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Abstract
We study the homogenization of 2D linear transport equations, ut + ~a(~x/ε) · ∇~xu = 0,

where ~a is a non-vanishing vector field with integral invariance on the torus T 2. When the
underlying flow on T 2 is ergodic, we derive the efficient equation which is a linear transport
equation with constant coefficients and quantify the pointwise convergence rate. This result
unifies and illuminates the previously known results in the special cases of incompressible
flows and shear flows. When the flow on T 2 is non-ergodic, the homogenized limit is an
average, over T 1, of solutions of linear transport equations with constant coefficients; the
convergence here is in the weak sense of W−1,∞

loc (R1) and the sharp convergence rate is O(ε).
One of the main ingredients in our analysis is a classical theorem due to Kolmogorov,

regarding flows with integral invariance on T 2, to which we present here an elementary and
constructive proof.
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1 Introduction

In this paper we study the homogenization of two-dimensional linear transport equations
with oscillatory coefficients:

ut + ~a

(
~x

ε

)
· ∂u

∂~x
= 0 ~x ∈ R2 , t ∈ R+ , ε > 0 , (1.1)

u(~x, 0) = u0(~x) . (1.2)

1Research supported by ONR Grant #N00014-92-J-1890.
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Here, u0 is a Lipschitz continuous function on R2 and ~a, the transport vector field, is a
smooth mapping from T 2, the two-dimensional unit torus, to R2, having no critical points,

~a 6= 0 on T 2 . (1.3)

Arrowed bold faced letters will denote henceforth vectors and the corresponding indexed
letters will denote their components, e.g., ~a(~x) = (a1(x1, x2), a2(x1, x2)).

Equations of the above form serve as typical models for miscible displacement problems in
the oil reservoir simulation; the unknown u corresponds to the concentration of the invading
fluid (e.g. [1]).

In the one-dimensional case,

ut + a(
x

ε
)ux = 0 , u(x, 0) = u0(x) , (1.4)

a being a non-vanishing scalar function on T 1, the homogenized equation is easily derived,
e.g. [1]: u(x, t) converges pointwise to a limit, v(x, t), which solves the homogenized equation

vt + a∗vx = 0 , v(x, 0) = u0(x) , (1.5)

where a∗ is the harmonic average of a over T 1,

a∗ =

(∫ 1

0

dx

a(x)

)−1

. (1.6)

In the two-dimensional case, however, the problem of homogenization becomes more
intricate. The effective equations depend sensitively on the topological structure and ergod-
icity of the flow on T 2 generated by the vector field ~a, see [3, 4] and the references therein.
Hou and Xin studied in [4] the homogenization of transport equations of the form (1.1) with
divergence-free vector fields, ∇~x · ~a = 0, as a model problem for the incompressible Euler
equations with oscillatory data,

~ut + ~u · ∂~u

∂~x
= −∇p , ∇~x · ~u = 0 ; ~u(~x, 0) = ~u0(~x,

~x

ε
) , ~u0(~x,~y) ∈ C1

0(R2 × T 2) .

Using a weak L2 formulation, they showed that when the rotation number of the flow which
~a generates on T 2 is irrational, the effective equation is

vt + ~a · ∂v

∂~x
= 0 , v(~x, 0) = u0(~x) , (1.7)

where ~a stands for the arithmetic average of ~a over T 2. In case the rotation number is
rational, the homogenized weak limit is characterized by an infinite symmetric hyperbolic
system. Similar results were obtained by E in [3] for much more general incompressible flows.

The motivation for the present work came from the following three questions:

1. For incompressible flows with irrational rotation numbers, the effective equation, (1.7),
is a linear transport equation with constant coefficients which are the arithmetic averages
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over T 2 of the original transport vector field ~a. On the other hand, for the one-dimensional
case, (1.4), or for shear flows with an irrational rotation number γ,

ut + a(
~x

ε
)ux1 + γa(

~x

ε
)ux2 = 0 , u(~x, 0) = u0(~x) , (1.8)

a being a non-vanishing scalar function on T 2, the effective equation is a similar transport
equation with the harmonic averages of the oscillatory field as coefficients (see §3). These
results, put side by side, raise an interesting question: why when passing to the homogenized
limit, divergence-free fields give rise to arithmetic averages, while shear fields yield harmonic
averages? Is there an umbrella setup which unifies these two disjoint classes of vector fields2,
in which we can derive an effective equation (when the rotation number is irrational) that
has the arithmetic averages as coefficients in the first case and the harmonic averages as
coefficients in the second case?

2. When the rotation number is rational, the limit solution usually does not satisfy a
transport equation (see §4). Instead, the effective equations are either non-local diffusion
equations with memory terms or systems of hyperbolic equations [3, 4, 10]. In other words,
homogenization, in case the underlying flow is non-ergodic, has a destructive effect on the
simplicity of the original equations. Hence, as Tartar asks in [10], when possible, would
it not be more reasonable to look for the limit solution itself rather than looking for the
equation (or equations) that it satisfies? And does this limit solution retain, in some sense,
the simple structure of linear transport?

3. What is the strongest topology in which the oscillatory solution converges to its
homogenized limit and what is the convergence rate?

