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Abstract

The entropy condition and the total variation boundedness of weak so-
lutions of convex scalar conservation laws are enforced by Lip+-stability
which the physical solutions satisfy. The first order Godunov and Lax-
Friedrichs schemes, and the second order Maxmod scheme are consistent
with this Lip+-stability and are, therefore, entropy convergent. In this
paper, a uniformly third order accurate scheme is introduced, which is
consistent with the Lip+-stability and, hence, is entropy convergent. Error
estimates, both global and local, are obtained. Numerical experiments on
systems of conservation laws demonstrate excellent results and sharp reso-
lution of shock discontinuities. A Fortran subroutine of the reconstruction
procedure is spelled out in the end of the paper.
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1 Introduction

In this paper we introduce a uniformly third order accurate Godunov-type scheme
for the approximate solution of genuinely nonlinear scalar conservation laws,

ut + f(u)x = 0, f ′′(u) 6= 0 . (1.1)

We prove the convergence of the scheme to the physically relevant entropy solu-
tions, obtain error estimates – global, as well as local ones – and demonstrate the
performance of the scheme in both scalar and system problems.

In §2 we review briefly the main results concerning the one-sided-Lipschitz-
stability of genuinely nonlinear conservation laws and Godunov-type schemes.
This type of stability, which in the convex case is called Lip+-stability, iden-
tifies the entropy solutions of (1.1) and, therefore, guarantees uniqueness. A
similar Lip+-consistency, if obeyed by a Godunov-type scheme, implies the total
variation boundedness of the scheme (and, hence, the existence of a convergent
subsequence) as well as its entropy consistency (which implies the convergence
of the whole sequence of approximate solutions to the unique exact entropy solu-
tion). In other words, establishing the Lip+-consistency of a scheme is equivalent
to the usual two-step recipe of convergence proofs – total variation boundedness
and entropy-consistency.

It is shown that the Lip+-consistency of a Godunov-type scheme depends
solely on the properties of the associated reconstruction procedure. Proposition
2.3 provides us with two easy-to-check conditions on the reconstruction which, if
satisfied, imply the Lip+-consistency of the scheme and, consequently, its conver-
gence.

With this in mind, we proceed to §3 where we describe a reconstruction pro-
cedure for the convex case that satisfies those conditions (a similar version of
this reconstruction exists in the concave case). This reconstruction uses, as its
building blocks, quadratic interpolants. Such interpolants have two advantages
over linear ones, as used in the so-called MUSCL schemes. First, using quadratic
polynomials we obtain third order accuracy in the formal sense, i.e., whenever the
solution is C3-smooth. The second advantage is manifested in smaller spurious os-
cillations: as Lip+-consistency prohibits the piecewise polynomial reconstruction
to produce increasing jump discontinuities, using rigid linear interpolants results
in strong under- and overshoots. Replacing the linear interpolants by quadratic
ones, we gain flexibility and significantly reduce the the inevitable under- and
overshoots.

In §4 we concentrate on scalar convex conservation laws and, based on the
convergence rate analysis for Godunov-type schemes that was introduced in [9],
obtain global and local error estimates for our scheme.

Finally, §5 is devoted to numerical experiments. In §5.1 we test the perfor-
mance of our scheme on scalar convex problems. We provide error tables that
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reflect the high order accuracy of the scheme, as well as graphs of the approximate
and exact solutions that demonstrate the sharp resolution of shocks. In §5.2 we
deal with Euler equations of gas dynamics. This is a 3-system in which one field
is convex, another is concave and the third one is neither. In order to resolve the
genuinely nonlinear fields, we use either the convex or the concave version of our
scheme, while the last field is resolved by using the third order non-oscillatory
reconstruction procedure that was introduced in [8].

