
Vector Assignment Problems:
A General Framework ?

Leah Epstein1 and Tamir Tassa2

1 School of Computer Science, The Interdisciplinary Center, P.O.B 167, 46150
Herzliya, Israel. lea@idc.ac.il.

2 Department of Applied Mathematics, Tel-Aviv University, Ramat Aviv, Tel Aviv,
Israel. tassa@post.tau.ac.il.

Abstract. We present a general framework for vector assignment prob-
lems. In such problems one aims at assigning n input vectors to m
machines such that the value of a given target function is minimized.
While previous approaches concentrated on simple target functions such
as max-max, the general approach presented here enables us to design a
PTAS for a wide class of target functions. In particular we are able to
deal with non-monotone target functions and asymmetric settings where
the cost functions per machine may be different for different machines.
This is done by combining a graph-based technique and a new technique
of preprocessing the input vectors.

1 Introduction

In this paper we present a general framework for dealing with assignment prob-
lems in general and vector assignment problems in particular. An assignment
problem is composed of the following three ingredients:

– Items: x1, . . . , xn;
– Containers: c1, . . . , cm;
– A target function: F : {1, . . . , m}{1,...,n} →R+.

Each item is characterized by a parameter or a set of parameters that reflect the
”size” of the item. That size may be a scalar, a vector or whatever the application
which gave rise to the problem dictates.
The containers may be characterized by their capacity; that capacity would be
a scalar or a vector, in accord with the type of the items to be stored.
The set {1, . . . , m}{1,...,n} consists of all possible assignments of items to contain-
ers. Each assignment is referred to as a solution to the problem. In all assignment
problems there is a natural addition operation between items. Hence, given an
assignment (solution) A ∈ {1, . . . , m}{1,...,n}, we may compute the load in each
container as

lk =
∑

A(i)=k

xi .

? Research supported in part by the Israel Science Foundation (grant no. 250/01).

The target function evaluates for each solution a nonnegative cost. That function
takes into account the loads lk and possibly also the container capacities, if such
capacities are given.

Such problems are known to be strongly NP-hard. Hence, polynomial time
approximation schemes (PTAS) are sought. Such schemes produce, in polynomial
time, a solution (i.e., an assignment) whose cost is larger than that of an optimal
solution by a factor of no more than (1 + Const · ε), where ε > 0 is an arbitrary
parameter. Namely, if Φo is the optimal cost and ε > 0 is a given parameter, the
scheme produces a solution A that satisfies

F (A) ≤ (1 + Const · ε) · Φo , (1)

where the constant is independent of the input data (n, m and xi, 1 ≤ i ≤ n)
and ε, but may depend on the dimension of the vectors.

The above formulation encompasses all problems that were studied in the
art so far. However, the chosen target functions in those studies were limited
to a narrow class of ”natural” functions, as described below. Motivated by an
interesting problem that arises in transmitting multiplexed video streams, we
suggest here a general framework that includes a much wider class of target
functions.

Overview. We focus here on Vector Assignment Problems (VAP), where the
items xi, 1 ≤ i ≤ n, and the resulting loads lk, 1 ≤ k ≤ m, are vectors in (R+)d.
We consider target functions of the form:

F (A) = f(g1(l1), . . . , gm(lm)) . (2)

Here: A is a given solution and lk, 1 ≤ k ≤ m, are the corresponding load vectors.
gk : (R+)d →R+ (1 ≤ k ≤ m) are functions that evaluate a cost per container.
f : (R+)m →R+ is a function that evaluates the final cost over all containers.
Relation to previously studied problems. This suggested framework in-
cludes many problems that are already known in the art. The terminology in
those problems may vary. In some scalar problems the containers are referred to
as bins. In other scalar problems and in most all vector problems the terms items,
containers and assignment are replaced with jobs, machines and scheduling, re-
spectively. Since we have in mind applications that do not deal with scheduling,
we adopt herein a slightly more general terminology: vectors, machines and as-
signment.
Herein, we list some of those problems. The first 4 examples are scalar. The last
one is a vector problem.

