA levels, we measured the average number of 
false-positive and false-negative detections as a function of the true number of carriers across 3000 simulations in two scenarios: (i) no noise in RNA levels (black square) 
and (ii) RNA noise based on the measured variation of RNA levels across 48 samples (see fig. S1). Simulations used the pooling scheme designed for a carrier rate of ~1%. 
The false-positive (left) and false-negative (right) detection rates for the two scenarios show that RNA variation does not substantially degrade P-BEST performance. All 
simulations considered one dropped pool. Error bars correspond to 95% CIs.

Fig. 5. Evaluating the effect of dropped pools on P-BEST performance. To assess the effects of dropped pools due to PCR amplification failures, we measured the 
average number of false-positive (left) and false-negative (right) detections as a function of the true number of carriers across 3000 simulations for zero, one, or two ran-
domly dropped pools using the pooling scheme designed for a carrier rate of ~1%. P-BEST seems to be robust to one to two dropped pools. All simulations considered 
the experimental level of RNA variation, as measured across 48 samples (fig. S1A). Error bars correspond to 95% CIs.
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Administration recently published novel guidelines on sample 
pooling (19). A clear advantage of P-BEST over other recently pro-
posed pooling methods for SARS-CoV-2 diagnostic testing (20, 21) 
is that our method is a nonadaptive single-stage method. Carriers 
are detected using a single round of testing, which reduces the over-
all test time and does not require storing samples for a second round 
of testing. The latter is highly attractive for high-throughput 
diagnostic laboratories for which logistical simplicity is imperative. 
Recently, another method for single-stage COVID-19 group testing 
was suggested (22).

Our current implementation of P-BEST was designed for a carrier 
rate of ~1%. To allow higher testing efficiency, i.e., to minimize the 
number of pools required to screen a given population, designs 
should vary according to the carrier rate. Pooling designs can differ 
by the number of pools and by the number of samples per pool. 
Specifically, as the carrier rate in the population rises, more pools 
are required to correctly identify all positive carriers in a single test-
ing round. Moreover, the required number of samples per pool 
decreases with increasing the carrier rate. Conversely, when carrier 
rates are low, more efficient pooling designs can be used, i.e., less 
pools are required to test the same number of individuals, while the 
number of samples per pool should be increased. As the pandemic 
continues to spread, the infection rates within a given population 
are continuously changing. To provide a close to optimal pooling 
design, a rough estimate of the current carrier rate is required. In 
general, this rate can be estimated on the basis of the carrier rates 
observed during the last few days for a given population, since they 
typically gradually vary over time.

Each pooling design can correctly identify up to a certain percentage 
of carriers for which it was optimized. Therefore, carrier rates lower 
than the expected rate would not hamper detection (yet higher effi-
ciency could have been achieved had this been known in advance). 
In contrast, the scenario in which the number of carriers is higher 
than expected may be problematic. As we show in our simulation 
results above, if the actual carrier rate ends up being slightly higher 
than the expected rate, then our pooling method will identify all 
positive carriers, as well as some additional false positives, without 
the addition of false negatives. Such graceful degradation is required 
to handle variations in carrier rate that are either real changes or a 
result from the small sample size tested in each pooling run. Cases 
where the actual carrier rate is much higher than the expected level 
may also be identified using our method. In this case, too many pools 
would be PCR positive, and the number of samples identified by the 
method will be much larger than the number of expected carriers. 
While this prevents the direct identification of the actual positive car-
riers using a single testing round, it will notify the user and allow 
him/her to retest the samples either individually or by using an al-
ternate pooling design suited for a higher carrier rate.

As mentioned above, when carrier rates are sufficiently low, a 
significant increase in testing efficiency may be obtained, while re-
quiring increasing the number of samples in each pool. However, 
increasing the pool size will lead to loss of sensitivity, and the optimal 
pool size should be quantified for each diagnostic kit. While two recent 
reports tested pooling sensitivity with pools of up to 32 samples per 
pool (13, 23), we found that samples with C(t) < 35 were detected in 
pools of up to 48 samples each, using two different SARS-CoV-2 
diagnostic tests. The loss of sensitivity differed from sample to sample 
and generally adhered to the theoretically expected value; however, 
this was not always the case. We note that P-BEST can be used with 

any pool size, yet limiting the pool size for low carrier rates will re-
duce its efficiency. For example, screening 384 samples using pools 
of size 16 (instead of 48) will require 72 pools, thereby providing 
a ~5.3-fold increase in testing efficiency (as compared to an eight-
fold increase with pools of 48).