2 An overview of Godunov-type schemes and

their Lip+-stability

In this section we review some of the basic results concerning the Lip+-stability
of scalar convex conservation laws,

ut + f(u)x = 0, f ′′(u) ≥ α > 0 , (2.1)

and their numerical approximate solutions. It is well known [1, 10] that the
physically relevant weak solutions of (2.1) are identified by the following Lip+-
stability,

‖u(·, t)‖Lip+ ≤ (‖u(·, 0)‖−1
Lip+ + αt)−1 ∀t ≥ 0 (2.2)

where

‖v‖Lip+ := sup
x6=y

(
v(x)− v(y)

x− y

)

+

. (2.3)

In other words, this Lip+-stability may serve in the convex case as an alternative
entropy condition in order to single out the admissible entropy solutions of (2.1).
This property implies that ‖u(·, t)‖Lip+ is always finite at t > 0 and bounded by 1

αt
,

even if the initial value is Lip+-unbounded. Hence, any increasing discontinuity
in the initial data is immediately spread out and becomes a rarefaction wave.
Only decreasing jump discontinuities – shock waves – may appear at t > 0.
Therefore, the Lax entropy condition for convex conservation laws [7] is enforced
by the Lip+-stability. Another crucial implication of the Lip+-stability is the
Total Variation Boundedness (TVB) of the solution at t > 0 [1].

Let uh(x, t) be an approximate solution of (2.1) obtained by a numerical
scheme on the grid {Ij} ⊗ {Tn}, where {Ij = [xj− 1

2
, xj+ 1

2
]}j is an h-uniform par-

tition of Rx, h = xj+ 1
2
− xj− 1

2
, and {Tn = [tn, tn+1]}n≥0 is a ∆t-uniform partition

of R+
t , ∆t = tn+1 − tn.

Letting ūn
j denote the cell-average, ūn

j := 1
h

∫
Ij

uh(x, tn) dx, we define the dis-

crete Lip+-seminorm of uh(·, tn) as

pn = sup
j

(
ūn

j+1 − ūn
j

h

)

+

. (2.4)
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The numerical scheme is called Lip+-consistent if

pn ≤ (‖uh(·, 0)‖−1
Lip+ + αtn)−1. (2.5)

This discrete Lip+-decay condition is the analogous of (2.2). Some numerical
schemes fail to satisfy (2.5) and satisfy the weaker estimate

pn ≤ ‖uh(·, 0)‖Lip+ . (2.6)

Such schemes are called weakly Lip+-consistent.

The following Proposition asserts that the Lip+-consistency of a scheme im-
plies its convergence to the entropy solution (see [1] for a proof).

Proposition 2.1 Let the initial data u(x, 0) be either periodic or constant for
large values of |x| and assume that one of the following conditions hold:

(i) the scheme is Lip+-consistent, has a uniformly bounded speed of propaga-
tion and u(x, 0) has a finite number of increasing jumps; or

(ii) the scheme is weakly Lip+-consistent and ‖u(·, 0)‖Lip+ < ∞.
Then the scheme is TVB, entropy-consistent and, therefore, converges to the exact
entropy solution.

In the remainder of this section we concentrate on Godunov-type schemes
[17],

uh(·, tn+1) = E(∆t)RAuh(·, tn), n ≥ 0, (2.7)

where A stands for the averaging operator,

(Av)(x) =
1

h

∫

Ij

v(ξ)dξ ∀x ∈ Ij , (2.8)

R is a piecewise-polynomial reconstruction of the cell averages and E(∆t) is the
exact evolution operator. We shall use henceforth the notation R(·, tn) for the
reconstructed solution at time tn, i.e., R(·, tn) = RAuh(·, tn).

In the following proposition it is shown that if the reconstruction R does not
increase the discrete Lip+-seminorm, the scheme is Lip+-consistent (see also [1,
Proposition 4] and [4]).

Proposition 2.2 A Godunov-type scheme is Lip+-consistent if

‖R(·, tn)‖Lip+ ≤ pn = sup
j

(
ūn

j+1 − ūn
j

h

)

+

. (2.9)
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Proof. The proof is based on two simple observations:
(a) the exact evolution operator E(∆t) satisfies, in view of (2.2),

‖E(∆t)R(·, tn)‖Lip+ ≤ (‖R(·, tn)‖−1
Lip+ + α∆t)−1 ; (2.10)

(b) the discrete Lip+-seminorm, (2.4), is bounded by the regular one,

pn ≤ ‖uh(·, tn)‖Lip+ . (2.11)

Using (2.10), (2.9) and (2.11), in this order, we conclude by (2.7) that

‖uh(·, tn+1)‖Lip+ = ‖E(∆t)R(·, tn)‖Lip+ ≤ (‖R(·, tn)‖−1
Lip+ + α∆t)−1 ≤

(2.12)
≤ ((pn)−1 + α∆t)−1 ≤ (‖uh(·, tn)‖−1

Lip+ + α∆t)−1 .