1. The classical problem in this context is the scalar makespan problem. In that
problem one aims at minimizing the maximal load. It is described by (2)
with d = 1, gk = id and f = max. See [11–13, 15].

2. The `p minimization problem is given by (2) with d = 1, gk(x) = xp and
f(y1, . . . , ym) =

∑m
k=1 yp

k. The case p = 2 was studied in [2, 4] and was
motivated by storage allocation problems. The general case was studied in
[1].

3. Problem (2) with d = 1, gk(x) = h(x) for all k, where h : R+ →R+ is some
fixed function, and f is either the maximum or sum of its arguments, was
studied in [1]. Other choices for f are the inverse minimum or the inverse
sum. By considering those choices, one aims at maximizing the minimal or
average completion time. See also [6, 16].

4. The Extensible Bin Packing Problem is given by (2) with d = 1, gk(x) =
max{x, 1} for all k and f(y1, . . . , ym) =

∑m
k=1 yk. See [5, 8, 9].

5. The Vector Scheduling Problem, see [3], coincides with (2) with f = gk =
max.

In most of the above examples the target functions were monotone. Namely,
when adding an item to a container, the value of the target function increases,
or at least does not decrease. Such monotonicity is indeed natural when dealing
with bin packing or job scheduling: every item that is stored in a bin decreases
the remaining available space in that bin; every job assigned to a machine in-
creases the load on that machine. However, we present in this paper the so called
line-up problem that arises in video transmission and broadcasting, where the
target function has a different nature: it aims at optimizing the quality of the
transmitted video. Such functions are not monotone - increasing the size of a
vector component may actually decrease the value of the target function.

We note in passing that a related class of problems that we exclude from our
discussion is that in which the goal is to minimize the number of containers
that are used for packing, subject to some condition (such conditions are usually
associated with the capacity of the containers). See [10, 7, 14, 17, 3].

Notation agreements. Throughout this paper we adopt the following conven-
tions:

– Small case letters denote scalars; bold face small case letters denote vectors.
– A superscript of a vector denotes the index of the vector; a subscript of a vec-

tor indicates a component in that vector. E.g., lkj denotes the jth component
of the vector lk.

– If γ(k) is any expression that depends on k, then f(γ(k))1≤k≤m stands for
f(γ(1), . . . , γ(m)).

– If x is a scalar then x+ = max{x, 0}.
– If ◦ is any operation between scalars then v ◦ c is the vector whose jth

component (for all values of j) is vj ◦c. Similarly, if ∝ is any relation between
scalars, then v ∝ c or v ∝ w mean that the relation holds component-wise.

2 The Cost Functions

Herein we list the assumptions that we make on the outer cost function f(·) and
the inner cost functions gk(·).

Definition 1.

1. A function h : (R+)n →R+ is monotone if

h(x) ≤ h(y) ∀x,y ∈ (R+)n such that x ≤ y . (3)

2. The function h : (R+)n → R+ is dominating the function h̃ : (R+)n → R+

if there exists a constant η such that

h̃(x) ≤ ηh(x) ∀x ∈ (R+)n . (4)

3. The function h : (R+)n → R+ is Lipschitz continuous if there exists a
constant M such that

|h(x)− h(y)| ≤ M‖x− y‖∞ ∀x,y ∈ (R+)n . (5)

Assumption 1 The function f : (R+)m → R+ is:

1. monotone;
2. linear with respect to scalar multiplications, i.e., f(cx) = cf(x) for all c ∈
R+ and x ∈ (R+)m;

3. dominating the max norm with a domination factor ηf that is independent
of m;

4. Lipschitz continuous with a constant Mf that is independent of m;
5. recursively computable (explained below).

Assumption 2 The functions gk : (R+)d →R+ are:

1. dominating the `∞ and the `1 norms with a domination factor ηg that does
not depend on m;

2. Lipschitz continuous with a constant Mg that does not depend on m.

By assuming that f is recursively computable we mean that there exists a family
of functions ψk(·, ·), 1 ≤ k ≤ m, such that

f(g1, . . . , gk, 0, . . . , 0) = ψk
(
f(g1, . . . , gk−1, 0, . . . , 0), gk

)
(6)

(note that f(0, . . . , 0) = 0 in view of Assumption 1-2). For example, if f is a
weighted `p norm on Rm, 1 ≤ p ≤ ∞, with weights (w1, . . . , wm), then ψk is the
`p norm on R2 with weights (1, wk).

