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Abstract

We present a general framework for vector assignment problems. In such problems one
aims at assigning n input vectors to m machines such that the value of a given target
function is minimized. While previous approaches concentrated on simple target functions
such as max-max, the general approach presented here enables us to design a polynomial
time approximation scheme (PTAS) for a wide class of target functions. In particular,
thanks to a novel technique of preprocessing the input vectors, we are able to deal with
non-monotone target functions. Such target functions arise in vector assignment problems
in the context of video transmission and broadcasting.
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1 Introduction

In this paper we present a general framework for dealing with assignment problems in general
and vector assignment problems in particular. An assignment problem is composed of the
following three ingredients:

• Items: x1, . . . , xn;

• Containers: c1, . . . , cm;

• A target function: F : {1, . . . , m}{1,...,n} →R+.

Each item is characterized by a parameter or a set of parameters that reflect the ”size” of the
item. That size may be a scalar, a vector or whatever the application which gave rise to the
problem dictates (e.g., a random variable).
The containers may be characterized by their capacity; that capacity would be a scalar or a
vector, in accord with the type of the items to be stored.
The set {1, . . . , m}{1,...,n} consists of all possible assignments of items to containers. Each
assignment is referred to as a solution to the problem. In all assignment problems there is a
natural addition operation between items. Hence, given a solution S ∈ {1, . . . , m}{1,...,n}, we
may define the load in the kth container as

`k =
∑

S(i)=k

xi , 1 ≤ k ≤ m .

The target function evaluates for each solution a nonnegative cost. That function takes into
account the loads `k and possibly also the container capacities, if such capacities are given.

The assignment problem is the problem of finding an optimal solution in the sense that it
has a minimal cost. As such problems are strongly NP-hard, polynomial time approximation
schemes (PTAS) are sought. Given a fixed ε > 0, such schemes produce, in polynomial
time, a solution whose cost is larger than that of an optimal solution by a factor of no more
than (1 + Const · ε). We would like to comment that although it is customary to look for a
multiplicative factor of exactly (1 + ε), we prefer, for the sake of simplicity, to allow the more
general factor (1+Const ·ε). Obviously, one may translate the latter to the former by rescaling
ε.

The above formulation encompasses all problems that were studied in the art so far. How-
ever, the chosen target functions in those studies were limited to a narrow class of ”natural”
functions, as described below. Motivated by an interesting problem that arises in transmitting
multiplexed video streams, see §2, we suggest here a general framework that includes a much
wider class of target functions.

Overview. We focus here on Vector Assignment Problems (VAP), where the items xi, 1 ≤ i ≤
n, and the resulting loads `k, 1 ≤ k ≤ m, are vectors in (R+)d. We consider target functions
of the form:

F (S) = f(g(`1), . . . , g(`m)) . (1)

Here:

• S is a given solution and `k, 1 ≤ k ≤ m, are the corresponding load vectors.
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• g : (R+)d →R+ is a function that evaluates a cost per container.

• f : (R+)m →R+ is a function that evaluates the final cost over all containers.

In [13] we expand our discussion to include target functions of the form

F (S) = f(g1(`1, c1), . . . , gm(`m, cm)) . (2)

Namely, the per-container cost evaluator, g(·), may depend also on the container’s parameters
ck, and the functional evaluation may be different for each container.

Relation to previously studied problems. This suggested framework includes many prob-
lems that are already known in the art. The terminology in those problems may vary. In some
scalar problems the containers are referred to as bins. In other scalar problems and in most all
vector problems the terms items, containers and assignment are replaced with jobs, machines
and scheduling, respectively. Since we have in mind applications that do not deal with schedul-
ing, we adopt herein a slightly more general terminology: vectors, machines and assignment.
With these terms, we refer to (1) as the case of identical machines, while (2) will be referred to
as the case of non-identical machines. In particular, when the non-identical machine parame-
ters are viewed as part of the input, namely, the running time is required to be independent
of those parameters, (2) is referred to as the case of related machines.
Herein, we list some of the previously studied problems. The first five examples are scalar
while the last one is a vector problem.

1. The classical problem in this context is the scalar makespan problem. In that problem
one aims at minimizing the maximal load. It is described by (1) with d = 1, g = id and
f = max. See [15, 16, 18, 20].

2. The related makespan problem, where the machines are associated with speeds ck, 1 ≤
k ≤ m, is given by (2) with d = 1, gk(x, c) = x/c for all k and f = max. See [17].

3. The `p minimization problem is given by (1) with d = 1, g = id and f(y1, . . . , ym) =
(
∑m

k=1 yp
k)

1/p. The case p = 2 was studied in [4, 6] and was motivated by storage
allocation problems. The general case was studied in [1].

4. Problem (2) with d = 1, gk(x, c) = h(x/c) for all k, where h : R+ → R+ is some fixed
function, and f is either the maximum or sum of its arguments, was studied in [2, 12].
Other choices for f are the inverse minimum or the inverse sum. By considering those
choices, one aims at maximizing the minimal or average completion time. See [8, 21]
for the case of identical machines (where all ck equal 1) and [3] for the case of related
machines.

5. The Extensible Bin Packing Problem is given by (2) with d = 1, gk(x, c) = max{x, c} for
all k and f(y1, . . . , ym) =

∑m
k=1 yk. See [7, 10, 11].

6. The Vector Scheduling Problem coincides with (1) with f = g = max. See [5].

The general framework presented here is a powerful tool. Most of the previous studies concen-
trated on specific choices of cost functions, depending on the application in mind, or considered
narrow classes of cost functions. By defining general classes of cost functions, however, as in
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[2, 12], it is possible not only to cover many different problems that were studied separately,
but also to identify the properties of the cost functions that play a significant role in the anal-
ysis and, consequently, examine which of those properties is truly essential for the existence of
a PTAS and which is not.

An example of such a property is monotonicity. In all of the above mentioned problems that
were previously studied, except for the scalar problem 4, the target functions were monotone.
Namely, when adding an item to a container, the value of the target function increases, or at
least does not decrease. Such monotonicity is indeed natural when dealing with bin packing
or job scheduling: every item that is stored in a bin decreases the remaining available space
in that bin; every job assigned to a machine increases the load on that machine. However,
we present in this paper the so called line-up problem that arises in video transmission and
broadcasting, where the target function has a different nature: it aims at optimizing the
quality of the transmitted video. Such functions are not monotone - increasing the size of
a vector component may actually decrease the value of the target function. By taking the
general framework approach, we are able to identify the place where monotonicity is actually
used in the analysis and, consequently, suggest another path that circumvents the need in
monotonicity.
As mentioned above, Chekuri and Khanna [5] designed a PTAS for vector assignment problems
when f = g = max. To the best of our knowledge, theirs is the only study thus far that offered
a PTAS for vector problems. The techniques that we present here, some of which are extensions
of the methods that were used in [5], enable us to devise a PTAS for a significantly larger class
of cost functions for vector problems.
We note in passing that a related class of problems that we exclude from our discussion is that
in which the goal is to minimize the number of containers that are used for packing, subject
to some condition (such conditions are usually associated with the capacity of the containers).
See [14, 9, 19, 22, 5].