These questions are addressed in this paper.

It turns out that the appropriate class of vector fields which is large enough to include
both divergence-free fields and shear ones is the following:

Definition 1.1 The vector field ~a ∈ C1(T 2) is in class I, if it has an invariant measure
density, i.e., a positive function µ ∈ C1(T 2) such that

∫
T 2 µdx1dx2 = 1 and ∇~x · µ~a = 0.

A classical theorem, due to Kolmogorov (Theorem 2.1), relates any non-vanishing vector
field ~a ∈ I to a shear vector field,

(a(·), γa(·)) , a : T 2 → R , γ = Const , (1.9)

through a diffeomorphism of T 2; γ is called the rotation number and it determines the
ergodicity of the flow on the torus T 2 which the dynamical system d~x/dt = ~a(~x) generates
[8]. §2 is devoted to this theorem which plays a central role in our analysis. The main result
of that section is given in Theorem 2.2: the explicit diffeomorphism, shear form and rotation
number are derived for vector fields which satisfy the restricted version of condition (1.3),

a1 6= 0 on T 2 . (1.10)

2The intersection of these two classes of vector fields, when the rotation number is irrational, consists
only of constant vectors.
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This result, which also provides an elementary and straightforward proof of Kolmogorov’s
Theorem, is interesting for its own sake.

Using this theorem, we may reduce the general problem (1.1)–(1.2) to the simpler problem
(1.8). In §3 we concentrate on such shear flows. By solving explicitly the equation with the
oscillatory shear vector field, we are able to derive the homogenized limit and to determine
the type and the rate of convergence, in the ergodic case, §3.1, and in the non-ergodic one,
§3.2.

We are now ready to analyze the general problem, (1.1)–(1.2); this is done in §4. As in §3,
we separate the discussion into two cases, according to the ergodicity of the underlying flow
on the torus. In §4.1 we show that when the flow is ergodic (γ is irrational), the effective
equation is a linear transport equation with a transport field which equals the harmonic
average of the corresponding shear vector field (1.9). Namely, if a∗ is the harmonic average
over T 2 of a(·) in (1.9), then

u(·, t) → v(·, t) where vt + a∗vx1 + γa∗vx2 = 0 , v(·, 0) = u0 ; (1.11)

in addition, we derive a pointwise convergence rate estimate (Theorem 4.1).
When the original vector field ~a is already in a shear form, Theorem 4.1 agrees with

the result derived in §3, namely, the homogenized equation has the harmonic averages of
~a as coefficients. On the other hand, when ~a is divergence-free, Theorem 4.1 recovers the
arithmetic average homogenized equation, (1.7); to show this, we prove in Theorem 4.2 that
the harmonic average of the shear vector field (1.9) equals the arithmetic average of µ~a, µ
being the invariant measure density of the original field ~a. This is done under assumption
(1.10), using our explicit version of Kolmogorov’s Theorem, namely, Theorem 2.2. In case ~a is
divergence-free, µ ≡ 1 and we therefore get equation (1.7). Hence, class I is the appropriate
framework for a unified discussion of both divergence-free transport vector fields and shear
ones, and Theorem 4.1 ’interpolates’ successfully between the two different homogenization
results in these two disjoint cases.

In §4.2 we consider the non-ergodic case where the rotation number γ is rational. Here,
instead of deriving the effective equations, we obtain an explicit expression for the limit
solution itself, v̄, and show that u(·, t) ⇀ v̄(·, t) in W−1,∞(R1) and the sharp convergence
rate is O(ε), Theorem 4.3.

We show that in the general case v̄ is not a solution of a linear transport equation; indeed,
as mentioned earlier, the effective equations for v̄ are of much greater complexity than the
original linear transport equation. However, by deriving the explicit form of v̄, we are able
to see that it does retain the simple structure of linear transport: v̄(~x, t) =

∫
T 1 v(~x, t, η)dη

where v(~x, t, η) satisfies a linear transport equation with η-dependent constant coefficients:

u(·, t) ⇀ v̄(·, t) =
∫

T 1
v(·, t, η)dη where vt+a∗ηvx1+γa∗ηvx2 = 0 , v(·, 0, η) = u0 . (1.12)

Hence, although v̄ itself is not a solution of a linear transport equation, it is an average of
such. Consequently, in case the coefficients a∗η ≡ a∗ ∀η ∈ T 1, (1.12) becomes the effective
equation for v̄.

We would like to mention in this context a proposition due to Brenier, [2, Proposition
1], which states that whenever ~a is divergence-free, there exists a probability space (Ω, dη)
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and a bounded measurable mapping ~b = ~b(η) : Ω → R2 such that

u(·, t) ⇀ v̄(·, t) =
∫

Ω
v(·, t, η)dη where vt +~b(η) · ∇~xv = 0 , v(·, 0, η) = u0 . (1.13)

The proof of this proposition (given in the multidimensional case) is based on Birkhoff’s

pointwise ergodic theorem which implies the existence of the vector field ~b(η), without con-
structing it. In §4 we prove this result for two-dimensional flows in the more general context
of vector fields ~a ∈ I and construct the explicit form of (1.13) in the ergodic case, (1.11),
and in the the non-ergodic one, (1.12).