Finally, inequality (2.12) implies, by induction on n, the desired Lip+-consistency,

pn ≤ ‖uh(·, tn)‖Lip+ ≤ (‖uh(·, 0)‖−1
Lip+ + αtn)−1 .

2

The main idea of Proposition 2.2 is that the Lip+-consistency of a Godunov-
type scheme depends solely on the properties of its associated reconstruction
operator, R. Since any Godunov-type scheme has a finite speed of propagation
(as E(∆t) does and R is a local operator), this Lip+-consistency implies, in view
of Proposition 2.1, the convergence of the scheme to the exact entropy solution.

We conclude this section with a straightforward proposition that provides us
with two easy-to-verify conditions on R that are equivalent to the Lip+-stability
condition (2.9):

Proposition 2.3 If the reconstructed solution at t = tn, R(·, tn), has only de-
creasing jump discontinuities,

R(xj+ 1
2
−, tn) ≥ R(xj+ 1

2
+, tn) ∀j (2.13)

and
sup

x
j− 1

2
<x<x

j+1
2

Rx(x, tn) ≤ pn ∀j , (2.14)

then R(·, tn) satisfies (2.9). Consequently, the corresponding Godunov-type scheme
is Lip+-consistent and, therefore, converges to the exact entropy solution.

As an example, we consider the maxmod scheme which is identified by the
linear reconstruction

R(x, tn)
∣∣∣
Ij

= ūn
j + sn

j · (x− xj) sn
j =

1

h
max(ūn

j+1 − ūn
j , ūn

j − ūn
j−1)
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(xj denotes henceforth the center of the cell Ij). This scheme is formally second
order accurate and satisfies the Lip+-stability conditions (2.13)–(2.14). However,
it permits spurious under- and overshoots and, therefore, is not recommended for
practical calculations.

We introduce below a simple third order reconstruction which, like the max-
mode reconstruction, satisfies the Lip+-stability conditions (2.13)–(2.14), but –
owing to the use of quadratic interpolants rather than linear ones – creates sig-
nificantly smaller under- and overshoots.

3 Third order reconstruction procedure

We start by describing the building blocks of our reconstruction: these are poly-
nomials of degree 2 or less, which are conservative in the sense that they preserve
the cell averages.

First, we introduce the quadratic polynomials, Pj(x), that interpolate the cell
averages ūj−1, ūj and ūj+1 (we omit henceforth the time superscript n) in the
cell-average sense, i.e.,

1

h

∫

Ii

Pj(x) dx = ūi, i = j − 1, j, j + 1.

These polynomials take the explicit form

Pj(x) = c0 + c1(x− xj) + c2(x− xj)
2 , (3.1)

where

c0 = ūj − ∆2ūj

24
, c1 =

∆ūj−1 + ∆ūj

2h
, c2 =

∆2ūj

2h2
,

and ∆ūj = ūj+1 − ūj, ∆2ūj = ūj+1 − 2ūj + ūj−1 . In addition to that, we define
the linear polynomials

L−j (x) = ūj +
∆ūj−1

h
(x− xj) and L+

j (x) = ūj +
∆ūj

h
(x− xj) . (3.2)

We are looking for a reconstruction, Rj(x) = R(x)
∣∣∣
Ij

, based on the above

building blocks, Pj(x) and L±j (x), that has the following desired properties:

(P1) Conservation, i.e.,
∫
Ij

Rj(x)dx = ūj for all j;

(P2) Third order (formal) accuracy, i.e., Rj(x) − uh(x) = O(h3), whenever
uh(x) is C3-smooth;

(P3) Lip+-stability, namely, conditions (2.13)–(2.14) must be satisfied.

The conservation requirement (P1) dictates the following set of acceptable
values for Rj(x): Pi(x), j − 1 ≤ i ≤ j + 1 or L±j (x). The accuracy requirement
(P2) narrows down our choices of acceptable reconstructions on Ij to only Pi(x),
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j−1 ≤ i ≤ j+1, which satisfy Pi(x)−uh(x)
∣∣∣
Ij

= O(h3), unless uh
xx vanishes in the

neighborhood of Ij, in which case also L±j (x) are locally third order accurate and,
hence, acceptable. Therefore, we need to use the remaining degrees of freedom
in order to enforce the Lip+-stability conditions, (2.13)–(2.14). The resulting
reconstruction is described below:

Case 1. If ∆2ūj ≤ 0 and ∆2ūj−1 ≤ 0,

Rj(x) =

{
Pj(x) if Pj−1(xj− 1

2
) ≥ Pj(xj− 1

2
) ,

Pj−1(x) otherwise.
(3.3)

Case 2. If ∆2ūj ≤ 0 and ∆2ūj−1 ≥ 0,

Rj(x) = L−j (x) and Rj−1(x) = L+
j−1(x) . (3.4)

Case 3. If ∆2ūj ≥ 0 and ∆2ūj+1 ≥ 0,

Rj(x) =

{
Pj(x) if Pj+1(xj− 1

2
) ≥ Pj(xj− 1

2
) ,

Pj+1(x) otherwise.
(3.5)

Case 4. If ∆2ūj ≥ 0 and ∆2ūj+1 ≤ 0,

Rj(x) = L+
j (x) and Rj+1(x) = L−j+1(x) . (3.6)

Proposition 3.1 The above described reconstruction satisfies the Lip+-stability
conditions (2.13) and (2.14).

The proof of Proposition is given below. Next, we may state the main result
of this section that follows directly from Propositions 2.3 and 3.

Corollary 3.1 The formally third order accurate Godunov-type scheme that cor-
responds to the above reconstruction is Lip+-consistent in the convex case and
converges to the exact entropy solution.

Remark. It is straightforward to figure out the reconstruction procedure for
concave scalar conservation laws (f ′′(u) ≤ −α < 0), for which the one-sided-
Lipschitz-stability takes the form (compare to (2.2))

‖u(·, t)‖Lip− ≤ (‖u(·, 0)‖−1
Lip− + αt)−1 ∀t ≥ 0,

where

‖v‖Lip− = sup
x 6=y

(
v(x)− v(y)

x− y

)

−
, a− = −min(a, 0).
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Proof of Proposition 3. We observe that

P ′
j(x) ≤ ∆ūj−1

h
∀x ∈ [xj− 1

2
, +∞) if ∆2ūj ≤ 0 (3.7)

and

P ′
j(x) ≤ ∆ūj+1

h
∀x ∈ (−∞, xj+ 1

2
] if ∆2ūj ≥ 0 . (3.8)

The above inequalities enable us to prove that (2.14) holds in each of the four
cases: In Case 1, (3.7) implies that

P ′
j−1(x) ≤ ∆ūj−2

h
and P ′

j(x) ≤ ∆ūj−1

h
∀x ∈ Ij .

Consequently,

R′
j(x) ≤ 1

h
max(∆ūj−2, ∆ūj−1) ≤ pn .

In Case 2,

R′
j(x) :=

∆ūj−1

h
≤ pn .

Cases 3 and 4 are treated similarly. Therefore, our reconstruction satisfies con-
dition (2.14).

Hence, it remains to prove (2.13). We start by obtaining inequalities for the
reconstruction Rj at the end points of the cell in which it is defined, xj− 1

2
and

xj+ 1
2
. In Case 1 Rj is chosen to be either Pj−1 or Pj, whichever attains the smaller

value at the left end point xj− 1
2
, (3.3). Hence,

Rj(xj− 1
2
) ≤ min(Pj−1(xj− 1

2
), Pj(xj− 1

2
)) . (3.9)

Since it may be verified that in this case

Pj−1(xj− 1
2
) ≤ Pj(xj− 1

2
) iff Pj−1(xj+ 1

2
) ≥ Pj(xj+ 1

2
) ,

we conclude that

Rj(xj+ 1
2
) ≥ max(Pj−1(xj+ 1

2
), Pj(xj+ 1

2
)) . (3.10)

Case 3 is similar. Here, Rj is chosen to be either Pj or Pj+1, whichever attains
the smaller value at the left end point xj− 1

2
, (3.5). Hence,

Rj(xj− 1
2
) ≤ min(Pj(xj− 1

2
), Pj+1(xj− 1

2
)) . (3.11)

Since in this case

Pj(xj− 1
2
) ≤ Pj+1(xj− 1

2
) iff Pj(xj+ 1

2
) ≥ Pj+1(xj+ 1

2
) ,

we conclude that

Rj(xj+ 1
2
) ≥ max(Pj(xj+ 1

2
), Pj+1(xj+ 1

2
)) . (3.12)
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In Case 2 it is easy to see that