Organization of the paper. In §2 we describe the line-up problem that motivated this study.
In §3 we characterize the class of cost functions to which our analysis applies. §4 is devoted to
monotone target functions. After describing in §4.1 a simple preprocessing procedure that we
apply to the input vectors, we derive in §4.2 lower and upper bounds for the optimal value. We
then describe in §4.3 a binary search procedure that converges to the optimal value. §4.4-§4.6
are devoted to the core algorithm which is the main ingredient in the binary search: that
algorithm receives a test value and decides whether the problem has a solution whose value is
less than or equal the given test value. In case such solutions exist, the core algorithm returns
a solution whose value deviates from the given test value by a small multiplicative factor. In
§5 we turn to deal with non-monotone target functions. Using a preprocessing technique that
is applied to the input vectors, we are able to modify the core algorithm so that it may be
applied to such target functions as well.

Notation agreements. Throughout this paper we adopt the following conventions:

• Small case letters denote scalars; bold face small case letters denote vectors.

• A superscript of a vector denotes the index of the vector; a subscript of a vector indicates
a component in that vector. E.g., `k

j denotes the jth component of the vector `k.

• If γ(k) is any expression that depends on k, then f(γ(k))1≤k≤m stands for f(γ(1), . . . , γ(m)).
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• If x is a scalar then x+ = max{x, 0}.
• If ◦ is any operation between scalars then v ◦ c is the vector whose jth component is

vj ◦ c. Similarly, if ∝ is any relation between scalars, then v ∝ c or v ∝ w mean that
the relation holds component-wise.

2 The Line Up Problem

One of the greatest advantages of digital encoding of TV programs is that it enables data
compression. Consequently, the transition from analog to digital encoding allowed digital TV
broadcast centers to transmit a greater number of TV programs using the same infrastructure1.
In the analog era every TV program was assigned to a physical channel that served solely for
the transmission of that specific program. In contrast, when dealing with digital TV programs
that were subject to compression and, therefore, require less bandwidth (bits per second),it is
possible to transmit several TV programs on the same channel. As the compression ratio that
is offered by the ubiquitous MPEG-II standard is roughly 1:10, the number of TV programs
that share the same channel is usually between 8 and 12.

Assume a TV broadcast center that broadcasts m analog programs, say m = 30. That
center may broadcast n ≈ 10m = 300 digital programs, using the same infrastructure. In
order to do so, it is necessary to assign the n digital programs (inputs) to the m physical
channels (outputs) where the number of programs per channel is typically 8-12. Such an
assignment, {P1, . . . , Pn} → {C1, . . . , Cm}, is called a line-up.

Each digital program is encoded by a digital sequence that is called a program stream.
Given a line-up, the program streams that correspond to programs that were assigned to the
same channel are merged (multiplexed) into a single digital stream known as a transport stream.
Finally, the unified transport stream is converted from digital to analog and is transmitted via
cable or satellite to the required destination.

The line-up problem asks for an assignment of programs to channels that would maximize
the quality of the multiplexed transport streams. This is explained below.

Each TV program is composed of several elementary streams: a video stream, one or several
audio streams (several audio streams occur in stereo or multi-lingual programs) and possibly
also data streams (e.g., subtitles or close captions). The video stream consumes the larger part
of the bandwidth. For efficiency, it is usually encoded by a variable bit-rate stream, according
to the complexity of the displayed event. For example, cartoons or talk-shows are typically
low bandwidth consumers, while sport events are high bandwidth consumers.

As opposed to the variable bit-rate of the single program streams, the multiplexed transport
streams must have a constant bit-rate. A standard transport stream bit-rate is 38.8 Mbits/sec
while a typical TV program consumes 3-4 Mbits/sec. The multiplexing (also called statistical
multiplexing) of several variable bit-rate program streams into one constant bit-rate transport
stream assumes that the peaks in one program will be compensated by lows in another program
and, hence, the sum of bit-rates of all programs will demonstrate less variation than each of
the single programs.

1In order to distinguish between logical channels (e.g., CNN, PBS or the Sports Channel) and physical
channels, we adopt the terminology used in the Digital Video Broadcasting (DVB) standard that refers to the
former as programs and to the latter as channels.
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An underflow is a situation in which the sum of concurrent bit-rates of all programs is
less than the channel’s capacity. This situation is undesired since then bandwidth, a most
valuable resource, is wasted. An overflow is the opposite situation. This is also a bad situation
since then compression should be applied in order to decrease the bit-rates of some of the
programs and that may reduce the quality of the outgoing video. Unfortunately, underflows
and overflows are inevitable. Hence, by studying the behavior of the programs, one may design
”clever” assignments that would minimize the effects of underflows and overflows.

To this end, let us assume n programs and m channels. Assume that each program was
sampled along a time period of say 1 week (this is a good choice because of the typical 1-week
periodicity in TV schedules). Let xk = (xk

1, . . . ,x
k
d) describe the bit-rate of the kth program

along the sampling period; for example, if we break the week into time frames of 15 minutes,
then d = 4 ∗ 24 ∗ 7 = 672 and xk

j is the average bit-rate of the kth program along the jth time
interval. Let us further assume that the channel capacities are given by ci, 1 ≤ i ≤ m.

Next, we need to formulate a target function. We are looking at target functions of the
form (1) or (2). The inner cost function g gives a score for the multiplexed transport stream
in a particular channel. Let ` denote the load vector in that channel and let c be its capacity.
Then the following are plausible choices for g:

1. g(`) = ‖`‖p, where 1 ≤ p < ∞ (p = ∞ seems to be inappropriate in this case because
one would like to take into account the behavior of the channel in all time frames).

2. g(`) = ‖`‖`p(w) where w is a weight vector that gives higher weights to time frames in
prime time and lower weights to time frames of lower rating.

3. g(`) = ‖`‖1,p := ‖`‖p + ‖∆`‖p where ∆` ∈ Rd−1 and ∆`j = `j+1 − `j , 1 ≤ j ≤ d − 1.
This choice of the Sobolev norm, denoted w1,p, reflects the goal to avoid, as much as
possible, fluctuations in the video quality.

4. g(`, c) = ‖max{`, c}‖, where ‖ · ‖ is some norm (typically an `p norm) and c is a minimal
bandwidth that is always allocated to the channel. This is the vector analogous to the
scalar extensible bin problem.

5. g(`, c) = ‖(`−c)+‖ for some norm. This function penalizes only overflows, and disregards
time frames where no quality reduction occurs. This function, with ‖ · ‖ being the `1

norm, aims at minimizing the processing time that is needed to perform the actual video
compression, as this time is usually proportional to the amount of data that needs to be
removed.

6. g(`, c) = ‖ (`−c)+
`

‖ is a function that aims at optimizing the video quality because it
takes into account the compression rate that would need to be imposed, hence, the
quality reduction.

More accurate functions may be formulated according to the compression strategy that would
be applied in case of an overflow.

The outer cost function f could be any `p norm. Here, the choice of p = ∞ would serve
best the goal of having a uniform quality across all channels. The function f could be also a
weighted norm to reflect different priorities to different programs or channels.
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The above discussion illustrates that VAPs occur in contexts other than job scheduling, and
that the relevant target functions may be other than the usual `p norms. Hence, a more general
framework for studying VAPs is needed. In the next sections we present such a framework and
we find a PTAS for the VAP in that framework.