Finally, we would like to point out that our analysis may be extended to include oscillatory
data, i.e.

u(~x, 0) = u0(~x,
~x

ε
) where u0(~x,~y) ∈ Lip(R2 × T 2) , (1.14)

instead of (1.2) and also oscillatory forcing terms. The effect of homogenization on such
oscillatory data is merely arithmetic averaging [3, 4, 9] and the convergence will be in the
weaker sense of W−1,∞

loc (R2).

2 Dynamical systems on the two-dimensional torus

Consider the dynamical system on T 2,

d~x

dt
= ~a(~x) , (2.1)

where the non-vanishing vector field ~a(~x) is in class I (see Definition 1.1). A classical theorem,
due to Kolmogorov, relates flows generated by such vector fields to shear flows through a
diffeomorphism, [5, 8]:

Theorem 2.1 There exists a smooth change of variables on the torus, ~y =~f(~x), under which
(2.1) transforms into

d~y

dt
= ~p · a(~y) , ~p =

(
1
γ

)
, (2.2)

where γ is a constant – the rotation number – and a(~y) is a non-vanishing smooth scalar
function.

In the following proposition we show that the change of variables ~y = ~f(~x) may be
normalized on the torus:

Proposition 2.1 The change of variables in Theorem 2.1, ~y =~f(~x), may be chosen so that

fi(~x +~ej) = fi(~x) + Ii,j 1 ≤ i, j ≤ 2 , (2.3)

where ~e1 = (1, 0), ~e2 = (0, 1) and I stands for the 2× 2 identity matrix.
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Proof. Let ~y =~f(~x) be the smooth change of variables of Theorem 2.1. Since~f : T 2 → T 2

is continuous, there exists a 2× 2 matrix L with integer entries Li,j such that

fi(~x +~ej) = fi(~x) + Li,j 1 ≤ i, j ≤ 2 . (2.4)

The inverse transformation, ~g : T 2 → T 2, ~g = ~f
−1

, being continuous as well, satisfies,
similarly,

gi(~x +~ej) = gi(~x) + Mi,j 1 ≤ i, j ≤ 2 , (2.5)

where Mi,j are integers. Clearly, M = L−1.

We now consider the linear change of variables ~z = M~y = M~f(~x). This transformation,
which is smooth since Mi,j are integers, leaves the system (2.2) in a shear form, and, by
(2.4),

~z(~x +~ej) = M~f(~x +~ej) = M · (~f(~x) + L·,j) = ~z(~x) + I·,j j = 1, 2 .

That concludes the proof. ¤

Kolmogorov’s proof of Theorem 2.1 is not constructive. Namely, it does not provide us
with neither the explicit change of variables, ~y = ~f(~x), nor with the value of the rotation
number γ or the scalar function a(~y). We give below a more explicit version of Kolmogorov’s
Theorem followed by a proof which is both elementary and constructive.

As in [8], we replace the assumption of no critical points, (1.3), with the assumption that
one of the components of the vector field, say a1(~x), never vanishes, (1.10). The geometric
implication of (1.3) is that there exists a smooth non-bounding cycle which is everywhere
transversal to the flow. By replacing (1.3) with (1.10), we simply take that cycle to be
x2 = 0. This enables us to find the explicit change of variables and rotation number of the
flow:

Theorem 2.2 Assume that ~a ∈ I and that (1.10) holds. Then there exists a smooth change
of variables ~x 7→ ~y under which (2.1) transforms into (2.2) where

γ =
µa2

µa1

, µai =
∫

T 2
µ(~x)ai(~x)dx1dx2 i = 1, 2 , (2.6)

and a(~y) is a non-vanishing smooth scalar function.

Proof. We start by assuming that both a1 and a2 do not vanish on T 2. Later, we remove
the assumption that a2 6= 0.

Let ~b(~x) = µ(~x) · ~a(~x). Since ∇~x ·~b = 0, it follows that

∫ 1

0
b1(~x)dx2 = b1 ∀x1 and

∫ 1

0
b2(~x)dx1 = b2 ∀x2 , (2.7)

where the bar notation stands henceforth for the arithmetic average over T 2, i.e., bi =∫
T 2 bi(~x)dx1dx2, i = 1, 2. We now introduce the new variables,

y1 = f1(~x) =
1

b2

∫ x1

0
b2(ξ, 0)dξ , y2 = f2(~x) =

1

b1

∫ x2

0
b1(x1, ξ)dξ . (2.8)

6



First, we note that (2.7) and the 1-periodicity of bi(·, ·) imply that ~f satisfies (2.3) and,

consequently, ~y =~f(~x) is a smooth change of variables on T 2. Moreover, this transformation
is invertible since its Jacobian is non-vanishing:

∣∣∣∣∣
∂~y

∂~x

∣∣∣∣∣ =
1

b1 · b2

b1(x1, x2)b2(x1, 0) 6= 0 ∀~x ∈ T 2 . (2.9)

Denoting the inverse transformation by ~x = ~g(~y), we show below that (2.8) transforms (2.1)
into (2.2) with

a(~y) =
1

b2

b2(g1(~y), 0) · a1(g1(~y), g2(~y)) 6= 0 and γ =
b2

b1

. (2.10)

Indeed,
dy1

dt
=

1

b2

b2(x1, 0) · a1(x1, x2) = a(~y) ,

and
dy2

dt
=

1

b1

∫ x2

0

∂b1

∂x1

(x1, ξ)dξ · a1(x1, x2) +
1

b1

b1(x1, x2) · a2(x1, x2) =

1

b1

· (b2(x1, 0)− b2(x1, x2)) · a1(x1, x2) +
1

b1

b1(x1, x2) · a2(x1, x2) =

1

b1

b2(x1, 0) · a1(x1, x2) = γ · a(~y) .