Next, we see what functions comply with the above assumptions. Assumption 1
dictates a quite narrow class of outer cost functions. f = max is the most promi-
nent member of that class (luckily, in many applications this is the only relevant
choice of f). Other functions f for which our results apply are the `p norms
taken on the t largest values in the argument vector, where t = min(m0,m) for
some constant m0; e.g., the sum of the largest two components. Assumption 1 is
not satisfied by any of the usual `p norms for p < ∞ because of the conjunction
of conditions 3 and 4: no matter how we rescale an `p norm, p < ∞, one of the
parameters ηf (condition 3) or Mf (condition 4) would depend on m.

As for gk, basically any norm on Rd is allowed. The most interesting choices are
the `p norms and the Sobolev norms, ‖l‖1,p := ‖l‖p + ‖∆l‖p where ∆l ∈ Rd−1

and ∆lj = lj+1−lj , 1 ≤ j ≤ d−1. Another natural choice is the ”extensible bin”
cost function, gk(lk) = ‖max{lk, ck}‖; here ck is a constant vector reflecting the
parameters of the kth machine and the outer norm may be any norm.

It is interesting to note that the set of functions that comply with either As-
sumption 1 or 2 is closed under positive linear combinations. For example, if f1

and f2 satisfy Assumption 1, so would c1f1 + c2f2 for all c1, c2 > 0.

3 A Graph Based Scheme

3.1 Preprocessing the Vectors by Means of Truncation

Let I be the original instance of the VAP. We start by modifying I into another
problem instance Ī where the vectors x̄i are defined by

x̄i
j =

{
xi

j if xi
j ≥ ε‖xi‖∞

0 otherwise 1 ≤ i ≤ n , 1 ≤ j ≤ d . (7)

Lemma 1. Let A be a solution to I and let Ā be the corresponding solution to
Ī. Then

(1− C1ε)F (Ā) ≤ F (A) ≤ (1 + C1ε)F (Ā) where C1 = Mgηg . (8)

Proof. Let lk and l̄k, 1 ≤ k ≤ m, denote the load vectors in A and Ā respectively.
In view of (7),

l̄k ≤ lk ≤ l̄k + ε
∑

A(i)=k

‖xi‖∞ (9)

Since ‖xi‖∞ = ‖x̄i‖∞ ≤ ‖x̄i‖1 we conclude that
∑

A(i)=k ‖xi‖∞ ≤ ‖̄lk‖1. Re-
calling Assumption 2-1 we get that

∑

A(i)=k

‖xi‖∞ ≤ ηgg
k (̄lk) . (10)

Therefore, by (9) and (10), l̄k ≤ lk ≤ l̄k + εηgg
k (̄lk) . Next, by the uniform

Lipschitz continuity of gk we conclude that

(1− C1ε)gk (̄lk) ≤ gk(lk) ≤ (1 + C1ε)gk (̄lk) where C1 = Mgηg . (11)

Finally, we invoke the monotonicity of f and its linear dependence on scalar
multiplications to arrive at (8). ¤
We assume henceforth that the input vectors have been subjected to the trunca-
tion procedure (7). To avoid cumbersome notations we shall keep denoting the
truncated vectors by xi and their collection by I.