Rj(xj− 1
2
) = Rj−1(xj− 1

2
) , (3.13)

while, since ∆2ūj ≤ 0,

Rj(xj+ 1
2
) ≥ Pj(xj+ 1

2
) . (3.14)

Finally, in Case 4,

Rj(xj− 1
2
) ≤ Pj(xj− 1

2
) (3.15)

because ∆2ūj ≥ 0, and

Rj(xj+ 1
2
) = Rj+1(xj+ 1

2
) . (3.16)

We claim that the desired inequality (2.13) now follows from (3.9)–(3.16). In
order to show that, we concentrate on two adjacent intervals, say Ij and Ij+1,
and prove that

Rj(xj+ 1
2
) ≥ Rj+1(xj+ 1

2
) . (3.17)

There are nine possible combinations of cases in the two intervals:

¦ 1 & 1 (namely, in Ij we have Case 1 and likewise in Ij+1). Here, (3.10) and
(3.9) (for j + 1) imply that

Rj(xj+ 1
2
) ≥ Pj(xj+ 1

2
) ≥ Rj+1(xj+ 1

2
) .

¦ 1 & 3. In this case ∆2ūj ≤ 0 while ∆2ūj+1 ≥ 0. Since

Pj(xj+ 1
2
) = −∆2ūj

6
+

ūj + ūj+1

2
and Pj+1(xj+ 1

2
) = −∆2ūj+1

6
+

ūj + ūj+1

2
,

it follows that

Pj(xj+ 1
2
) ≥ Pj+1(xj+ 1

2
) . (3.18)

Hence, by (3.10) and (3.11), we get the desired inequality (3.17):

Rj(xj+ 1
2
) ≥ Pj(xj+ 1

2
) ≥ Pj+1(xj+ 1

2
) ≥ Rj+1(xj+ 1

2
) .

¦ 1 & 4. Here, like in the previous case, (3.18) still holds and (3.17) follows from
(3.10) and (3.15).

¦ 2 & 1. We use (3.14) and (3.9).

¦ 2 & 3. We use (3.14), (3.18) and (3.11).

¦ 2 & 4. We use (3.14), (3.18) and (3.15).

¦ 3 & 3. We use (3.12) and (3.11).

¦ 3 & 4. We use (3.12) and (3.15).

¦ 4 & 2. We use (3.16).
This proves (3.17) and, thus, completes the proof of the proposition. 2
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4 Convergence rate estimates for the scalar prob-

lem

In this section we obtain global and local convergence rate estimates for the
scheme, based on the convergence rate analysis for Godunov type schemes in [9].
Let us recall briefly the main results of that paper:

Let u = u(x, t) be the exact entropy solution of (2.1) subject to a rarefaction-
free initial data, ‖u(·, 0)‖Lip+ < ∞, and let uh = uh(x, t) be a Godunov-type
approximate solution for that problem,

uh(·, tn+1) = E(∆t)Puh(·, tn) n ≥ 0 . (4.1)

Here, P is some projection onto a subspace of piecewise h-grid functions and
E(∆t) denotes, as before, the exact evolution operator. Then if the scheme is
weakly Lip+-consistent, (2.6), and Lip′-consistent1 in the sense that

‖Pv − v‖Lip+ ≤ O(h2)‖v‖BV ∀v ∈ BV , (4.2)

the following error estimates hold [9, Theorem 2.3]:

‖uh(·, t)− u(·, t)‖W s,p ≤ O(h
1−sp
2p ) , −1 ≤ s ≤ 1

p
, 1 ≤ p ≤ ∞ . (4.3)

In addition, we may post-process the approximate solution by means of molli-
fication, ũh := ψh ∗ uh, so that wherever the exact solution is Cr-smooth, we
have

‖ũh − u‖L∞
loc
≤ O(h

r
r+2 ) . (4.4)

In other words, we may recover the exact value u(x, t) from uh(·, t) to within
an error as close to O(h) as the local smoothness permits. Since our scheme
is formally third order accurate and the numerical evidence support this formal
accuracy (see in §5), this local first order accuracy is not sharp. However, in
the absence of a more exhaustive local convergence rate analysis, this is the best
result we can furnish.

The projection P in our scheme takes the Godunov-type form P = RA where
A = Ah is the cell averaging operator, (2.8), and R is the piecewise quadratic
reconstruction procedure that was described in §3. In the following proposition
we prove the Lip′-consistency of that projection:

Proposition 4.1 The projection P = RA satisfies estimate (4.2).