This concludes the proof when both a1 and a2 are non-vanishing. Next, we handle the
case where only a1 does not vanish. In that case, we can always find an integer k > 0 so
large such that

a2 + ka1 6= 0 on T 2 . (2.11)

Hence, introducing the new variables

~x′ = K~x , K =

(
1 0
k 1

)
, (2.12)

system (2.2) transforms into a system where both components of the vector field are non-
vanishing:

d~x′

dt
= ~a′(K−1~x′) , ~a′ = K~a . (2.13)

This new system has the same invariant measure as the original one, (2.1), namely µ(K−1~x′):

∇~x′ · µ~a′ =
(
K−1

)T ∇~x · µK~a = ∇~x · µ~a = 0 .

We may, therefore, proceed and apply the change of variables (2.8),

y′1 = f ′1(~x
′) =

1

b′2

∫ x′1

0
b′2(ξ, 0)dξ , y′2 = f ′2(~x

′) =
1

b′1

∫ x′2

0
b′1(x

′
1, ξ)dξ ,
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where ~b
′
= µ~a′, in order to get the system

d~y′

dt
= ~p′ · a′(~y′) , ~p′ =

(
1
γ′

)
,

with

γ′ =
µa′2
µa′1

=
µ(a2 + ka1)

µa1

=
µa2

µa1

+ k

(note that the transformation ~x 7→ ~x′ = K~x is average-preserving). Finally, applying the
additional transformation ~y = K−1~y′, we get the system (2.2) with the value of γ as in (2.6).
¤

3 Shear flows

Here, we concentrate on shear flows,

ut + a

(
~x

ε

)
~p · ∂u

∂~x
= 0 , ~p =

(
1
γ

)
, u(~x, 0) = u0(~x) , (3.1)

where γ is a constant – the rotation number – and a(~x) is a non-vanishing scalar function
on T 2. Applying the method of characteristics, we find that the solution of (3.1) is

u(~x, t) = u0(εr, ε(γr + η)) , (3.2)

where

r = r(~x, t) := A−1
η

(
− t

ε
+ Aη(

x1

ε
)
)

, η =
x2 − γx1

ε
(3.3)

and

Aη(x) :=
∫ x

0

dy

a(y, γy + η)
. (3.4)

We now study the behavior of u(~x, t) when ε ↓ 0. The discussion is separated into two cases:

3.1 Case 1: Irrational rotation numbers

We start by obtaining an asymptotic approximation for Aη(x), (3.4), for large values of x.
Denoting δ = 1

x
, we find that

Aη(x) =
∫ 1

δ

0

dy

a(y, γy + η)
=

1

δ

∫ 1

0

dy

a(y
δ
, γ y

δ
+ η)

=
1

δ

∫ 1

0
b(

y

δ1

,
y

δ2

)dy , (3.5)

where b(z1, z2) = 1/a(z1, z2 + η), δ1 = δ and δ2 = δ/γ. Let a∗ denote the harmonic average
of a over T 2,

a∗ =

(∫

T 2

1

a(~y)
dy1dy2

)−1

. (3.6)
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The arithmetic average of b over T 2 equals 1/a∗, regardless of the value of η, thanks to the
periodicity of a. Hence, since the ratio between δ1 and δ2 is irrational, we conclude by [11,
Theorem 3.1] that ∫ 1

0
b(

y

δ1

,
y

δ2

)dy =
1

a∗
+ ν(δ) (3.7)

where ν(δ) is (here and henceforth) an order of magnitude which vanishes when δ → 0.

Remark. The order of magnitude of ν(δ) in (3.7) depends on the type of irrationality of
γ and on the smoothness of b; if, for instance, γ has a finite type (which means that there
exists σ ≥ 1 such that dist(γn,Z) ≥ O(n−σ) for all n ∈ N) and b is sufficiently smooth,
ν(δ) = O(δ). For a thorough discussion of this matter, please consult [11, §3].

Multiplying (3.7) by x = 1/δ, we get by, in view of (3.7), that

Aη(x) =
x

a∗
·
(
1 + ν(

1

x
)
)

|x| >> 1 . (3.8)

Estimate (3.8) implies that

A−1
η (x) = a∗x ·

(
1 + ν(

1

x
)
)

|x| >> 1 . (3.9)

Applying the asymptotic estimates (3.8) and (3.9) in (3.3), we find that for fixed x1 and t

εr=εA−1
x2−γx1

ε

(
− t

ε
+ Ax2−γx1

ε
(
x1

ε
)
)

=εA−1
x2−γx1

ε

(
− t

ε
+

x1

a∗ε
· (1 + ν(ε))

)
=−a∗t + x1 + ν(ε) .