3.2 Large and Small Vectors

Let Φo denote the optimal cost, let Ao be an optimal solution, F (Ao) = Φo,
and let lk, 1 ≤ k ≤ m, be the load vectors in that solution. Then, in view of
Assumption 1-3 and Assumption 2-1, lk ≤ ηfηgΦ

o, 1 ≤ k ≤ m. Consequently,
we conclude that all input vectors satisfy the same bound, xi ≤ ηfηgΦ

o, 1 ≤
i ≤ n. Hence, we get the following lower bound for the optimal cost:

Φo ≥ Φ :=
max1≤i≤n ‖xi‖∞

ηfηg
. (12)

This lower bound induces a decomposition of the set of input vectors into two
subsets (multi-sets) of large and small vectors as follows:

L = {xi : ‖xi‖∞ ≥ Φε2d+1, 1 ≤ i ≤ n} , (13)

S = {xi : ‖xi‖∞ < Φε2d+1, 1 ≤ i ≤ n} . (14)

We present below a technique to replace S with another set of vectors S̃ =
{z1, . . . , zν̃} where

ν̃ = |S̃| ≤ ν = |S| and ‖zi‖∞ = Φε2d+1 1 ≤ i ≤ ν̃ . (15)

In other words, all vectors in S̃ are large.

Let x ∈ S. Then, in view of the truncation procedure (7),

ε ≤ xj

‖x‖∞ ≤ 1 ∀xj > 0 , 1 ≤ j ≤ d . (16)

Next, we define a geometric mesh on the interval [ε, 1]:

ξ0 = ε ; ξi = (1 + ε)ξi−1 , 1 ≤ i ≤ q ; q :=
⌊ − lg ε

lg(1 + ε)

⌋
+ 1 . (17)

In view of the above, every nonzero component of x/‖x‖∞ lies in an interval
[ξi−1, ξi) for some 1 ≤ i ≤ q. Next, we define

x′ = ‖x‖∞H
(

x
‖x‖∞

)
, (18)

where the operatorH retains components that are 0 or 1 and replaces every other
component by the left end point of the interval [ξi−1, ξi) where it lies. Hence,
the vector x′ may be in one of s = (q + 2)d − 1linear subspaces of dimension 1
in Rd; we denote those subspaces by Wσ, 1 ≤ σ ≤ s. In view of the above, we
define the set

S ′ = {x′ : x ∈ S} . (19)

Next, we define for each type 1 ≤ σ ≤ s

wσ =
∑

{x′ : x′ ∈ S ′ ∩Wσ} ; (20)

namely, wσ aggregates all vectors x′ of type σ. We now slice this vector into
large identical ”slices”, where each of those slices and their number are given by:

w̃σ =
wσ

‖wσ‖∞ · Φε2d+1 and κσ =
⌈‖wσ‖∞

Φε2d+1

⌉
. (21)

Finally, we define the set S̃ as follows:

S̃ = ∪s
σ=1{zσ,q = w̃σ : 1 ≤ q ≤ κσ} . (22)

Namely, the new set S̃ includes for each type σ the ”slice”-vector w̃σ, (21),
repeated κσ times. As implied by (21), all vectors in S̃ have a max norm of
Φε2d+1, in accord with (15). Also, the number of vectors in S̃, ν̃ =

∑s
σ=1 κσ, is

obviously no more than ν as the construction of the new vectors implies that
κσ ≤ |S ′ ∩Wσ| (recall that ‖x′‖∞ < Φε2d+1 for all x′ ∈ S ′).
So we have modified the original problem instance I, having n input vectors
L ∪ S, into an intermediate problem instance I ′ = L ∪ S ′, see (19), and then to
a new problem instance,

Ĩ = L ∪ S̃ , (23)

see (20)-(22), that has ñ = n−ν + ν̃ input vectors. The following theorem states
that those problem instances are close in the sense that interests us.