Proof. We decompose the error term in (4.2) as follows:

‖Pv − v‖Lip+ ≤ ‖Rv̄ − v̄‖Lip+ + ‖v̄ − v‖Lip+ , v̄ := Av . (4.5)

1The Lip′-norm is defined for functions w of zero average,
∫
R w = 0, as the L2-dual norm

of ‖φ‖Lip = ess supx 6=y |(φ(x)− φ(y))/(x− y)|.
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Since, in view of [9, Proposition 3.1],

‖v̄ − v‖Lip+ ≤ O(h2)‖v‖BV , (4.6)

we only have to prove that

‖Rv̄ − v̄‖Lip+ ≤ O(h2)‖v‖BV . (4.7)

To this end we recall that if w is a function for which the distance between two
successive zeroes of its primitive W (x) =

∫ x
−∞ w(ξ)dξ is h at the most, then

‖w‖Lip+ ≤ h · ‖w‖L1 (4.8)

[9, Lemma A.1]. Since R is a conservative reconstruction, ARv̄ = v̄, the primitive
of Rv̄ − v̄ vanishes at the grid points xj+ 1

2
for all j. Hence, by (4.8),

‖Rv̄ − v̄‖Lip+ ≤ h · ‖Rv̄ − v̄‖L1 . (4.9)

In the cell Ij, Rv̄ may be either one of the quadratic polynomials {Pi(x) : j−1 ≤
i ≤ j + 1}, (3.1), or one of the linear functions L±j (x), (3.2). Considering each of
these possibilities we conclude that

‖Rv̄ − v̄‖L∞(Ij) ≤ C · (|∆v̄j−2|+ |∆v̄j−1|+ |∆v̄j|+ |∆v̄j+1|) (4.10)

for some constant C. Hence,

‖Rv̄ − v̄‖L1 ≤ h ·∑
j

‖Rv̄ − v̄‖L∞(Ij) ≤ 4Ch
∑

j

|∆v̄j| = 4Ch‖v̄‖BV . (4.11)

Finally, (4.9) and (4.11) imply that

‖Rv̄ − v̄‖Lip+ ≤ 4Ch2‖v̄‖BV ≤ O(h2)‖v‖BV . (4.12)

This proves (4.7) and the proof is therefore completed. 2

In Proposition 4.1 we established the Lip′-consistency of our scheme under the
assumption that at each time step we solve the equation exactly with piecewise
quadratic initial data; i.e., E(∆t) in (4.1) was assumed to be the exact evolution
operator. However, in practice we employ an approximate solver, Ẽ(∆t), and
that yields an additional Lip′-error. In order that this practical version of the
scheme will still satisfy error estimates (4.3) and (4.4), the approximate solver
should satisfy

|(AhẼ(∆t)− AhE(∆t))uh(·, tn)| ≤ O(h2) , (4.13)

[9, Proposition 3.5]. Indeed, our choice of the second order Lax-Wendroff approx-
imate solver satisfies (4.13). Hence, we conclude that our formally third order
scheme satisfies the global error estimates (4.3) as well as the local one (4.4).
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5 Numerical experiments

5.1 Scalar convex problems

In this subsection we test our scheme on Burgers’ equation. In the time evolution
steps we replace the exact solution operator E(∆t) with the approximate Lax-
Wendroff solver, see [5] for details.

Example 1. We solve Burgers’ equation with periodic boundary condition

ut + (1
2
u2)x = 0 −1 ≤ x ≤ 1

u(x, 0) = u0(x) u0(x) periodic with period 2.

When u0(x) = 1 + 1
2
sin(πx) the exact solution is smooth up to t = 2

π
and then

it develops a moving shock which interacts with a rarefaction wave. Table 1 lists
the errors at time t = 0.3 with ∆t/h = 0.66. We note that the L1 and L∞
convergence rates are close to 3.

TABLE 1
l L1 error L1 order L∞ error L∞ order

40 4.0790225910620D-04 8.2980813630651D-04
80 6.9342852473318D-05 2.55 1.0831851524740D-04 2.94
160 9.9659315021962D-06 2.80 1.2665172799076D-05 3.10
320 1.5514357547895D-06 2.68 1.7406302790235D-06 2.86

Figure 5.1 depicts the solution at t = 1.1 and demonstrates the excellent behavior
of the scheme. The shock resolution is optimal as the strong shock is captured in
only one cell.