Using this in (3.2) we find that for fixed ~x and t,

u(~x, t) = u0(−a∗~pt +~x + ν(ε)) .

Since u0 is Lipschitz continuous, we conclude the following:

Proposition 3.1 The solution u(~x, t) of the transport equation (3.1), when γ is irrational,
converges pointwise to

v(~x, t) = u0(−a∗~pt +~x) , (3.10)

the solution of the homogenized equation

vt + a∗~p · ∂v

∂~x
= 0 , v(~x, 0) = u0(~x) , (3.11)

where a∗ is the harmonic average of a(~x) over T 2, (3.6). Moreover, the following pointwise
error estimate holds,

|u(~x, t)− v(~x, t)| ≤ ν(ε) −→
ε→0

0 , (3.12)

where the order of magnitude of ν(ε) depends on the smoothness of a(·) and on γ.
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3.2 Case 2: Rational rotation numbers

Assume that γ = m
n
∈ Q. Since a(~x) is 1-periodic in its variables, d

dx
Aη(x) = 1/a(x, γx + η)

is n-periodic in x and 1-periodic in η. Letting a∗η denote the harmonic average of a(·, γ ·+η)
over its period,

a∗η =

(
1

n

∫ n

0

dx

a(x, γx + η)

)−1

, (3.13)

we conclude that
Aη(x + n) = Aη(x) + n(a∗η)

−1 . (3.14)

Hence, for all x ∈ R,

Aη(x) =
x

a∗η
+ d1 where |d1| = |d1(x)| ≤ max

0≤x≤n

∣∣∣∣∣Aη(x)− x

a∗η

∣∣∣∣∣ . (3.15)

Equality (3.15) provides us with a linear asymptotic approximation to Aη(x) for large values
of x. In view of (3.14), it follows that

A−1
η (x + n(a∗η)

−1) = A−1
η (x) + n . (3.16)

Consequently,

A−1
η (x) = a∗ηx + d2 where |d2| = |d2(x)| ≤ max

0≤x≤n(a∗η)−1
|A−1

η (x)− a∗ηx| . (3.17)

Using (3.15) and (3.17) in (3.3) we get:

r = A−1
η

(
− t

ε
+

x1

εa∗η
+ d1

)
= a∗η ·

(
− t

ε
+

x1

εa∗η
+ d1

)
+ d2 =

−a∗ηt + x1 +O(ε)

ε
.

Hence, in view of (3.2), the solution of (3.1) equals

u(~x, t) = u0(−a∗η~pt +~x +O(ε)) , η =
x2 − γx1

ε
. (3.18)

Since u0 is Lipschitz continuous with respect to its variables, (3.18) implies that

‖u(~x, t)− w(~x, t)‖L∞ ≤ O(ε) where w(~x, t) = u0(−a∗η~pt +~x) . (3.19)

Let Γ be a curve in R2 which is nowhere parallel to ~p and, hence, parameterizable by z =
x2 − γx1. Along such curves

w = v(~x(z), t,
z

ε
) where v(~x, t, η) = u0(−a∗η~pt +~x) . (3.20)

Since v is 1-periodic in η, [9, Lemma 2.1] implies that for fixed t,

‖v(~x(z), t,
z

ε
)− v̄(~x(z), t)‖W−1,∞

loc
≤ O(ε) where v̄(~x, t) =

∫

T 1
v(~x, t, η)dη . (3.21)

Combining (3.19)–(3.21) we arrive at:
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Proposition 3.2 The solution u(~x, t) of the transport equation (3.1), where γ = m
n
∈ Q,

converges weakly in W−1,∞
loc (R1) to

v̄(~x, t) =
∫

T 1
u0(−a∗η~pt +~x)dη , (3.22)

where a∗η is given in (3.13). Moreover, the following error estimate holds for any fixed t
along any curve ~x = ~x(z) not parallel to ~p:

‖u(~x(·), t)− v̄(~x(·), t)‖W−1,∞
loc

≤ O(ε) . (3.23)

In the special case where a∗η ≡ a∗ ∀η ∈ [0, 1], the limit is v̄(~x, t) = u0(−a∗~pt+~x) , the solution
of the homogenized equation

v̄t + a∗~p · ∂v̄

∂~x
= 0 , v̄(~x, 0) = u0(~x) , (3.24)

and the convergence is in the strong sense:

‖u(~x, t)− v̄(~x, t)‖L∞ ≤ O(ε) . (3.25)

Remark. The one-dimensional transport equation,

ut + a(
x

ε
)ux = 0 ; u(x, 0) = u0(x) x ∈ R1 , t ∈ R+ , (3.26)

a(x) being a non-vanishing function on T 1, is a special case of (3.1), where a(~x) and u0(~x)
depend solely on x1 and γ = 0. Since in this case a∗η ≡ a∗, the harmonic average of a(x)
over T 1, we get, in view of (3.24) and (3.25), that u(x, t) converges strongly to v̄(x, t), the
solution of the homogenized equation

v̄t + a∗v̄x = 0 ; v̄(x, 0) = u0(x) .