3 The Cost Functions

Herein we list the assumptions that we make on the outer cost function f(·) and the inner cost
function g(·).

Definition 1

1. A function h : (R+)n →R+ is monotone if

h(x) ≤ h(y) ∀x,y ∈ (R+)n such that x ≤ y .

2. A function h : (R+)n → R+ dominates a function h̃ : (R+)n → R+ if there exists a
constant η such that

h̃(x) ≤ ηh(x) ∀x ∈ (R+)n .

3. A function h : (R+)n → R+ is Lipschitz continuous if there exists a constant M such
that

|h(x)− h(y)| ≤ M‖x− y‖∞ ∀x,y ∈ (R+)n .

4. A function h : (R+)n →R+ is harmonic if

h(x) ≥ h(x̄) ∀x ∈ (R+)n ,

where x̄ = (x̄, . . . , x̄) and x̄ = 1
n ·

∑n
i=1 xi.

5. A function h : (R+)n →R+ is symmetric if

h(x) = h(Px) ∀x ∈ (R+)n ,

where P is an arbitrary permutation matrix, namely, Pi,j = δi,π(j) for some permutation
π ∈ Sn.

Assumption 1 The function f : (R+)m →R+ is:

1. monotone;

2. harmonic;

3. linear with respect to scalar multiplications, i.e., f(cx) = cf(x) for all c ∈ R+ and
x ∈ (R+)m;

4. dominating the max norm with a domination factor ηf that is independent of m;

5. Lipschitz continuous with a constant Mf that is independent of m;
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6. symmetric.

Assumption 2 The function g : (R+)d →R+ is:

1. monotone;

2. convex;

3. stable under scalar multiplications in the sense that g(cx) ≤ α(c)g(x) for all c ∈ R+ and
x ∈ (R+)d, where α(c) is such that lg lg α(c) is bounded by a polynomial in c for large
values of c;

4. dominating the `∞ and the `1 norms with a domination factor ηg;

5. Lipschitz continuous with a constant Mg.

Next, we see what functions comply with the above assumptions. It turns out that while for
f we do not get too far from the popular max function, when it comes to g we do manage to
enlarge substantially the class of functions.

When the number of machines m is not regarded as part of the input (i.e., the input consists
only of the n vectors), the constants ηf and Mf in conditions 4 and 5 in Assumption 1 may
depend on m. In that case our results apply to all `p norms. However, we do wish to consider
m as part of the input. The problem then stems from the conjunction of conditions 4 and 5.
All `p norms comply with the first four conditions in Assumption 1, with ηf = 1 in condition
4; however, they are Lipschitz continuous with a constant Mf = m1/p that depends on m for
all p < ∞. Unfortunately, there is no normalization of f that would make both constants ηf

and Mf independent of m. Also, it seems that both conditions 4 and 5 in Assumption 1 are
essential – the first one for limiting the possible values of load vectors in an optimal solution,
and the second to enable approximations. Hence, the only `p norm that satisfies Assumption
1 is the `∞ norm (as discussed towards the end of §2, this is the only reasonable choice of an
`p norm in the context of the line-up problem). Other functions f for which our results apply
are the `p norms taken on the t largest values in the argument vector, where t = min(m0,m)
for some constant m0; e.g., the sum of the largest two components.

As for g, here we have no problem since the dimension of the space on which g acts, d, is
considered as a constant. Hence, all `p norms (even weighted norms) work here. Another
natural choice of g for which Assumption 2 holds is

g(v) = ‖max{v, c}‖ (3)

where c is a constant vector and the outer norm is a monotone norm. Later on, in §5, we
get rid of the monotonicity condition, Assumption 2-1, and this allows us to include also all
Sobolev norms, e.g., g(`) = ‖`‖1,p. We note that our analysis does not apply to the choices
of g(`) given in examples 5 and 6 in §2. Those functions do not dominate the `∞ norm since
they may vanish for ` 6= 0. Therefore, the optimal solution may have a zero cost in that case.
As PTAS aim at finding solutions whose cost is larger than that of an optimal solution by a
multiplicative factor close to 1, it is not relevant to talk about a PTAS in this case.

It is interesting to note that the set of functions that comply with either Assumption 1 or 2 is
closed under positive linear combinations. For example, if f1 and f2 satisfy Assumption 1, so
would c1f1 + c2f2 for all c1, c2 > 0.
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4 Monotone Target Functions

In this section we present our analysis under the assumptions in §3. In particular, both f and
g are monotone. Our algorithm is similar to that of Chekuri and Khanna [5] who studied the
case f = g = max.

Let So denote henceforth an optimal solution to the problem. We design a PTAS that,
given 0 < ε ≤ 1, finds a solution S for which

F (S) ≤ (1 + Const · ε)F (So) , (4)

where the constant depends solely on d, f and g.

4.1 Preprocessing the vectors by means of truncation

Let I be an instance of the VAP with vectors xi, 1 ≤ i ≤ n. We modify I into another problem
Î where the vectors x̂i are defined as follows:

x̂i
j =

{
xi

j if xi
j ≥ δ‖xi‖∞

0 otherwise
1 ≤ i ≤ n , 1 ≤ j ≤ d ; (5)

here, δ is an arbitrary constant, 0 ≤ δ ≤ 1.

Lemma 1 Let S be a solution to I and let Ŝ be the corresponding solution to Î. Then

F (S) ≤ (1 + Cδ)F (Ŝ) (6)

where C is a constant that depends only on g.

Proof. Let `k and ˆ̀k
, 1 ≤ k ≤ m, denote the load vectors in S and Ŝ respectively. In view of

(5),
ˆ̀k ≤ `k ≤ ˆ̀k

+ δ
∑

S(i)=k

‖xi‖∞ (7)

Since ‖xi‖∞ = ‖x̂i‖∞ ≤ ‖x̂i‖1 we conclude that
∑

S(i)=k ‖xi‖∞ ≤ ‖ˆ̀k‖1. As g dominates the
max norm, Assumption 2-4, we get that

∑

S(i)=k

‖xi‖∞ ≤ ηgg(ˆ̀
k
) . (8)

Therefore, by (7) and (8),
ˆ̀k ≤ `k ≤ ˆ̀k

+ δηgg(ˆ̀
k
) . (9)

Next, by the Lipschitz continuity of g, Assumption 2-5, we conclude that

g(`k) ≤ (1 + ηgMgδ)g(ˆ̀
k
) . (10)

Finally, we invoke the monotonicity of f and its linear dependence on scalar multiplications to
conclude that

F (S) = f(g(`k))1≤k≤m ≤ f((1 + ηgMgδ)g(ˆ̀
k
))1≤k≤m = (1 + ηgMgδ)F (Ŝ) . (11)
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This proves (6). ¤

As our goal is to find solutions to the VAP whose value differ from the optimal value by
a multiplicative factor of no more than (1 + Const · ε), we assume henceforth that the input
vectors xi, 1 ≤ i ≤ n, were subject to the above truncation procedure with

δ =
ε

ηgMg
, (12)

so that, in view of (11), the multiplicative contribution of this procedure is bounded by (1+ε).