We tested the performance of P-BEST in a clinical study aimed 
at screening asymptomatic and mildly symptomatic health care 
workers. Using P-BEST, we were able to screen 1115 patients using 
a total of 144 clinical diagnostic kits, highlighting the efficiency of 
our method. Because of stringent lockdowns imposed in Israel, in-
fection rates in April 2020 dropped substantially, and the number of 
new cases per day continued to decline. We were, therefore, not sur-
prised that no positive carrier was identified within the 1115 subjects 
screened thus far. The correct identification of a blindly spiked pos-
itive sample was used to verify that the pooling, RNA extraction, and 
PCR processes were properly performed. We note that this would 
be one typical scenario where the use of P-BEST would be most suit-
able, i.e., carrier screening when infection rates are very low (<1%), 
thus providing significant savings in reagents and other diagnostic 
testing resources and significantly increasing testing capacity.

We are currently exploring several improvements of our method 
as follows: (i) P-BEST requires the use of widely available automated 
liquid-dispensing robots. While our current application of P-BEST 
required ~5 hours for pool assembly using a single-channel robot, 
we have now successfully tested a more advanced liquid-handling 
system with a multidispenser arm that can perform this task in 
about 1 hour. Our method can be easily adapted to work on any 
standard liquid-dispensing robot, and we are in the process of 
developing code for these robots from several leading vendors. (ii) To 
allow P-BEST to be entirely performed in a biosafety level 2 (BSL-2) 
laboratory, we are currently experimenting with two inactivation 
methods: directly depositing swab samples into tubes with lysis buffer 
instead of viral transfer media or heating samples at 70°C for 30 min. 
(iii) Compressed sensing detection in P-BEST can, in principle, estimate 
the viral load [C(t) values] of each positive carrier. These estimates 
may prove clinically relevant and are straightforward in P-BEST. 
(iv) Because of the global shortage of RNA extraction kits, we are cur-
rently testing heat-based and detergent-based methods RNA extraction 
protocols (24). While these protocols will be performed in a BSL-3 
laboratory, they will reduce the test time by about 2 hours and will 
also reduce test costs by about 50%. In addition, (v) a recent report 
has suggested that saliva is more sensitive than nasopharyngeal swabs 
for SARS-CoV-2 detection (25). Using saliva samples, which are self-
collected, can greatly increase sample collection capacity. We are, 
therefore, also optimizing our method for pooling saliva samples.

In summary, here, we presented a novel method for efficient 
SARS-CoV-2 diagnostic testing that can provide significant in-
creases in both testing efficiency and testing resources and can be 
readily implemented in clinical diagnostic laboratories. Code and 
protocols required for implementation of P-BEST can be found at 
https://github.com/NoamShental/PBEST.

METHODS
Group testing and sample pooling method
The mathematical field of group testing (26) aims to tackle the 
problem of efficiently identifying individuals carrying a certain rare 
trait within a large population by pooling samples and testing each 
pool as if it were a single sample. In general, pooling is designed in 
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such a way that each individual has a unique “footprint” within the set 
of pools, thus allowing carrier identification. Group testing dates back 
to the mid-20th century (27), and since then, many intricate pooling 
designs have been described and rigorously analyzed. Group testing 
has been successfully applied in data compression (28), computation 
in the data stream model (29), and in molecular biology (30, 31). In 
our previous studies, we described a combination of group testing 
and next-generation sequencing for detecting carriers of rare genetic 
mutations. We detected all individual carriers of rare mutations of a set of 
1024 mutagenized Sorghum bicolor plants using a set of 48 pools (11, 12).

The efficiency of group testing, often measured by the ratio be-
tween the number of screened individuals and the number of pools, 
generally increases with the decreasing frequency of the observed trait. 
For example, screening for a trait that appears in 0.1% of the pop-
ulation can be done more efficiently than screening for a trait that 
appears in 1% of the population. Moreover, when the carrier rate ex-
ceeds ~8%, group testing is no longer effective, since the required number 
of pools would be comparable to the number of samples tested.

To optimize efficiency, the pooling design needs to be tailored to 
the expected carrier rate, by adjusting the number pools and the 
number of samples per pool. If the true carrier rate exceeds the 
expected rate, then the method will identify larger sets of suspected 
carriers, which may include false positives, without any additional 
false negatives. Therefore, it is imperative to evaluate the robustness 
of a specific pooling design to higher carrier rates (e.g., Fig. 2). In 
case that the true carrier rate is much lower than the rate for which 
the pooling design was tailored, testing efficiency would be sub-
optimal, since a smaller number of pools would have sufficed to 
correctly detect all positive carriers.

P-BEST pooling design
In our current proof-of-concept study of P-BEST, we developed a 
pooling scheme designed to correctly identify all positive carriers 
for carrier rates <1.3%. Specifically, we pooled sets of 384 patient 
samples into 48 pools, each containing 48 samples. Each sample was 
added to six different pools. Pools were designed on the basis of a 
Reed-Solomon error correcting code (32), which, as in our previous 
work, proved to be robust to experimental noise, e.g., pools that fail 
to be amplified.