4 General flows

We now extend our discussion to general vector fields in class I. The question of homog-
enization of transport equations (1.1) with vector fields in that class, may be reduced to
homogenization of an equation of type (3.1), thanks to Theorem 2.1. Using this theorem,
we shall construct the explicit solution to (1.1)-(1.2). To do that, we need to solve the
characteristic equations.

As a first step, we find the semigroup St which is associated with the dynamical system

d~x

dt
= ~a(~x) , ~x(t = 0) = ~x0 ; (4.1)

i.e., the mapping St : R2 → R2 such that ~x(t) = St(~x
0) is the solution of (4.1). Then, if S−1

t

is the inverse semigroup, the solution of (1.1)–(1.2) is given by:

u(~x, t) = u0

(
εS−1

t
ε

(
~x

ε

))
. (4.2)
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Applying Kolmogorov’s Theorem, we change variables in (4.1) to ~y =~f(~x) and obtain the
system

d~y

dt
= ~p · a(~y) , ~p =

(
1
γ

)
; ~y(t = 0) = ~y0 =~f(~x0) . (4.3)

Since η = y2− γy1 is an integral of (4.3), this system can be easily solved and its solution is:

~y = A−1
η (t + Aη(y

0
1)) ~p + η~e2 , η = y0

2 − γy0
1 ,

where ~e2 = (0, 1) and Aη(x) is given in (3.4). Changing variables back to ~x = ~g(~y) (~g =~f
−1

),
we get that

~x = St(~x
0) = ~g( A−1

η (t + Aη(f1(~x
0))) ~p + η~e2 ) , η = f2(~x

0)− γf1(~x
0) . (4.4)

By eliminating ~f(~x0) from (4.4) we get that

~f(~x0) = A−1
η (−t + Aη(f1(~x))) ~p + η~e2 , η = f2(~x)− γf1(~x) .

Applying the inverse transformation ~g, we conclude that

~x0 = S−1
t (~x) = ~g( A−1

η (−t + Aη(f1(~x))) ~p + η~e2 ) , η = f2(~x)− γf1(~x) . (4.5)

Finally, using (4.2) and (4.5), we arrive at the explicit solution of (1.1)–(1.2):

Proposition 4.1 The solution of (1.1)–(1.2) is given by

u(~x, t) = u0(ε~g(r, γr + η)) , (4.6)

where

r = r(~x, t) := A−1
η

(
− t

ε
+ Aη

(
f1

(
~x

ε

)))
, η = f2

(
~x

ε

)
− γf1

(
~x

ε

)
(4.7)

and Aη is defined in (3.4). Here,~f is the mapping from T 2 to T 2 which Theorem 2.1 associates
with the system (4.1) and ~g is its inverse.

Next, we find the limit of the solution when ε → 0. In doing so, we shall make use of
the following asymptotic estimates for ~f and its inverse ~g, which are a direct consequence of
Proposition 2.1:

~f(~x) = ~x + ~df (~x) where |~df (~x)| ≤ max
~x∈[0,1]2

|~f(~x)−~x| ∀~x ∈ R2 , (4.8)

~g(~x) = ~x + ~dg(~x) where |~dg(~x)| ≤ max
~x∈[0,1]2

|~g(~x)−~x| ∀~x ∈ R2 . (4.9)

12



4.1 Case 1: Ergodic flows

Here, we deal with the case where the rotation number γ of the system (4.1) is irrational.
The asymptotic estimates with which we are equipped are (3.8)+(3.9) for Aη and A−1

η , and

(4.8)+(4.9) for ~f and ~g.
Fixing a point, (~x, t), we now aim at finding the limit of u(~x, t) when ε → 0. In view of

(4.8) and (3.8),

Aη

(
f1

(
~x

ε

))
= Aη

(
x1 +O(ε)

ε

)
=

x1 +O(ε) + ν(ε)

a∗ε
.

Therefore, by (4.7) and (3.9),

r=A−1
η

(−a∗t + x1 +O(ε) + ν(ε)

a∗ε

)
=
−a∗t + x1 +O(ε) + ν(ε)

ε
. (4.10)

Next, we estimate η, (4.7), using (4.8):

η = f2

(
~x

ε

)
− γf1

(
~x

ε

)
=

x2 − γx1 +O(ε)

ε
. (4.11)

The last two equalities imply that

γr + η =
−γa∗t + x2 +O(ε) + ν(ε)

ε
. (4.12)

Using (4.9), we conclude by (4.10) and (4.12) that

ε~g(r, γr + η) = ε

(
r

γr + η

)
+O(ε) = −a∗t~p +~x +O(ε) + ν(ε) . (4.13)

Therefore, by (4.6), (4.13) and the Lipschitz continuity of u0, we arrive at:

Theorem 4.1 Let ~a(~x) be a vector field with a shear flow form (a(~y), γa(~y)) and let u(~x, t)
be the solution of (1.1)-(1.2). Then if the rotation number γ is irrational, u(~x, t) converges
pointwise to

v(~x, t) = u0(−a∗t~p +~x) , ~p =

(
1
γ

)
, (4.14)

the solution of the homogenized equation

vt + a∗~p · ∂v

∂~x
= 0 , v(~x, 0) = u0(~x) , (4.15)

where a∗ is the harmonic average of a(~y) over T 2, (3.6). Moreover, the following pointwise
error estimate holds,

|u(~x, t)− v(~x, t)| ≤ O(ε) + ν(ε) −→
ε→0

0 , (4.16)

where the order of magnitude of ν(ε) depends on the smoothness of a(·) and on γ.
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In other words, Theorem 4.1 states that given a transport equation, (1.1), with a non-
vanishing vector field ~a ∈ I, its homogenized equation, (4.15), is a transport equation with
a constant vector field that equals the harmonic average of the shear vector field associated
with ~a. Hence, it is a natural generalization of Proposition 3.1.