Theorem 1. For each solution A ∈ {1, . . . , m}{1,...,n} of I there exists a solution
Ã ∈ {1, . . . , m}{1,...,ñ} of Ĩ such that

(1− C1ε) ·
(
F (Ã)− C2Φε

)
≤ F (A) ≤ (1 + C1ε) ·

(
F (Ã) + C2Φε

)
, (24)

where C1 is given in (8) and

C2 = MfMg . (25)

Conversely, for each solution Ã ∈ {1, . . . , m}{1,...,ñ} of Ĩ there exists a solution
A ∈ {1, . . . , m}{1,...,n} of I that satisfies (24).

Proof. Let A be a solution of I and A′ be its counterpart solution of I ′. Let lk

and l′k, 1 ≤ k ≤ m, denote the load vectors in A and A′, respectively. By (18),
1 ≤ lk/l′k ≤ 1 + ε. Hence, by Assumption 2-1,

‖lk − l′k‖∞ ≤ εηgg
k(l′k) . (26)

Therefore, by the uniform Lipschitz continuity of gk,

(1− C1ε)gk(l′k) ≤ gk(lk) ≤ (1 + C1ε)gk(l′k) 1 ≤ k ≤ m (27)

where C1 is as in (8). Applying f on (27) and using Assumptions 1-1 and 1-2,
we get that

(1− C1ε)F (A′) ≤ F (A) ≤ (1 + C1ε)F (A′) . (28)

Next, given a solution A′ of I ′, we construct a solution Ã of Ĩ such that

F (Ã)− C2Φε ≤ F (A′) ≤ F (Ã) + C2Φε , (29)

with C2 as in (25). Showing this will enable us to construct for any solution A
of I a solution Ã of Ĩ for which, in view of (28) and (29), (24) holds. Then, in
order to complete the proof, we shall show how from a given solution Ã of Ĩ, we
are able to construct a solution A′ of I ′ for which (29) holds.
To this end, we fix 1 ≤ σ ≤ s and define for every machine k the following vector:

yσ,k =
∑

{x′i : x′i ∈ S ′ ∩Wσ , A′(i) = k} ; (30)

i.e., yσ,k is the sum of small vectors of type σ in I ′ that are assigned to the kth
machine. Recalling (21), S̃ includes the vector w̃σ repeated κσ times, where

κσ =

⌈
m∑

k=1

‖yσ,k‖∞
Φε2d+1

⌉
. (31)

We may now select for each k an integer tσ,k such that
∣∣∣∣tσ,k − ‖yσ,k‖∞

Φε2d+1

∣∣∣∣ ≤ 1 (32)

and
m∑

k=1

tσ,k = κσ. The integers tσ,k can be found in the following manner:

We define tlow
σ,k = b‖yσ,k‖∞/Φε2d+1c and thigh

σ,k = d‖yσ,k‖∞/Φε2d+1e. Clearly,
m∑

k=1

tlow
σ,k ≤ κσ and

m∑
k=1

thigh
σ,k ≥ κσ. Since thigh

σ,k − tlow
σ,k ≤ 1 for all 1 ≤ k ≤ m, there

exists an integer number 0 ≤ x ≤ m such that
∑m

k=1 tlow
σ,k = κσ − x. Finally, we

set

tσ,k =

8
<
:

thigh
σ,k 1 ≤ k ≤ x

tlow
σ,k x < k ≤ m

With this, the solution Ã is that which assigns to the kth machine, 1 ≤ k ≤ m,
tσ,k vectors w̃σ for all 1 ≤ σ ≤ s (and coincides with A′ for all large vectors in
L). In view of (32) and the definition of w̃σ, see (21),

‖tσ,k · w̃σ − yσ,k‖∞ ≤ Φε2d+1 . (33)

Therefore, summing (33) over 1 ≤ σ ≤ s, we conclude that l̃k and l′k – the loads
on the kth machine in Ã and A′ respectively – are close,

‖̃lk − l′k‖∞ ≤ sΦε2d+1 . (34)

However, as (17) and the definition of s imply that s ≤ ε−2d for all 0 < ε ≤ 1.
We conclude by that ‖̃lk − l′k‖∞ ≤ Φε. Finally, the Lipschitz continuity of both
g and f imply that (29) holds with C2 as in (25).