Figure 5.2 depicts the solution that corresponds to the initial value

u0(x) =

{
1
2

+ x −1
2
≤ x ≤ 1

2

0 otherwise
.

Also here we obtain excellent results: the strong shock is resolved in one cell and
there is no waggle around the rarefaction wave.

While the previous initial values were rarefaction-free, ‖u(·, 0)‖Lip+ < ∞, the
next initial value,

u0(x) =

{
2 −1

2
≤ x ≤ 1

2

1 otherwise.

includes an initial rarefaction, i.e., ‖u(·, 0)‖Lip+ = +∞. The numerical solution
that corresponds to this initial value is shown in Figures 5.3-5.5. Here we see
waggles at the two fronts of the rarefaction wave, in similarity to the second
order Lip+-consistent scheme [1]. As can be seen, those waggles are vanishing in
L1 as h → 0.
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Figure 5.1: ∆t/h = 0.66
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Figure 5.5: ∆t/h = 0.45

Example 2. Next, we examine the convergence of the numerical solution to the
stationary solution. We perform this test on the following periodic initial value
problem with source term that was suggested by Van Leer (private communica-
tion) for entropy convergence test [18],

ut + (1
2
u2)x = −sin(πx), −1 ≤ x ≤ 1

u(x, 0) =

{
1 −1 ≤ x < 0

−1 0 ≤ x ≤ 1
.

The stationary solution in this case is given by

u(x,∞) =




−

√
2
π
(1 + cos(πx)) 0 ≤ x ≤ 1

+
√

2
π
(1 + cos(πx)) − 1 ≤ x ≤ 0.

The reconstructed solution at time t = 0 is plotted in Figure 5.6. There are both
overshoot and undershoot in the reconstruction solution around x = 0. However
the increasing discontinuity of the initial data immediately spreads out by the
overshoot and undershoot into a rarefaction wave. Using a step size of h = 1/8,
N = 16 cells and dt/h = 0.64, we obtain the solution shown in Figure 5.7.
Adopting the L1-Cauchy criterion for convergence to the stationary solution,

N∑

i=1

| un
i − un+1

i |< 10−3 ,

the scheme converged after 21 time steps.
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5.2 Euler Equations of Gas Dynamics

Here, we apply our scheme to the Euler equations of gas dynamics for a polytropic
gas,

ut + f(u)x = 0
u = (ρ,m, E)T

f(u) = (m, ρq2 + P, q(E + P ))T

P = (γ − 1)(E − 1
2
ρq2)

m = ρq .

As in [5], we set γ = 1.4 in all of our computations herein.
The Jacobian matrix A(u) = ∂f/∂u is




0 1 0
−m2

ρ2 + m2(γ−1)
2ρ2

2m
ρ
− m(γ−1)

ρ
γ − 1

−m(E+(E−m2/(2ρ))(γ−1)
ρ2 + m3(γ−1)

2ρ3
(E+(E−m2/(2ρ))(γ−1)

ρ
− m2(γ−1)

ρ2
mγ
ρ


 .

The eigenvalues of A(u) are

λ1 = q − c , λ2 = q , λ3 = q + c ,

where c = (γP/ρ)1/2 is the speed of sound. The corresponding right-eigenvectors
are

r1(u) =




1
q − c

H − qc


 , r2(u) =




1
q

1
2
q2


 , r3(u) =




1
q + c

H + qc


 ,

where H = (E + P )/ρ is the enthalpy. The corresponding left-eigenvectors are

l1(u) = 1
2
(b2 + q/c,−b1q − 1/c, b1)

l2(u) = (1− b2, b1q,−b1)
l3(u) = 1

2
(b2 − q/c,−b1q + 1/c, b1),

where
b1 = (γ − 1)/c2

b2 = 1
2
q2b1 .

Since

∆uλ1 · r1 < 0 (5.1)

∆uλ2 · r2 = 0 (5.2)

∆uλ3 · r3 > 0 (5.3)

we might use the concave reconstruction procedure for the first field w1 of locally
defined characteristic variables w = (w1, w2, w3)

T (where wi = li(û)·u, i = 1, 2, 3),
the non-oscillatory reconstruction procedure as in [8] for the second field w2, and
the convex reconstruction procedure for the third field w3. For details of the
locally defined characteristic variables, see [5].
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Figure 5.8: ∆t/h = 0.2
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Figure 5.10: ∆t/h = 0.2

Example 3. We consider the Riemann problem

u0(x) =

{
ul 0 ≤ x < 0.5
ur 0.5 ≤ x ≤ 1

.