Thanks to Theorem 2.2, we may derive the explicit form of the homogenized equation
(4.15) when a1 6= 0.

We concentrate on the case where both a1 and a2 do not vanish on T 2; the case where
only a1 is non-vanishing is treated similarly, along the lines of the second part of the proof
of Theorem 2.2.

We start by computing a∗ – the harmonic average of a(~y) which is given in (2.10):

1

a∗
=

∫

T 2

b2

b2(g1(~y), 0) · a1(g1(~y), g2(~y))
dy1dy2 .

Changing variables to ~x = ~g(~y), we get, using (2.9), that

1

a∗
=

∫

T 2

µ(~x)

b1

dx1dx2 =
1

b1

. (4.17)

Hence, by (4.17) and (2.10),

a∗~p = b1 ·




1

b2
b1


 =




b1

b2


 =




µa1

µa2


 . (4.18)

This proves the following:

Theorem 4.2 Under the assumptions of Theorem 4.1, if a1 6= 0, u(~x, t) converges pointwise
to

v(~x, t) = u0(−µ~a · t +~x) , (4.19)

the solution of the homogenized equation

vt + µ~a · ∂v

∂~x
= 0 , v(~x, 0) = u0(~x) , (4.20)

where µ is the invariant measure of the vector field ~a and µ~a is the arithmetic average of µ~a
over T 2.

Examples.

1. When ∇~x · ~a = 0, µ ≡ 1 and then equation (4.20) coincides with (1.7).

2. Assume that ~a = a(~x)~p where ~p = (1, γ) and γ is irrational. The invariant measure
in this case is µ(~x) = a∗/a(~x), where a∗ is the harmonic average of a over T 2, (3.6). Hence,
µ~a = a∗~p, and, consequently, equation (4.20) coincides with (3.11).
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4.2 Case 2: Non-ergodic flows

Here, γ = m
n

is rational. We still use (4.8)+(4.9) for ~f and ~g; Aη and A−1
η , however, are now

estimated by (3.15)+(3.17), rather than (3.8)+(3.9) as it was in the previous case. Here,
in fact, lies the difference between the two cases: while, for ergodic flows, the asymptotic
behavior of Aη is independent of the oscillatory term η (and, therefore, enables strong
convergence of the solution), in non-ergodic flows, it depends on η (and, consequently, the
solution converges only in a weak sense).

Arguing along the same lines as in the previous case, we get the equivalent estimate to
(4.13), which holds uniformly for all ~x and t:

ε~g(r, γr + η) = −a∗ηt~p +~x +O(ε) . (4.21)

Hence, by (4.6) and the Lipschitz continuity of u0, we conclude that

‖u(~x, t)− w(~x, t)‖L∞ ≤ O(ε) where w(~x, t) = u0(−a∗ηt~p +~x) . (4.22)

Denoting z = x2 − γx1, we get, in view of (4.22) and (4.11), that along curves which are
nowhere parallel to ~p (and, hence, parameterizable by z),

w = v(~x(z), t,
z +O(ε)

ε
) where v(~x, t, η) = u0(−a∗ηt~p +~x) . (4.23)

We now invoke the following fundamental lemma which is a straightforward generalization
of [9, Lemma 2.1]:

Lemma 4.1 Let f(x, y) be a bounded function of x ∈ R and y ∈ T 1, and let r(x) be a

smooth function on R with a non-vanishing derivative, r′(x) 6= 0. Then if f ε(x) = f(x, r(x)
ε

)
and f̄(x) =

∫
T 1 f(x, y)dy,

‖f ε(x)− f̄(x)‖W−1,∞
loc

≤ O(ε) when ε ↓ 0 . (4.24)

We use this lemma for the function v(~x(z), t, η = z+O(ε)
ε

) for fixed values of t; note that v
is 1-periodic in η and that r(z) = z+O(ε) is invertible when ε is sufficiently small. Therefore,
we conclude that for fixed t

‖v(~x(z), t,
z +O(ε)

ε
)− v̄(~x(z), t)‖W−1,∞

loc
≤ O(ε) where v̄(~x, t) =

∫

T 1
v(~x, t, η)dη . (4.25)

Combining (4.22)–(4.25) we arrive at:

Theorem 4.3 Let ~a(~x) be a vector field with a shear flow form a(~y)~p, ~p = (1, γ), and let
u(~x, t) be the solution of (1.1)-(1.2). Then if the rotation number is rational, γ = m

n
, u(~x, t)

converges weakly in W−1,∞
loc (R1) to

v̄(~x, t) =
∫

T 1
u0(−a∗η~pt +~x)dη ,
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where a∗η is given in (3.13). Moreover, the following error estimate holds for any fixed t
along any curve ~x = ~x(z) not parallel to ~p:

‖u(~x(·), t)− v̄(~x(·), t)‖W−1,∞
loc

≤ O(ε) . (4.26)

In the special case where a∗η ≡ a∗ ∀η ∈ [0, 1], the limit is v̄(~x, t) = u0(−a∗~pt+~x) , the solution
of the homogenized equation

v̄t + a∗~p · ∂v̄

∂~x
= 0 , v̄(~x, 0) = u0(~x) , (4.27)

and the convergence is in the strong sense:

‖u(~x, t)− v̄(~x, t)‖L∞ ≤ O(ε) . (4.28)

Remark. We mention in this context The Averaging Lemma due to Lions, Perthame
and Tadmor [6], which states that if u(~x, t) is an integral of solutions of linear transport
equations,

u(~x, t) =
∫

R1
v(~x, t, η)dη where vt + ~a(η) · ∂v

∂~x
=

∂m

∂η
,

m being a nonnegative bounded measure on RN
x × R+

t × R1
η, and the velocity field ~a(η)

is non-degenerate in the sense that it does not ”stay” in any hyper-plane of positive co-
dimension in RN , u(·, t) is smoother than v(·, t, η). Hence, averaging, which serves as the
lifting machinery from the microscopic to the macroscopic level, yields a regularizing effect
under the non-degeneracy assumption.

In our case, the homogenized solution, v̄(~x, t), is the average over T 1 of the ”density
functions” v(~x, t, η) = u0(−a∗ηt~p +~x) which satisfy

vt + a∗η~p ·
∂v

∂~x
= 0 , v(~x, 0, η) = u0(~x) .

Since the velocity field, ~a(η) = a∗η~p, does degenerate – we have no gain of regularity, as
expected in the linear regime. It is interesting to note, however, that the only direction
in which there is no weak convergence of u to its limit v̄ is ~p – the direction to which the
velocity field degenerates.

Since the weak limit v̄(~x, t) is an average of solutions of linear transport equations (which
depend on a parameter η ∈ T 1), a natural question which arises is whether v̄(~x, t) itself

satisfies a similar transport equation. Namely, is there a vector field ~b = ~b(~x), or possibly
~b = ~b(~x, t), which depends only on the original vector field ~a(~x), such that the homogenized
solution, v̄, is a solution of

v̄t +~b · ∂v̄

∂~x
= 0 ? (4.29)

In the special case where a∗η ≡ a∗ ∀η ∈ [0, 1], the answer is positive, as stated in the second
part of Theorem 4.3; the homogenized equation is then given in (4.27). In the general case,
however, the answer is negative: since

v̄(~x, t) =
∫ 1

0
u0

(
−a∗ηt + x1,−γa∗ηt + x2

)
dη , (4.30)
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we get that

v̄t = −
∫ 1

0
(u0

1 + γu0
2)a

∗
ηdη , v̄x1 =

∫ 1

0
u0

1dη , v̄x2 =
∫ 1

0
u0

2dη , (4.31)

where u0
1 and u0

2 are the partial derivatives of u0 evaluated at (x1 − a∗ηt, x2 − γa∗ηt). We now
take u0(~x) to be a function only of x1. Hence, in view of (4.29) and (4.31), the following
equality must hold for all ~x ∈ R2, t ∈ R+ and any function u0

1(·):
∫ 1

0
u0

1(−a∗ηt + x1) ·
(
b1(~x, t)− a∗η

)
dη = 0 . (4.32)

The continuous dependence of a∗η on η implies that for a given point (~x, t) and a given choice
of b1(~x, t), there exists an interval I = [η0, η1] ⊂ [0, 1] such that b1(~x, t) − a∗η 6= 0 ∀η ∈ I.
Let a∗m and a∗M denote, respectively, the minimum and the maximum of a∗η in I. Then, by

choosing u0(x1) so that u0
1 = du0

dx1
is positive in the interval (x1 − a∗M t, x1 − a∗mt) and zero

elsewhere, we get that equality (4.32) cannot hold. This proves that in the general case,
the homogenized solution v̄(~x, t) may not be represented as a solution of a linear transport
equation.

Concluding remarks. We have proved in this section the convergence of u(·, t) to its
homogenized limit in the strongest possible topology. In the ergodic case, the convergence is
strong in L∞loc(R

2) (compare to [3, Theorem 5.1] where the corresponding convergence result
is in L2

loc(R
2); see also [7] where strong convergence in L∞loc is proved in the one-dimensional

case). In the nonergodic case, the convergence is in W−1,∞(R1) rather than weak in L2(R2) as
proved in [3, 4]; namely, if v̄(·, t) is the homogenized limit of u(·, t), then already line integrals
of u(·, t) converge to the corresponding line integrals of v̄(·, t) (rather than convergence of
double integrals of u(·, t) to those of v̄(·, t)).

We would like to point out that in the presence of oscillatory initial data, (1.14), the
convergence in both cases will be in the weaker sense of W−1,∞(R2).
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