4.2 Lower and upper bounds

Let v denote the average load on each machine, v = 1
m

∑n
i=1 xi, and let S be an arbitrary

solution with load vectors `k, 1 ≤ k ≤ m. Then, as f is harmonic, Assumption 1-2,

f(g(`1), . . . , g(`m)) ≥ f(t, . . . , t) where t =
1
m

m∑

k=1

g(`k) . (13)

Since g is convex, Assumption 2-2, t ≥ g(v). Hence, by (13), the monotonicity of f and its
linear dependence on scalar multiplications, we arrive at the following lower bound:

f(g(`1), . . . , g(`m)) ≥ λ := g(v) · f(1, . . . , 1) . (14)

To obtain an upper bound, we consider the solution that assigns all n vectors to the first
machine. That creates a load of mv on that machine and a zero load on all other machines.
Consequently, we get the upper bound

Λ := f(g(mv), 0, . . . , 0) = g(mv) · f(1, 0, . . . , 0) . (15)

Finally, we note that the ratio between the upper and lower bounds may be bounded by

Λ
λ

=
g(mv) · f(1, 0, . . . , 0)

g(v) · f(1, . . . , 1)
≤ g(mv)

g(v)
≤ 22P (m)

(16)

for some polynomial P (m); here, the first inequality is due to the monotonicity of f , As-
sumption 1-1, while the second one is due to the stability of g under scalar multiplications,
Assumption 2-3.
Before turning to describe our scheme, we define the following key term.

Definition 2 For any value Φ, a solution S to the VAP is called a Φ-solution if F (S) ≤ Φ.

4.3 Overview of the scheme

The main ingredient in our PTAS is the core algorithm. This algorithm receives a test value
Φ and a tolerance value 0 < ε ≤ 1; it returns one of the following two values:

1. TRUE. In that case the algorithm returns also a solution S such that

F (S) ≤ (1 + Tε)Φ , (17)

for some constant T > 0 that depends only on d, f and g (the exact value of T is given
later on). If the given VAP has a Φ-solution, the algorithm is guaranteed to return a
TRUE value.
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2. FALSE. In that case we may conclude that there are no Φ-solutions.

The running time of the core algorithm is polynomial in n and m.

With this core algorithm, one may execute a geometrical binary search to approximate the
optimal value Φo to within a small multiplicative factor. Namely, we may start with Φ− = λ
and Φ+ = Λ, (14)-(15), and execute a geometrical binary search to yield tighter bounds Φ−

and Φ+ (the former relates to values for which the core algorithm returned FALSE, the latter
relates to values for which we got TRUE) such that

Φ− ≤ Φo ≤ (1 + Tε)Φ+ and
Φ+

Φ−
≤ 1 + ε . (18)

If Ŝ is the solution that the core algorithm returned for the test value Φ+, then it is a good
approximation to the optimal solution because, by (17) and (18),

F (Ŝ) ≤ (1 + Tε)Φ+ ≤ (1 + Tε)(1 + ε)Φo . (19)

Going back to the original vectors, prior to the truncation procedure described in §4.1, we get
a solution S that satisfies

F (S) ≤ (1 + Tε)(1 + ε)2Φo . (20)

Since 0 < ε ≤ 1, (20) implies (4) with Const = 4T + 3.

As for the number of steps in the geometrical binary search: the search begins with the interval
[λ,Λ] where the ratio between the two end points is bounded by 22P (m)

, (16), P (m) being a
polynomial. This implies that the termination condition (18) will occur after no more than

[P (m)− lg lg(1 + ε)] (21)

steps.

4.4 The core algorithm

Let Φ be the given test value. Assume that there exists a Φ-solution S and let `k, 1 ≤ k ≤ m,
denote the load vectors in that solution. Hence,

f(g(`k))1≤k≤m ≤ Φ .

Since f dominates the max norm, Assumption 1-4, we conclude that

max
1≤k≤m

g(`k) ≤ ηf · f(g(`k))1≤k≤m .

Furthermore, as g dominates the max-norm too, Assumption 2-4,

max
1≤j≤d

`k
j ≤ ηg · g(`k) 1 ≤ k ≤ m .

Putting the last three inequalities together we arrive at the conclusion that all components of
all load vectors in a Φ-solution are upper bounded as follows,

`k ≤ ηfηgΦ 1 ≤ k ≤ m . (22)
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This upper bound enables us to determine the range in which we would search for Φ-solutions.
Next, we decompose the set of input vectors {xi}1≤i≤n into two disjoint subsets: the subset of
large vectors,

L = {xi : ‖xi‖∞ ≥ Φε, 1 ≤ i ≤ n} , (23)

and the complement set of small vectors,

S = {xi : ‖xi‖∞ < Φε, 1 ≤ i ≤ n} . (24)

Let S ∈ {1, . . . , m}{1,...,n} be a solution of the VAP and let `k, 1 ≤ k ≤ m, be its corresponding
load vectors. Those load vectors may be decomposed into `k = ak + bk, where ak equals the
sum of large vectors xi ∈ L that were assigned to the kth machine, while bk denotes the sum
of the small vectors xi ∈ S in that machine. We consider the following discretizations of those
vectors:

âk = Pak , b̂k = Pbk where (Pv)j :=
⌈ vj

Φε

⌉
Φε , 1 ≤ j ≤ d . (25)

Hence, we may associate with any solution S and any k, 1 ≤ k ≤ m, a pair of vectors (âk, b̂k)
that describes, in a discretized manner, the load configuration in the kth machine in that
solution. We shall refer to such a pair as a Discretized Load Configuration, or DLC, and will
denote it by DLCk. Furthermore, the two vectors of which it consists will be denoted DLCa

k

and DLCb
k, while DLC`

k := DLCa
k + DLCb

k.

Lemma 2 Let S be a Φ-solution for some test value Φ > 0. Let `k, 1 ≤ k ≤ m, denote its
load vectors and let DLCk denote its corresponding DLCs. Then:
(a) DLCk, 1 ≤ k ≤ m, take values in a finite set Ω = Ω(Φ, ε) of size (µ + 1)2d, where

µ :=
⌈ηfηg

ε

⌉
. (26)

(b) The following inequality holds:

f(g(DLC`
k))1≤k≤m ≤ (1 + 2MfMgε)Φ . (27)

Proof. In view of (22) and the discretization process, all components of both DLCa
k and

DLCb
k take values in the set {kΦε : 0 ≤ k ≤ µ} where µ is given in (26); this proves part

(a) of the lemma. As 0 ≤ ˆ̀k − `k ≤ 2Φε, the Lipschitz continuity of f and g imply that
f(g(DLC`

k))1≤k≤m ≤ f(g(`k))1≤k≤m + 2MfMgΦε. This inequality implies (27) due to the
assumption that the solution S with load vectors `k is a Φ-solution. ¤

The basic idea now is to go over all possible assignments of DLCs from the set Ω to the m
machines and to look for an assignment that satisfies (27) – a necessary condition for the
existence of Φ-solutions. To this end, we order the set Ω,

Ω = {DLC1, . . . , DLCt : t = (µ + 1)2d} . (28)

Each assignment of DLCs from Ω to the m machines may be uniquely described by an Assign-
ment Configuration Vector, or ACV, of the following form:

ACV = (m1, . . . ,mt) where 0 ≤ mτ ≤ m, 1 ≤ τ ≤ t and
t∑

τ=1

mτ = m . (29)
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The number of ACVs is bounded by mt. As t is a constant that depends solely on d, f , g and
ε, the number of ACVs to consider is polynomial in m.

