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1 Introduction

We study nonlinear hyperbolic equations that are subject to oscillatory initial
data. The weak limit of the solution to such problems is characterized by the
corresponding homogenized equations. Since the effect of homogenization is av-
eraging with respect to the oscillatory variable, the usual description of the ho-
mogenized weak limit involves the introduction of a new independent variable.
For instance, if the problem takes the form

H(t,x, ∂t,∇x)u = 0 , u(x, 0) = u0(x,x/ε) , (1.1)

where x ∈ Rd, u = u(x, t) ∈ Rm, H is the nonlinear hyperbolic operator and
u0(x,x/ε) is the oscillatory initial data with u0(x,y) being a function of x and
y ∈ T d, T d is the d-dimensional unit torus, then the usual description of the
homogenized weak limit is

u(x, t) ⇀
ε→0

U(x, t) =
∫

T d
U(x,y, t)dy ,

where U(x,y, t) is the solution of the homogenized problem

H̃(t,x,y, ∂t,∇x,
∫

dy)U = 0 , U(x,y, 0) = u0(x,y) . (1.2)

Namely, in order to describe the weak limit U of u – both are functions only of
x and t, we are forced to introduce a new independent variable, y, that encodes
the nature of the oscillations, and a corresponding continuum of new unknown
functions, U(x,y, t).

The question which we address here is the following: is the introduction of the
new independent variable essential? In other words, can we find an alternative
description of the weak limit U(x, t) that is finite dimensional in the sense that it
employs only a finite number of additional unknown functions? This question may
be formulated precisely in the following manner: can we find a finite number of
unknown functions, z(x, t) = (z1(x, t), . . . , zn(x, t)), n ≥ m (m being the original
number of unknowns), which take the typical form

zi(x, t) =
∫

T d
fi(U(x,y, t))dy 1 ≤ i ≤ n , (1.3)

where fi(U) = Ui for 1 ≤ i ≤ m (so that (z1, ..., zm) = U) such that z satisfies a
closed system of equations,

Ĥ(t,x, ∂t,∇x)z = 0 , zi(x, 0) =
∫

T d
fi(u

0(x,y))dy 1 ≤ i ≤ n ? (1.4)

(throughout this paper, bold faced regular mode letters denote vectors while the
corresponding indexed letters denote their components). The vector z, if exists,
is referred to as a finite closure of U.

There are several reasons why this question is interesting:
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• First, in the context of semilinear hyperbolic equations there are certain
exceptional cases where such a finite closure exists. However, those excep-
tional cases do not include any of the physically interesting Boltzmann type
equations. In Section 3 we study those equations in order to derive neces-
sary conditions, as well as sufficient conditions, for the existence of a finite
closure.

• In the context of the quasilinear equations of fluid dynamics, McLaughlin et
al. derived effective equations for the weak limit of oscillatory solutions to
Euler equations [5]. Using asymptotic methods, they arrived at a seemingly
finite closure consisting of six unknown functions, but they were unable to
prove that this augmented system is indeed satisfied by the weak homoge-
nized limit. Moreover, their system was not a genuinely finite dimensional
closure, as it involved coefficients that were determined by external evolu-
tion equations that depended on the periodic variable y. Hence, there is a
will to have a finite closure in this context, but such a finite closure was
never found. The question about the existence of such remains.

• The question about the existence of finite closures is interesting also from a
computational point of view. Solutions of certain equations are sometimes
approximated by obtaining equations for certain moments, as in (1.3), and
then truncating those equations in order to obtain a closed system of equa-
tions [1, 4]. In view of such closure methods, it is natural to ask whether
an exact closure may be obtained by a clever choice of moment functions.

We consider here two types of problems: semilinear hyperbolic systems of
Boltzmann type and quasilinear equations of fluid dynamics. We show that the
answer to the above question for those types of problems is, in general, negative.
Our analysis, in both contexts, is based on some fundamental principles which
we present in Section 2. Those principles are interesting for their own sake and
are much more general than the questions which they help to answer in the
subsequent sections.