Next, we show how to construct from a solution Ã of Ĩ, a solution A′ of I ′ for
which (29) holds. The two assignments will coincide for the large vectors L. As
for the small vectors, let us fix one vector type 1 ≤ σ ≤ s, where s is the number
of types. S̃ includes the vector w̃σ repeated κσ times, (21)-(22). Let tσ,k be the
number of those vectors that Ã assigns to the kth machine. The counters tσ,k

satisfy the bounds on them. We now assign the vectors x′ ∈ S ′∩Wσ, see (20), to
the m machines so that the `∞-norm of their sum in the kth machine is greater
than (tσ,k − 1)Φε2d+1 but no more than (tσ,k + 1)Φε2d+1. In view of (20) and
(21), it is easy to see that such an assignment exists: Assign the jobs one by
one greedily, in order to obtain in the kth machine, 1 ≤ k ≤ m, a load with an
`∞-norm of at least (tσ,k − 1)Φε2d+1. Since the `∞-norm of the sum of all small
jobs is at least (

∑m
k=1 tσ,k−1)Φε2d+1, this goal can be achieved. Also, as the size

of each of those jobs is no more than Φε2d+1, we may perform this assignment in
a manner that keeps the load in each machine below tσ,kΦε2d+1. After achieving
that goal in all machines, we assign the remaining jobs so that the total load in
each machine is bounded by (tσ,k + 1)Φε2d+1. This is possible given the small
size of the jobs and the size of their sum (at most (

∑m
k=1 tσ,k)Φε2d+1). Clearly,

if we let yσ,k denote the sum of vectors x′ of type σ thus assigned to the kth
machine, then yσ,k satisfies (33). As we saw before, this implies that Ã and A′

satisfy (29). This completes the proof.¤

3.3 The Scheme

In view of the previous two subsections, we assume that the original set of input
vectors I was subjected to the truncation procedure, along the lines of §3.1, and
then modified into a problem instance Ĩ where all vectors are large, using the
procedure described in §3.2. For convenience, we shall keep denoting the number
of input vectors in Ĩ by n and the input vectors by xi, 1 ≤ i ≤ n. Hence, all
vectors in Ĩ satisfy ‖xi‖∞ ≥ Φε2d+1 for 1 ≤ i ≤ n. This, together with (7) on one
hand and (12) on the other hand, yield the following lower and upper bounds:

ε2d+2 ≤ xi
j

Φ
≤ ηfηg for 1 ≤ i ≤ n, 1 ≤ j ≤ d and xi

j 6= 0 . (35)

Next, we define a geometric mesh on the interval given in (35):

ξ0 = ε2d+2 ; ξi = (1 + ε)ξi−1 , 1 ≤ i ≤ q ; q :=
⌊

lg(ηfηgε
−2(d+1))

lg(1 + ε)

⌋
+ 1 .

(36)
In view of the above, every nonzero component of xi/Φ, 1 ≤ i ≤ n, lies in an
interval [ξi−1, ξi) for some 1 ≤ i ≤ q. We use this in order to define a new set of
vectors,

Î =
{
x̂i = ΦH

(
xi

Φ

)
: xi ∈ Ĩ

}
, (37)

where the operator H replaces each nonzero component in the vector on which
it operates by the left end point of the interval [ξi−1, ξi) where it lies.

The proof of the following theorem is omitted due to space restrictions.

Theorem 2. Let Ã be a solution of Ĩ and let Â be the corresponding solution
of Î. Then

(1− C1ε)F (Â) ≤ F (Ã) ≤ (1 + C1ε)F (Â) , (38)

where C1 is given in (8).