The Core Algorithm

Perform a loop over all ACVs. For each ACV do as follows:

1. Assign a DLC to each machine in an arbitrary manner according to the present ACV (an
arbitrary assignment is allowed since the target function is symmetric in its m arguments,
Assumption 1-6). Let âk, b̂k and ˆ̀k

= âk + b̂k denote the vectors DLCa
k, DLCb

k and
DLC`

k, 1 ≤ k ≤ m.

2. If f(g(ˆ̀
k
))1≤k≤m > (1 + 2MfMgε)Φ skip to the next ACV.

3. Exercise algorithm AL, described in §4.5. If it succeeds it returns an assignment of the
large L-vectors to the m machines, AL : L → {1, . . . , m}, such that

ak :=
∑

i∈L,AL(i)=k

xi ≤ (1 + ε)âk ∀k, 1 ≤ k ≤ m . (30)

The algorithm fails only if there is no assignment AL : L → {1, . . . , m} for which

ak :=
∑

i∈L,AL(i)=k

xi ≤ âk ∀k, 1 ≤ k ≤ m . (31)

In that case we skip to the next ACV.

4. Exercise algorithm AS , described in §4.6. If it succeeds, it returns an assignment of the
small S-vectors to the m machines, AS : S → {1, . . . ,m}, such that

bk :=
∑

i∈S,AS(i)=k

xi ≤ b̂k + dΦε ∀k, 1 ≤ k ≤ m . (32)

The algorithm fails only if there is no assignment AS : S → {1, . . . , m} for which

bk :=
∑

i∈S,AS(i)=k

xi ≤ b̂k ∀k, 1 ≤ k ≤ m . (33)

In that case we skip to the next ACV.

5. If this point in the algorithm is reached then we found an ACV for which both algorithm
AL and algorithm AS were successful. We combine the assignments AL and AS in (30)-
(32) into a solution S : {1, . . . , n} → {1, . . . , m},

S|L = AL , S|S = AS . (34)

It is shown in Theorem 1 below that this solution satisfies (17) with

T = ηgMg + (d + 2)MfMg + 2ηgMfM2
g , (35)

for all 0 < ε ≤ 1. Return this solution together with a TRUE value.
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If we found no ACV for which both algorithm AL and algorithm AS were successful, then the
only conclusion is that there are no Φ-solutions, as shown in Theorem 2. In that case, the
algorithm returns a FALSE value.

Theorem 1 Assume that for some ACV, algorithm AL succeeded with an assignment AL :
L → {1, . . . , m} that satisfies (30) and algorithm AS succeeded with an assignment AS : S →
{1, . . . ,m} that satisfies (32). Then the solution S : {1, . . . , n} → {1, . . . , m} defined by (34)
satisfies (17) with T given in (35) for all 0 < ε ≤ 1.

Proof. Let âk, b̂k and ˆ̀k
= âk + b̂k denote the vectors DLCa

k, DLCb
k and DLC`

k that
are associated with the kth machine, 1 ≤ k ≤ m, by the ACV. In view of Step 2 in the core
algorithm,

f(g(ˆ̀
k
))1≤k≤m ≤ (1 + 2MfMgε)Φ . (36)

Let ak and bk be as defined in (30) and (32) and let `k := ak + bk be the load vectors in the
solution S, (34). Then, by (30) and (32),

`k ≤ (1 + ε)ˆ̀
k

+ dΦε ∀k .

Hence, as g is monotone,

g(`k) ≤ g
(
ˆ̀k

+
(
ˆ̀k

+ dΦ
)

ε
)

∀k .

We now invoke the Lipschitz continuity of g, Assumption 2-5, to conclude that

g(`k) ≤ g(ˆ̀
k
) +

(
‖ˆ̀k‖∞ + dΦ

)
Mgε ∀k .

As g dominates the max norm, Assumption 2-4, we conclude from the last inequality that

g(`k) ≤ (1 + ηgMgε)g(ˆ̀
k
) + dMgΦε ∀k . (37)

Next, we apply the function f on both sides of (37). Due to the monotonicity and Lipschitz
continuity of f we get that

f(g(`k))1≤k≤m ≤ f
(
(1 + ηgMgε)g(ˆ̀

k
)
)

1≤k≤m
+ dMfMgΦε .

As f depends linearly on scalar multiplications, Assumption 1-3, we get that

f(g(`k))1≤k≤m ≤ (1 + ηgMgε)f(g(ˆ̀
k
))1≤k≤m + dMfMgΦε . (38)

Finally, (38) together with (36) yield the desired bound,

f(g(`k))1≤k≤m ≤ (1 + ηgMgε)(1 + 2MfMgε)Φ + dMfMgΦε ≤ (1 + Tε)Φ ∀ε ≤ 1 ,

where T is given in (35). That completes the proof. ¤

14



Theorem 2 Assume that there was no ACV for which both algorithm AL and algorithm AS

were successful. Then the VAP has no Φ-solutions.

Proof. Assume that a Φ-solution does exist, S′. Let `k = ak + bk, 1 ≤ k ≤ m, be the load
vectors in that solution and their decomposition to the large and small parts, respectively. Let
{(âk, b̂k) : 1 ≤ k ≤ m} be the set of DLCs of that solution, (25). This set is described by
some ACV. Then when the core algorithm would have reached that ACV in the loop both
algorithm AL and algorithm AS should have succeeded with AL = S′|L and AS = S′|S ; in fact,
the resulting loads ak and bk would have even satisfied the tighter bounds (31)+ (33) rather
than (30)+ (32). As that did not occur, we conclude that there are no Φ-solutions. ¤

4.5 Algorithm AL : Assigning the large vectors

The input to this algorithm is:

• the set L of large xi vectors;

• vectors âk, 1 ≤ k ≤ m.