In Section 3 we deal with semilinear hyperbolic equations. We start in Section
3.1 with the simple ordinary differential equation ut − p(u) = 0. We characterize
the set of functions p(u) for which the corresponding initial value problem with
oscillatory initial datum has a finite closure. That set does not include p(u) = −u2

that corresponds to the so-called Riccati equation. In Section 3.2 we consider the
generalized Carleman model of the discrete Boltzmann equations; this model is
similar to the classical Carleman model but it has a general collision matrix.
We show that for almost all collision matrices (and, in particular, the one which
corresponds to the classical Carleman model) there is no finite closure. For the
complement set of collision matrices (which is of zero measure) a finite closure does
exist: two additional unknowns may be added to the original two components
of the homogenized limit so that the resulting 4-dimensional vector satisfies a
closed system of PDEs that are independent of the oscillatory variable. Finally,
in Section 3.3, we extend our discussion to a general 1D model of the Boltzmann
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equations. We first characterize the weak limit of such equations, Theorem 3.4,
thus extending previous results for particular cases such as the Broadwell model.
Then, we derive a necessary condition for the existence of a finite closure, Theorem
3.5: if at least one of the equations has a self nonlinear term, then there is no finite
closure. The usual physical models fail to satisfy this condition and, consequently,
they do not posses a finite closure. Proposition 3.1 provides a sufficient condition
for the existence of a finite closure. This sufficient condition is stricter than the
necessary condition, hence it remains to deal with the intermediate set of collision
matrices. It is not clear whether there is a finite closure for systems having such
collision matrices; however, we show that if it does exist, it must take a more
general form than simple moments as in (1.3).

In Section 4 we extend our discussion to equations of fluid dynamics. We
concentrate on the Euler equations for three-dimensional inviscid incompressible
flows and, using different principles from those used for the semilinear equations,
we prove the non-existence of a finite closure in this context as well.

2 Fundamental principles

Our main results in this section are Theorems 2.1-2.3 that play a central role in
the non-existence proofs in the subsequent sections.

We start with a basic lemma which is used in proving both Theorems 2.1 and
2.2 and is interesting for its own sake:

Lemma 2.1 Let fk(x), 1 ≤ k ≤ n, be locally linearly independent on Ω ⊂ R;
i.e.,

∑n
k=1 ckfk(x) vanishes on an Ω-subset of positive measure only if ck = 0,

1 ≤ k ≤ n. Then

V (x1, ..., xn) := det(fi(xj))
n
i,j=1 6= 0 a.e. in Ωn . (2.1)

Proof. By induction: if n = 1 then indeed V (x) = f1(x) 6= 0 a.e. in Ω by local
linear independence. Assume that

V (x1, ..., xn−1) 6= 0 in Ωn−1 \ N (2.2)

where N is of zero measure in Ωn−1. Fix (x1, ..., xn−1) ∈ Ωn−1 \ N and consider

V (x1, ..., xn−1, x) =
n∑

k=1

ckfk(x) . (2.3)

Since cn = V (x1, ..., xn−1) 6= 0, the sum in (2.3) is a nontrivial linear combination
of {fk(x)}1≤k≤n. Therefore, by the local linear independence, V (x1, ..., xn−1, x) 6=
0 for all x ∈ Ω \ M where M is of zero measure in Ω. This proves that
V (x1, ..., xn) 6= 0 whenever (x1, ..., xn−1) ∈ Ωn−1 \ N and xn ∈ Ω \ M (where
M depends on (x1, ..., xn−1)). Hence, since N and M are null sets in Ωn−1 and
Ω, respectively, we conclude that V 6= 0 a.e. in Ωn. 2
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Example. If fk(x) = xk−1, 1 ≤ k ≤ n, we get that V (x1, ..., xn) = det(xi−1
j )n

i,j=1 6=
0 a.e. in Rn. Indeed, this is just the Vandermonde determinant which is nonzero
everywhere in Rn apart from the null set of points where

∏
i>j(xi − xj) = 0.

Corollary 2.1 Assume that the assumptions of Lemma 2.1 hold and that m > n.
For each point x = (x1, ..., xm) ∈ Ωm, let

fk(x) := (fk(x1), ..., fk(xm)) . (2.4)

Let N be the set of points x ∈ Ωm for which the n vectors {fk(x)}1≤k≤n are
linearly dependent in Rm. Then N is of zero measure in Ωm.

Proof. We can find m − n additional functions, fk(x), n < k ≤ m, such that
{fk(x)}1≤k≤m are locally linearly independent in Ω. By Lemma 2.1,

V (x1, ..., xm) = det(fi(xj))
m
i,j=1 6= 0 a.e. in Ωm .