The vectors in Î belong to the set

W = X d where X = {0, ξ0, . . . , ξq−1} . (39)

As the size of W is s = (q + 1)d, it may be ordered:

W = {w1, . . . ,ws} . (40)

With this, the set of modified vectors Î may be identified by a configuration
vector

z = (z1, . . . , zs) where zi = #{x̂ ∈ Î : x̂ = wi} , 1 ≤ i ≤ s . (41)

Next, we may describe all possible assignments of vectors from Î to the m ma-
chines using a layered graph G = (V, E). To that end, assume that Â : Î →
{1, . . . , m} is such an assignment. We let Îk denote the subset of Î consisting of
those vectors that were assigned to one of the first k machines,

Îk = {x̂ ∈ Î : Â(x̂) ≤ k} 1 ≤ k ≤ m .

Furthermore, we define the corresponding state vector

zk = (zk
1 , . . . , zk

s) 1 ≤ k ≤ m where zk
i = #{x̂ ∈ Îk : x̂ = wi} , 1 ≤ i ≤ s .

We note that
∅ = Î0 ⊆ Î1 ⊆ . . . ⊆ Îm−1 ⊆ Îm = Î (42)

and
0 = z0 ≤ z1 ≤ . . . ≤ zm−1 ≤ zm = z , (43)

where z is given in (41). In addition, when 0 < k < m, Îk may be any subset of
Î while zk may be any vector in Z = {y : 0 ≤ y ≤ z} . With this, we define
the graph G = (V, E) as follows:

– The set of vertices consists of m+1 layers, V = ∪m
k=0V

k. If v ∈ V is a vertex
in the kth layer, V k, then it represents one of the possible state vectors after
assigning vectors to the first k machines. Hence V 0 = {0}, V m = {z} and
the intermediate layers are V k = Z, 0 < k < m.

– The set of edges consists of m subsets:

E = ∪m
k=1E

k where Ek = {(u,v) : u ∈ V k−1 , v ∈ V k , u ≤ v} . (44)

In other words, there is an edge connecting two vertices in adjacent layers,
u ∈ V k−1 and v ∈ V k, if and only if there exists an assignment to the kth
machine that would change the state vector from u to v.

Note that all intermediate layers, V k, 0 < k < m, are composed of the same
number of vertices, t, given by the number of sub-vectors that z has:

t = |Z| =
s∏

i=1

(zi + 1) ≤ (n + 1)s . (45)

Next, we turn the graph into a weighted graph, using a weight function w : E →
R+ that computes the cost that the given edge implies on the corresponding
machine: Let e = (u,v) ∈ Ek. Then the difference v − u tells us how many
vectors of each of the s types are assigned by this edge to the kth machine. The
weight of this edge is therefore defined as

w(e) = gk(T (v − u)) where T (v − u) =
s∑

i=1

(vi − ui)wi , (46)

wi are as in (40). We continue to define a cost function on the vertices, r : V →
R+. The cost function is defined recursively according to the layer of the vertex,
using Assumption 1-5: r(v) = 0 , v ∈ V 0;

r(v) = min
{
ψk(r(u), w(e)) : u ∈ V k−1, e = (u, v) ∈ Ek

}
, v ∈ V k

(the functions ψk are as in (6)). This cost function coincides with the cost func-
tion of the VAP, (2). More specifically, if v ∈ V k and it represents a subset
of vectors Îk ⊆ Î, then r(v) equals the value of an optimal assignment of the
vectors in Îk to the first k machines. Hence, the cost of the end vertex, r(v),
v ∈ V m, equals the value of an optimal solution of the VAP for Î.
The goal is to find the shortest path from V 0 to V m that achieves this minimal
cost. Namely, we look for a sequence of vertices vk ∈ V k, 0 ≤ k ≤ m, such that
ek := (vk−1, vk) ∈ Ek, 1 ≤ k ≤ m and f(w(e1), . . . , w(em)) = r(vm). We may
apply a standard algorithm to find this minimal path within O(|V |+ |E|) steps.
As |V | ≤ 2 + (m− 1) · (n + 1)s and |E| = ∑m

k=1 |Ek| ≤ m · (n + 1)2s the running
time would be polynomial in n and m.