P-BEST detection algorithm
PCR samples with C(t) values of <40 were considered positive. 
Carrier detection was performed using the gradient projection for 
sparse reconstruction algorithm (33) as in our former studies 
(11, 12). The transformation from fractional to discrete results was 
done using the following algorithm: The 20 samples with highest scores 
were selected, and only subsets of these 20 were further considered. 
In total, 220 subsets of samples were tested. Each subset corresponds 
to a vector x of length 384, in which the entries of the selected samples 
were equal to 1, and all others were set to zero. Nonzero entries of 
the product of Mx, where M is the pooling matrix, were replaced 
by the value 1 and compared to the (binary) measurement vector y. The 
vector x* for which ‖Mx* − y‖1 achieved its minimum was selected.

P-BEST in silico simulations
In each simulation, a number of carriers (ranging from one to five) 
were randomly selected, thus corresponding to a vector x of length 
384, in which the selected carriers were equal to 1, and all others 
were set to zero. The measurement vector y representing the PCR 

measurements over the P-BEST pools was provided by binarizing 
M′x, where M′ is a noisy instance of the pooling matrix M. More 
specifically, to simulate liquid dispensing volume errors, each 
nonzero entry in M was sampled from a normal distribution with a 
mean of 1 and SD of 0.01. A second type of experimental noise, 
corresponding to dropped pools due to PCR failure, was simulated 
by randomly deleting entries in y (and corresponding rows in M). 
The detection algorithm presented in the former section was used 
to identify carriers using the vector y and the matrix M as input, and 
its detected carriers were compared to x to evaluate performance.

SARS-CoV-2 clinical diagnostics
Naso- and oropharynx swabs were collected for analysis by the 
laboratory of clinical virology in SUMC, which is approved by the 
Israeli Ministry of Health to test for SARS-CoV-2 infections. The 
laboratory uses a clinically approved 2019-nCoV detection kit (Seegene, 
CA, USA) for both viral nucleic acid extraction and quantitative 
reverse transcription PCR (qRT-PCR)–based amplification. The kit 
identifies three SARS-CoV-2 genes: E, RdRP, and N genes. RNA 
extraction was performed using the STARMag 2019-nCoV kit (Seegene, 
CA, USA) on a liquid-dispensing robot (STARlet Hamilton, USA). 
All samples were analyzed individually, and positive and negative 
results were recorded by the SUMC diagnostic laboratory before 
our study. To inactivate the virus and extract viral RNA, 500 l of 
the transfer medium containing the swab is combined with 350 l of 
lysis buffer of the STARMag kit in a BSL-3 laboratory; following 20′ 
of incubation, 350 l was used for nucleic acid extraction into a 
volume of 100 l of extracted genome, from which 8 l was taken 
for the 2019-nCoV PCR assay.

Clinical cohorts
For initial validation of P-BEST, we used leftover clinical samples 
from patients who tested positive and patients who tested negative 
from the clinical virology laboratory of SUMC. Four sets of 384 
samples each containing one to two positive samples (sets 1 to 4, 
respectively) were created. We then conducted a clinical study to 
screen SUMC health care workers for SASR-CoV-2 infections. The 
study recruited adult subjects that self-reported as asymptomatic or 
mildly symptomatic (cough, runny nose, myalgia, or sore throat) 
with no fever, shortness of breath, or pneumonia. After signing an 
informed consent, samples were obtained by swabbing the naso-
pharynx and oropharyngeal cavity each with a different swab using 
standard techniques. Three batches of 384 participants were col-
lected. As a positive control, one collection batch included a sample 
from a patient who tested positive via an individual PCR-based 
diagnostic method. This study was approved by SUMC ethical 
review board (Helsinki committee).

P-BEST experimental setup
Pools were prepared using a liquid-handling robot (Arise EZMate-601) 
using a code written in Python. The code automatically generates a 
command file for the robot to use. Samples were manually pipetted 
into 96-well plates from which the robot assembled a set of 48 pools, 
each containing 48 distinct samples. We generated 48 pools for each 
sample set. Each pool contained equal volumes from 48 samples 
(11 l per sample, 528 l per pool). Each individual sample was repre-
sented in six different pools. The total time for pooling 384 samples 
into 48 pools was ~5 hours and was performed in a standard BSL-2 
laboratory. Analogously to single samples, 350 l from each pool 
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was then used for nucleic acid extraction into a volume of 100 l, 
using the clinically approved STARMag kit and the STARlet robot 
(Hamilton, USA). Then, 8 l was used for qRT-PCR to detect the 
E gene of SARS-CoV-2, based on an in-house method that was clin-
ically validated and used by the SUMC clinical virology laboratory 
before the introduction of the 2019-nCoV Seegene kit. We used this 
PCR method because of shortages of the Seegene 2019-nCoV assay 
kits used by the clinical diagnostic laboratory at SUMC. To verify 
compatibility of the Seegene kit, we retested some of our positive 
pools with the Seegene PCR kit. Pools for the clinical study were 
generated, as above, but 21 l per sample was used to obtain a total 
volume of 1008 l in each pool. Testing of the samples collected in 
the clinical study was performed using the clinically approved 
Seegene assay kits.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/sciadv.abc5961/DC1

View/request a protocol for this paper from Bio-protocol.
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