Hence, for almost every x ∈ Ωm, the m vectors fk(x), 1 ≤ k ≤ m, are linearly
independent and, consequently, so are the first n vectors. 2

Theorem 2.1 Let fk(x) ∈ C1(R), 1 ≤ k ≤ n, be such that {f ′k(x)}1≤k≤n are
locally linearly independent. For a given function a(y) ∈ L∞[0, 1], let Pa denote
the following vector in Rn,

Pa :=
(∫ 1

0
fk(a(y))dy

)n

k=1
,

and let
A := {Pa : a ∈ L∞[0, 1]} .

Assume that G : Rn → R is a Lipschitz continuous function that vanishes in A,
namely,

G(Pa) = 0 ∀a ∈ L∞[0, 1] .

Then all its first order derivatives, ∂kG, 1 ≤ k ≤ n, exist in A and equal zero
there.

Proof. We first assume that G is a C1-smooth function. In order to show that
∂kG = 0 in A, we show that ∂kG = 0 in

B := {Pa : a ∈ S} , (2.5)

where

S :=



a(y) =

m∑

j=1

ajχ[ j−1
m

, j
m

)(y) : m > n and (a1, ..., am) ∈ Rm \ N


 , (2.6)
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N being the null set such that the n vectors

fk
′(x) = (f ′k(x1), ..., f

′
k(xm)) 1 ≤ k ≤ n

are linearly independent whenever x ∈ Rm \ N (Corollary 2.1). Since B is dense
in A and ∂kG are continuous, it will follow that ∂kG vanishes in A, as required.

Let a(y) be a function in S, let m denote its number of steps and let b(y) be
any piecewise constant function with m steps,

b(y) =
m∑

j=1

bjχ[ j−1
m

, j
m

)(y) .

Consider the function g(t) = G(Pa+tb). Since g(t) = 0 for all t, we conclude that

g′(t = 0) =
n∑

i=1

∂iG(Pa) ·
∫ 1

0
f ′i(a(y))b(y)dy = 0 . (2.7)

Since both a(y) and b(y) are piecewise constant functions,

∫ 1

0
f ′i(a(y))b(y)dy =

1

m
fi
′(a) · b ,

where fi
′(a) = (f ′i(aj))

m
j=1 and b = (bj)

m
j=1. But fi

′(a), 1 ≤ i ≤ n, are linearly
independent and, therefore, for every k, 1 ≤ k ≤ n, we can choose b so that
fi
′(a) · b = 0 for all i 6= k and fk

′(a) · b 6= 0. This choice of b shows that
∂kG(Pa) = 0. That concludes the proof in case G is assumed to be C1-smooth.

The proof when G is assumed to be only Lipschitz continuous goes along
the same lines: in (2.7), instead of taking the derivative g′(t = 0) we consider

limt→0
g(t)−g(0)

t
. Using the chain rule for differences (rather than derivatives) of

composite functions, the Lipschitz continuity and the same choices for the test
functions b(y), we get that each of the first order derivatives ∂kG exists in B and
equal zero there. Since B is dense in A, we conclude that the same holds in A as
well. 2

Corollary 2.2 If in Theorem 2.1 we assume that G is real-analytic, then all its
derivatives of any order vanish in A and, consequently, G ≡ 0.

While Theorem 2.1 is necessary in the context of semilinear equations, Section
3, the next two theorems are essential for our results in the case of quasi-linear
equations, Section 4.

Theorem 2.2 Given fk(x) ∈ C1(R), 1 ≤ k ≤ n, and an interval I, there exist
two distinct monotonically increasing functions on I, a(·) and b(·), for which

∫

I
fk(a(y))dy =

∫

I
fk(b(y))dy 1 ≤ k ≤ n . (2.8)
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Proof. Assume, for the sake of simplicity, that I = [0, 1]. We look for the
functions a and b in the class of step functions which take the form

u(y) =
n+1∑

j=1

ujχ[ j−1
n+1

, j
n+1

)(y) .

Hence, we need to find two distinct vectors in Rn+1 = Rn×R, (a, α) and (b, β),
for which

F(a, α) = F(b, β) where F = (F1, ..., Fn) and Fk(u1, ..., un+1) =
n+1∑

j=1

fk(uj) .