The algorithm aims at finding an assignment AL : L → {1, . . . , m} such that (30) holds.
Assume that Φ-solutions exist. Then (22) provides an upper bound for all vectors xi, 1 ≤ i ≤ n.
On the other hand, the definition of L, (23), and the truncation procedure, (5)+(12), provide
a lower bound for all nonzero components of xi ∈ L. Those bounds are given by:

Φε2

ηgMg
≤ xi

j ≤ ηfηgΦ ∀xi ∈ L and xi
j > 0 . (39)

Next, as in [5], we define a geometric mesh on the interval given in (39):

ξ0 =
Φε2

ηgMg
; ξi = (1 + ε)ξi−1 , 1 ≤ i ≤ q ; q :=

⌊
lg(ηfη2

gMgε
−2)

lg(1 + ε)

⌋
+ 1 . (40)

In view of the above, every nonzero component of xi ∈ L lies in an interval [ξi−1, ξi) for some
1 ≤ i ≤ q. We use this in order to define a new set of vectors, L̂ = {x̂i = Hxi : xi ∈ L},
where the operator H replaces each nonzero component in the vector on which it operates by
the left end point of the interval [ξi−1, ξi) where it lies. The vectors in L̂ may take

s = (q + 1)d − 1 (41)

values. Hence, any assignment of vectors from L̂ to a machine may be described by an as-
signment vector (k1, . . . , ks) where kj equals the number of vectors of the jth type that were
assigned to that machine. Next we observe that

s∑

j=1

kj ≤ ηfηgd · 1 + ε

ε
. (42)
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This is because the `∞ norm of each vector in L̂ is at least Φε/(1 + ε), (23), and because the
vectors âk are bounded from above by ηfηgΦ, (22). Hence, the number of assignment vectors
is bounded from above by

R :=
(

ηfηgd · 1 + ε

ε

)s

, (43)

a constant that depends only on f , g, d and ε. Applying standard dynamic programming
techniques, we may run a simple algorithm that either finds an assignment of the L̂ vectors to
the m machines such that the resulting load on the kth machine is not larger than âk (success),
or decides that such an assignment does not exist (failure). The running time of that algorithm
is O(Rmns), where R is given above. The reader is referred to [5, Lemma 2.3] for more details.
Clearly, if such an assignment is found, then applying it to the original L vectors would result
in an assignment that satisfies (30).

4.6 Algorithm AS : Assigning the small vectors

The input to this algorithm is:

• the set S of small xi vectors;

• vectors b̂k, 1 ≤ k ≤ m.

The algorithm aims at finding an assignment AS : S → {1, . . . , m} such that (32) holds.
As in §4.5, we employ similar techniques to those used in [5]. For convenience reasons, we
assume that xi, 1 ≤ i ≤ n, are ordered in a non-decreasing order according to their `∞ norm.
Therefore, S = {xi : 1 ≤ i ≤ |S|}. We define indicator variables ξk

i , 1 ≤ i ≤ |S|, 1 ≤ k ≤ m,
such that ξk

i = 1 if xi is assigned to the kth machine and ξk
i = 0 otherwise. Hence, the

algorithm aims at finding ξk
i ∈ {0, 1} such that:

|S|∑

i=1

ξk
i x

i
j ≤ b̂k

j 1 ≤ k ≤ m , 1 ≤ j ≤ d (44)

and
m∑

k=1

ξk
i = 1 1 ≤ i ≤ |S| . (45)

In order to turn this into a linear programming problem, we replace the constraint ξk
i ∈ {0, 1}

by
ξk
i ≥ 0 1 ≤ i ≤ |S| , 1 ≤ k ≤ m . (46)

Let us denote (44)-(46) by (LP). (LP) is a linear programming problem consisting of (md +
|S| + m|S|) constraints in the m|S| unknowns ξk

i . A basic solution to this problem is an
extreme solution in the sense that it is a vertex in the polyhedron determined by (LP). Such
basic solutions are identified by the property that the number of equalities that they satisfy
is at least as the number of unknowns. Hence, any integral solution, ξk

i ∈ {0, 1}, is a basic
solution, as can be seen from (45)+(46).

We may now apply a standard polynomial time algorithm to find a basic solution for this
problem. If such a solution was not found, the algorithm fails. Otherwise, as this basic solution
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satisfies (46) rather than the integrality conditions ξk
i ∈ {0, 1}, the algorithm proceeds to the

next stage of translating that fractional solution to an integral one. Any basic solution of (LP)
satisfies at least m|S| equalities, or, equivalently, at most (md + |S|) inequalities. Therefore,
there could be at most (md+ |S|) indicator variables that satisfy (46) with an inequality. Since
there is at least one positive ξk

i for each 1 ≤ i ≤ |S| we arrive at the conclusion that there
could be no more than md vectors that are assigned fractionally to more than one machine.
In view of the above, we spread those vectors in an arbitrary manner among the m machines
such that each machine gets no more than d vectors of that sort. This is the solution that the
algorithm returns. It is easy to see why this solution satisfies (32): as the `∞ norm of all small
vectors is bounded by Φε, this spreading might increase the upper bound in (44) by no more
than dΦε.

4.7 Overall complexity of the scheme

We summarize herein the steps of the entire scheme and the (worst case) cost of each step:

1. The outer loop executes the geometrical binary search. The number of steps in that
search is [P (m)− lg lg(1 + ε)], (21), where P (m) is the polynomial given in (16).

2. In each step in the binary search we perform the core algorithm. The core algorithm
executes a loop of length mt at the most where t =

(⌈ηf ηg

ε

⌉
+ 1

)2d, (28)+(26). In some
steps, both algorithms AL and AS will be executed; in others, only algorithm AL will be
executed or none (depending on the conditions that are verified in steps 2 and 3 in the
core algorithm).

3. The running time of algorithm AL is bounded by O(Rmns) where

R =
(

ηfηgd · 1 + ε

ε

)s

and s =

(⌊
lg(ηfη2

gMgε
−2)

lg(1 + ε)

⌋
+ 2

)d

− 1 ,

(43), (41) and (40).

4. The running time of the linear programming algorithm AS is polynomial in the length
of the input (i.e. in the number of bits in the input).

5 Non-monotone Target Functions

In this section we extend our results to include also cost functions g that are not monotone;
namely, we remove Assumption 2-1. We elect to separate the discussion of this case from §4
in order not to overload the presentation of our scheme with the technical details that follow.

The monotonicity of g was needed only in the proof of Theorem 1. The reason why
that monotonicity was necessary is manifested in the one sided estimates (30) and (32): the
core algorithm scanned all possible ACVs for which the resulting target function value was
in accord with the current test value Φ, (36). It then used algorithms AL and AS to find a
solution that yields loads lower than the loads dictated by the current ACV. When both f
and g are monotone, such load distributions give even lower costs than the cost of the ACV.
However, when g is not monotone, this is not enough. We need two-sided estimates in order to
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use the Lipschitz continuity of g. Such a two-sided estimate may be obtained for the output of
algorithm AL, but not for the output of algorithm AS . Hence, this is how we plan to overcome
this difficulty:

1. We redefine the subsets S and L of small and large vectors.

2. We replace S with another set S̃ of vectors that are large according to the new definition,
and we show that the two instances of the VAP – S ∪ L and S̃ ∪ L – are close in terms
of their cost.

3. In view of the above, we may assume that all vectors are large, according to the new
definition. We describe how to modify the core algorithm and algorithm AL in wake of
those changes.

4. We finally return to Theorem 1 and prove it without using the monotonicity of g.

Step 1.

Every test value Φ induced a decomposition of the set of input vectors {xi}1≤i≤n into the
subset L of large vectors (23) and the complement set of small vectors S (24). We modify
those definitions as follows:

L = {xi : ‖xi‖∞ ≥ Φε2d+1, 1 ≤ i ≤ n} , (47)

S = {xi : ‖xi‖∞ < Φε2d+1, 1 ≤ i ≤ n} . (48)

What we present below is a technique to replace S with another set of vectors S̃ = {z1, . . . , zν̃}
where

ν̃ = |S̃| ≤ ν = |S| and ‖zi‖∞ = Φε2d+1 1 ≤ i ≤ ν̃ . (49)

In other words, all vectors in S̃ are large (47). That would allow us to treat all n − ν + ν̃
vectors in the same manner. We also show that the original and new problems are close in
the sense that to every solution of one there exists a solution of the other such that the ratio
between their costs is within Const · ε from 1.