The shortest path thus found represents an assignment of the vectors of the
modified set Î, Â : Î = {x̂1, . . . , x̂n} → {1, . . . ,m}. We need to translate this
assignment into an assignment of the original vectors, A : I = {x1, . . . ,xn} →
{1, . . . , m}. To that end, let us review all the problem modifications that we
performed:

– First modification: I to Ī, see (7) and Lemma 1.
– Second modification: Ī to Ĩ, see (20)-(23) and Theorem 1.
– Third modification: Ĩ to Î, see (37) and Theorem 2.

In view of the above, we translate the solution that we found, Â, into a solution
Ã of Ĩ, then – along the lines of Theorem 1 – we translate it into a solution Ā
of Ī and finally we take the corresponding solution A of I.

The proof of the following theorem is omitted due to space restrictions.

Theorem 3. Let Φo be the optimal cost of the original problem instance I. Let
A be the solution of I that is obtained using the above scheme. Then A satisfies
(1) with a constant that depends only on ηg, Mg and Mf .

References

1. N. Alon, Y. Azar, G. Woeginger, and T. Yadid. Approximation schemes for schedul-
ing. In Proc. 8th ACM-SIAM Symp. on Discrete Algorithms, pages 493–500, 1997.

2. A.K. Chandra and C.K. Wong. Worst-case analysis of a placement algorithm
related to storage allocation. SIAM Journal on Computing, 4(3):249–263, 1975.

3. C. Chekuri and S. Khanna. On multi-dimensional packing problems. In Proceedings
of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 185–
194, 1999.

4. R.A. Cody and E.G. Coffman, Jr. Record allocation for minimizing expected
retrieval costs on drum-like storage devices. J. Assoc. Comput. Mach., 23(1):103–
115, 1976.

5. E. G. Coffman, Jr. and George S. Lueker. Approximation algorithms for extensible
bin packing. In Proceedings of the Twelfth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 586–588, 2001.

6. J. Csirik, H. Kellerer, and G. Woeginger. The exact lpt-bound for maximizing the
minimum completion time. Operations Research Letters, 11:281–287, 1992.

7. W. F. de la Vega and G. S. Lueker. Bin packing can be solved within 1+ ε in linear
time. Combinatorica, 1(4):349–355, 1981.

8. P. Dell’Olmo, H. Kellerer, M. G. Speranza, and Zs. Tuza. A 13/12 approximation
algorithm for bin packing with extendable bins. Information Processing Letters,
65(5):229–233, 1998.

9. P. Dell’Olmo and M. G. Speranza. Approximation algorithms for partitioning small
items in unequal bins to minimize the total size. Discrete Applied Mathematics,
94:181–191, 1999.

10. M. R. Garey, R. L. Graham, D. S. Johnson, and A. C. C. Yao. Resource constrained
scheduling as generalized bin packing. Journal of Combinatorial Theory (Series
A), 21:257–298, 1976.

11. R.L. Graham. Bounds for certain multiprocessor anomalies. Bell System Technical
Journal, 45:1563–1581, 1966.

12. R.L. Graham. Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math,
17:416–429, 1969.

13. D. S. Hochbaum and D. B. Shmoys. Using dual approximation algorithms for
scheduling problems: theoretical and practical results. Journal of the ACM,
34(1):144–162, 1987.

14. N. Karmarkar and R. M. Karp. An efficient approximation scheme for the one–
dimensional bin–packing problem. In Proc. 23rd Ann. Symp. on Foundations of
Computer Science, 1982.

15. S. Sahni. Algorithms for scheduling independent tasks. Journal of the Association
for Computing Machinery, 23:116–127, 1976.

16. G. J. Woeginger. A polynomial time approximation scheme for maximizing the
minimum machine completion time. Operations Research Letters, 20:149–154, 1997.

17. G. J. Woeginger. There is no asymptotic PTAS for two-dimensional vector packing.
Information Processing Letters, 64(6):293–297, 1997.