Two sets of initial date are used: the first was proposed by Sod in [14],

(ρl,ml, El) = (1, 0, 2.5) , (ρr,mr, Er) = (0.125, 0, 0.25) .

The other was used by Lax in [6],

(ρl,ml, El) = (0.445, 0.311, 8.928) , (ρr,mr, Er) = (0.5, 0, 1.4275) .

We use the Roe flux [13] without entropy fix formed by Roe’s average as the
numerical flux; for details see [5]. The numerical results for Lax tube problem
are shown in Figures 5.8-5.10. Some waggles are present around the rarefaction
wave, in similarity to the scalar cases.

To avoid the waggles, we may use the non-oscillatory reconstruction procedure
in [8] to reconstruct the first field w1 of locally defined characteristic variables w.
By doing so, we obtain excellent numerical results for both tube problems: the
results are comparable with ENO 4th order scheme, [5], where an improvement
is obtained in the profile for the density in Lax tube problem (in both problems
we used only 100 cells). See Figures 5.11-5.13 for Sod tube problem and Figures
5.14-5.16 for Lax tube problem.

The reader is referred to the Appendix, where we spell out the FORTRAN sub-
routine of our reconstruction procedure for convex (and concave) fluxes.

Remark. The scheme works very well for both shock tube problems. However, the
overshoot and the undershoot of the reconstruction step might lead to negative
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Figure 5.11: ∆t/h = 0.2

pressure values in the numerical solution of Euler equations, and that stops the
scheme. Another artifact of the over- and undershoots is the appearance of wag-
gles around the rarefaction wave. These difficulties are currently under further
investigation.
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6 Appendix - The Reconstruction Procedure

The Fortran code below performs the reconstruction in a typical cell Ij. The
variables u(k), 1 ≤ k ≤ 5, denote the cell-averages on the five cells around Ij,
namely Ik, j − 2 ≤ k ≤ j + 2. The variables ul and ur are left and right end
point values, respectively, that are obtained after the reconstruction; i.e., ul =
Rj(xj− 1

2
) and ur = Rj(xj+ 1

2
). Hence, the reconstructed quadratic polynomial is

characterized by the three values ul, u(3) and ur.
The code may be easily modified to handle concave fluxes. Just replace all

.lt., .le. and .ge. to .gt., .ge., and .le., respectively.

subroutine entropy convex(ul,ur,u)
implicit real*8 (a-h,o-z)
dimension u(5)
dd1=u(3)-2.0d00*u(2)+u(1)
dd2=u(4)-2.0d00*u(3)+u(2)
dd3=u(5)-2.0d00*u(4)+u(3)
if(dd2.lt.0.0d00) then
if(dd1.le.0.0d00) then
ur1=( 2.0d00*u(3)+5.0d00*u(2)-u(1))/6.0d00
ul2=(-u(4)+5.0d00*u(3)+2.0d00*u(2))/6.0d00
if(ul2.le.ur1) then
ul=ul2
ur=(2.0d00*u(4)+5.0d00*u(3)-u(2))/6.0d00

else
ur=(11.0d00*u(3)-7.0d00*u(2)+2.0d00*u(1))/6.0d00
ul=ur1

24



end if
else
ul=0.5d00*(u(3)+u(2))
ur=1.5d00*u(3)-0.5d00*u(2)

end if
else
if(dd3.ge.0.0d00) then
ur1=( 2.0d00*u(4)+5.0d00*u(3)-u(2))/6.0d00
ul2=(-u(5)+5.0d00*u(4)+2.0d00*u(3))/6.0d00
if(ul2.le.ur1) then
ul=(-u(4)+5.0d00*u(3)+2.0d00*u(2))/6.0d00
ur=ur1

else
ur=ul2
ul=(11.0d00*u(3)-7.0d00*u(4)+2.0d00*u(5))/6.0d00

end if
else
ur=0.5d00*(u(3)+u(4))
ul=1.5d00*u(3)-0.5d00*u(4)

end if
end if
return
end
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