Step 2.

Let x ∈ S. Then, in view of the truncation procedure (5),

δ ≤ xj

‖x‖∞ ≤ 1 ∀xj > 0 , 1 ≤ j ≤ d , (50)

where δ is given in (12). Next, as in §4.5, we define a geometric mesh on the interval [δ, 1]:

ξ0 = δ ; ξi = (1 + ε)ξi−1 , 1 ≤ i ≤ q ; q :=
⌊ − lg δ

lg(1 + ε)

⌋
+ 1 . (51)

In view of the above, every nonzero component of x/‖x‖∞ lies in an interval [ξi−1, ξi) for some
1 ≤ i ≤ q. Next, we define

x̂ = ‖x‖∞H
(

x
‖x‖∞

)
, (52)
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where the operator H retains components that are 0 or 1 and replaces every other component
by the left end point of the interval [ξi−1, ξi) where it lies. Hence, the vector x̂ may be in one
of

s = (q + 2)d − 1 (53)

linear subspaces of dimension 1 in Rd; we denote those subspaces by W σ, 1 ≤ σ ≤ s. In view
of the above, we define the set

Ŝ = {x̂ : x ∈ S} . (54)

Next, we define for each type 1 ≤ σ ≤ s

wσ =
∑

{x̂ : x̂ ∈ Ŝ ∩W σ} 1 ≤ σ ≤ s ; (55)

namely, wσ aggregates all vectors x̂ of type σ. We now slice this vector into large identical
”slices”, where each of those slices and their number are given by:

w̃σ =
wσ

‖wσ‖∞ · Φε2d+1 and κσ =
⌈‖wσ‖∞

Φε2d+1

⌉
. (56)

Finally, we define the set S̃ as follows:

S̃ = ∪s
σ=1{zσ,k = w̃σ : 1 ≤ k ≤ κσ} . (57)

Namely, the new set S̃ includes for each type σ the ”slice”-vector w̃σ, (56), repeated κσ times.
As implied by (56), all vectors in S̃ have a max norm of Φε2d+1, in accord with (49). Also, the
number of vectors in S̃, ν̃ =

∑s
σ=1 κσ, is obviously no more than ν as the construction of the

new vectors implies that κσ ≤ |Ŝ ∩W σ| (recall that ‖x̂‖∞ < Φε2d+1 for all x̂ ∈ Ŝ).
So we have defined three problem instances:

• The original problem I with n input vectors L ∪ S.

• An intermediate problem Î with n input vectors L ∪ Ŝ, (52)+(54).

• The modified problem Ĩ with ñ = n− ν + ν̃ input vectors L ∪ S̃, (55)-(57).

We are now ready to prove that all of the above problems are close.

Theorem 3 For each solution S ∈ {1, . . . , m}{1,...,n} of I there exists a solution
S̃ ∈ {1, . . . , m}{1,...,ñ} of Ĩ such that

(1− C1ε) ·
(
F (S̃)− C2Φε

)
≤ F (S) ≤ (1 + C1ε) ·

(
F (S̃) + C2Φε

)
, (58)

where the constants C1 and C2 depend only on d, f and g. Conversely, for each solution
S̃ ∈ {1, . . . , m}{1,...,ñ} of Ĩ there exists a solution S ∈ {1, . . . , m}{1,...,n} of I that satisfies (58).

Proof. Let S be a solution of I and Ŝ be its counterpart solution of Î. Let `k and ˆ̀k
,

1 ≤ k ≤ m, denote the load vectors in S and Ŝ, respectively. By (52), 1 ≤ `k/ˆ̀
k ≤ 1 + ε.

Hence, as g dominates the max-norm, Assumption 2-4,

‖`k − ˆ̀k‖∞ ≤ εηgg(ˆ̀
k
) . (59)
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Therefore, by the Lipschitz continuity of g, Assumption 2-5,

(1− C1ε)g(ˆ̀
k
) ≤ g(`k) ≤ (1 + C1ε)g(ˆ̀

k
) 1 ≤ k ≤ m where C1 = ηgMg . (60)

Applying the monotonicity of f , Assumption 1-1, and its linear dependence with respect to
scalars, Assumption 1-3, on (60) we get that

(1− C1ε)F (Ŝ) ≤ F (S) ≤ (1 + C1ε)F (Ŝ) . (61)

We now proceed to find a solution S̃ of Ĩ for which (58) holds. To this end, we fix 1 ≤ σ ≤ s
and define for every machine k the following vector:

yσ,k =
∑

{x̂i : x̂i ∈ Ŝ ∩W σ , Ŝ(i) = k} ; (62)

i.e., yσ,k is the sum of small vectors of type σ that are assigned to the kth machine. Recalling
(56), S̃ includes the vector w̃σ repeated κσ times, where

κσ =

⌈
m∑

k=1

‖yσ,k‖∞
Φε2d+1

⌉
. (63)

We may now select for each k an integer tσ,k such that
∣∣∣∣tσ,k − ‖yσ,k‖∞

Φε2d+1

∣∣∣∣ ≤ 1 (64)

and
m∑

k=1

tσ,k = κσ . (65)

With this, the solution S̃ is the one that assigns to the kth machine, 1 ≤ k ≤ m, tσ,k vectors
w̃σ for all 1 ≤ σ ≤ s. In view of (64),

‖tσ,k · w̃σ − yσ,k‖∞ ≤ Φε2d+1 . (66)

Therefore, summing (66) over 1 ≤ σ ≤ s, we conclude that ˜̀k
and ˆ̀k

– the loads on the kth
machine in S̃ and Ŝ respectively – are close,

‖˜̀k − ˆ̀k‖∞ ≤ sΦε2d+1 . (67)

However, as (12), (51) and (53) imply that

s ≤ Csε
−2d for all 0 < ε ≤ 1 (68)

where Cs depends on d and g, we conclude by (67) and (68) that

‖˜̀k − ˆ̀k‖∞ ≤ CsΦε . (69)

The Lipschitz continuity of both g and f imply that

F (S̃)− C2Φε ≤ F (Ŝ) ≤ F (S̃) + C2Φε where C2 = CsMfMg . (70)
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Finally, (58) follows from (61) and (70).
The proof of the second assertion of the theorem goes along the same lines. Given a solution

S̃ of Ĩ, we may construct a solution Ŝ of Î for which (70) holds. This latter solution corresponds
to at least one solution S of I for which (61) holds. Hence, for any solution S̃ of Ĩ we may find
a solution S of I that satisfies (58). ¤

Step 3.

We made two modifications: changing the definition of L from (23) to (47) and transforming
the original instance I to Ĩ where all input vectors are large.
We begin by considering the first modification and observing that it has no significant effect
on algorithm AL. That algorithm still acts in the same way as described in §4.5, with the
following changes:

1. The lower bound in (39) changes to Φε2(d+1)/(ηgMg) ≤ xi
j for all xi ∈ L and xi

j > 0.
This affects only the value of q in (40) that changes to

q =

⌊
lg(ηfη2

gMgε
−2(d+1))

lg(1 + ε)

⌋
+ 1 . (71)

2. The value of the upper bound in (42) changes to ηfηgd · (1 + ε)ε2d+1. This changes the
value of R in (43) to

R :=
(

ηfηgd · 1 + ε

ε2d+1

)s

, (72)

where s is still given by (41) and q is as in (71).

These two changes, (71) and (72), will have an effect only on the running time of the dynamical
programming algorithm. As ε is considered a constant when dealing with running time, the
redefinition of L does not have a significant effect on AL.
We proceed to describe the necessary modifications in the core algorithm and in algorithm AL

due to the fact that the input vectors in Ĩ are all large. In light of this simplification, the DLCs
consist now of only one vector âk, as b̂k became redundant. Hence, given a solution of Ĩ with
load vectors `k, 1 ≤ k ≤ m, and corresponding DLCs âk, the definition of âk, (25), implies
that

âk − Φε ≤ `k ≤ âk , 1 ≤ k ≤ m . (73)

In view of (73) we refer herein to a set of vectors {âk : 1 ≤ k ≤ m} as Φ-good if there exists
a Φ-solution with load vectors `k for which (73) holds.
The original algorithm AL rescaled all vectors down by a factor of no more than (1 + ε) and
tried to find an assignment such that the resulting load on the kth machine, ˆ̀k

, would satisfy
ˆ̀k ≤ âk. However, when we call this algorithm with a good set of vectors âk then

âk − Φε

1 + ε
≤ ˆ̀k

, (74)
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because of (73) and the rescaling process. Hence, the modified algorithm AL, given a set of
vectors âk, will look for assignments of the rounded down vectors to the m machines such that
the resulting load on each machine satisfies

âk − Φε

1 + ε
≤ ˆ̀k ≤ âk . (75)

Clearly, the modified AL will fail more times than the original AL, but it will not miss the
Φ-solutions. Then, when we perform the same assignment with the original vectors (i.e., prior
to rescaling), we would get in the kth machine a load `k that satisfies

âk − Φε

1 + ε
≤ `k ≤ (1 + ε)âk . (76)

Finally, there are two straightforward modifications to the core algorithm: the outer loop on
the ACVs may be shortened to include DLCs that consist of one vector only, âk, and, as there
are no longer small vectors, steps 4 and 5 in the algorithm become redundant. Hence, the
simplified core algorithm goes like this: scan all ACVs; for each ACV that passed the check
in step 2, exercise algorithm AL, step 3; if it succeeds - return the corresponding assignment;
otherwise skip to the next ACV; if there was no successful ACV there are no Φ-solutions.

Step 4.
We now revisit the proof Theorem 1 and see how the fact that we have only large vectors helps
prove the theorem for non-monotone g functions.

Theorem 4 Let f be a function that satisfies Assumption 1 and let g be a function that satisfies
Assumption 2 except possibly the monotonicity condition 1. Let I be an instance of the VAP
with input vectors {xi}1≤i≤n, all of which are large, (47). Let Φ be a test value. Assume
that for some ACV algorithm AL succeeded with an assignment AL : {1, . . . , n} → {1, . . . , m}.
Then this assignment satisfies (17) for all 0 < ε ≤ 1, where T is a constant that depends only
on f and g.

Proof. Let âk denote the load vectors that are associated with the kth machine, 1 ≤ k ≤ m,
by the ACV. In view of Step 2 in the core algorithm,

f(g(âk))1≤k≤m ≤ (1 + 2MfMgε)Φ . (77)

Let `k be the load vector in the kth machine in the solution that algorithm AL returned. Then,
as implied by (76) and by Assumption 2-4, it satisfies

‖`k − âk‖∞ ≤ εηgg(âk) + εΦ . (78)

Applying the Lipschitz continuity of g we get that

|g(`k)− g(âk)| ≤ εηgMgg(âk) + εMgΦ ,

and, consequently,
g(`k) ≤ g(âk) · (1 + εηgMg) + εMgΦ . (79)
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Applying f on (79), using its monotonicity, Lipschitz continuity and then its linear dependence
on scalar multipliers, Assumption 1-1, 5 and 3, we arrive at the following estimate:

f(g(`k))1≤k≤m ≤ (1 + εηgMg) · f(g(âk))1≤k≤m + εMfMgΦ . (80)

Combining (80) with (77), we conclude that this assignment satisfies (17) with a value of T
that depends solely on f and g. ¤

Summary

When the function g is not monotone, each step in the binary search goes as follows:

1. Translate the problem instance I into a problem instance Ĩ having only large vectors .

2. Apply the modified core algorithm to find a solution to Ĩ that satisfies (17).

3. If the core algorithm succeeded with a solution S̃ of Ĩ, we translate it into a solution S
of I along the lines of the proof of Theorem 3. As S̃ satisfies (17), we conclude in view
of (58) that S also satisfies (17) with a different value of the constant T that depends on
d, f and g.

4. If the core algorithm failed then, by Theorem 2, Ĩ has no Φ-solutions. Hence, in view of
(58), all solutions of I have a cost greater than (1 − Cε)Φ where C = C1 + C2 − C1C2

and C1 and C2 are as in (58). This is a weaker result than before (where a failure of the
algorithm implied that there are no Φ-solutions), but it is sufficient for the binary search
to converge to a solution that satisfies (4).

5.1 Overall complexity of the scheme

We summarize herein the steps of the entire scheme when the inner cost function is non-
monotone and the (worst case) cost of each step:

1. As in §4, the outer loop executes the geometrical binary search. The number of steps in
that search remains [P (m)− lg lg(1 + ε)], (21), where P (m) is the polynomial given in
(16).

2. In each step in the binary search we perform the core algorithm. The core algorithm is
composed of the following steps:

(a) Translating the original set of small vectors S to Ŝ. The running time of this stage
is Θ(|S|d), where |S| ≤ n.

(b) Translating the set Ŝ to S̃, consisting of large vectors only. The running time of
this stage is bounded by s · n steps of aggregating vectors of equal type, where

s = (q + 2)d − 1 and q =
⌊

lg(ηgMg)− lg ε

lg(1 + ε)

⌋
+ 1 ,

(53), (51) and (12), followed by no more than n steps of slicing the aggregated
vectors into the new input vectors (57).
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(c) Executing a loop over all possible ACVs. The number of ACVs is bounded by mt,
where t =

(⌈ηf ηg

ε

⌉
+ 1

)d. This value of t is the square root of the value of t in the
monotone case since here we first got rid of the small vectors and, therefore, the
DLCs are single discretized load vectors and not pairs of vectors as they were in §4.

(d) In each step in the core algorithm we may perform algorithm AL. The running time
of that algorithm is bounded by O(Rmns) where

R =
(

ηfηgd · 1 + ε

ε2d+1

)s

, s =

(⌊
lg(ηfη2

gMgε
−2(d+1))

lg(1 + ε)

⌋
+ 2

)d

− 1 ,

(72), (41) and (71).
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