(2.9)
First, we assume that {f ′k(x)}1≤k≤n are locally linearly independent. Then, by
Lemma 2.1,

det

(
∂F

∂a

)
= det

(
f ′k(aj)

)n

k,j=1
6= 0 for almost all (a, α) ∈ Rn+1 . (2.10)

We fix (a, α) to be a vector for which the inequality in (2.10) holds. Then, by the
implicit function theorem, (2.9) defines b as a function of β in a neighborhood
of (a, α). We may now pick β 6= α in that neighborhood such that (b(β), β) is
a vector in Rn+1, different from (a, α), for which (2.9) holds. Finally, we may
rearrange the vectors (a, α) and (b, β) to be monotonically increasing.

If {f ′k(x)}1≤k≤n are not locally linearly independent, there exists a subset of
those functions, say {f ′k(x)}1≤k≤m, m < n, that are locally linearly independent
in some interval Ω and, for m < k ≤ n,

fk(x) = Ck +
m∑

j=1

ck,jfj(x) in Ω . (2.11)

Hence, we may find functions a and b for which (2.8) holds for 1 ≤ k ≤ m and
consequently, by (2.11), also for k > m. 2

Theorem 2.2 is actually implied by the Hahn-Banach extension theorem. One
of the consequences of that theorem states that given a normed linear space, X,
a sequence of elements {xk} ⊂ X, a sequence of scalars {αk ∈ C} and γ > 0 such
that

∣∣∣∣∣
n∑

k=1

βkαk

∣∣∣∣∣ ≤ γ

∥∥∥∥∥
n∑

k=1

βkxk

∥∥∥∥∥ for all n ∈ N and β1, . . . , βn ∈ C ,

there exists a continuous linear functional φ on X such that φ(xk) = αk for all
k ∈ N ; see [11, Chapter IV, §5, Theorem 2]. To apply this theorem to our case
we take X = L2(Ω), Ω being a bounded interval in R,

xk =





fk 1 ≤ k ≤ n
g k = n + 1 where g ⊥ Span{f1, . . . , fn}
0 k > n + 1

,
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αk = 0 for all k 6= n+1 while αn+1 = 1 and finally, γ = 1/‖g‖. Then, there exists
a nonnegative Bäire measure dµ such that

∫
fk(t)dµ(t) = 0 1 ≤ k ≤ n and

∫
g(t)dµ(t) = 1 .

Writing dµ as a difference of two nonnegative measures, dµ = dµa − dµb, we get
that ∫

fk(t)dµa(t) =
∫

fk(t)dµb(t) 1 ≤ k ≤ n

while ∫
g(t)dµa(t) 6=

∫
g(t)dµa(t) .

Finally, those two measures are just the Young measures of the functions a = µ−1
a

and b = µ−1
b . Those two distinct and monotonically increasing functions satisfy

(2.8).

Theorem 2.3 Let a1, a2 be measurable functions on [0, 1] and let a∗1, a∗2 denote
their monotonically increasing rearrangements. Then if a∗1 6= a∗2, there exists a
smooth function b such that

∫ 1
0 b(a1(y))dy 6= ∫ 1

0 b(a2(y))dy.

Proof. Without loss of generality, we assume that a1 and a2 are monotonic
increasing. For the sake of simplicity, we assume that they are also continuous.

Let Ri = [ri, si] denote the range of ai on [0, 1], i = 1, 2. If the two ranges
differ, say R1 \R2 6= ∅, any 0 < b ∈ C1

0(R1 \R2) will yield the desired inequality.
If the two ranges coincide, there must be a subinterval (yl, yr) ⊂ [0, 1] on which,
say, a1 > a2 and a1(yl) = a2(yl) = αl, a1(yr) = a2(yr) = αr. Here, we take b to
be a smooth approximation of b(α) = α · χ[αl,αr](α). 2

3 Semilinear hyperbolic equations

3.1 Riccati-type equations

Let u(x, t) be the solution of the Riccati-type equation

ut − p(u) = 0 , u(x, 0) = a
(

x

ε

)
, (3.1)

where a is a 1-periodic function. The classical Riccati equation corresponds to
p(u) = −u2. The solution to (3.1) is given by

u(x, t) = P−1(t + P (a)) where P (u) :=
∫ du

p(u)

and, when ε ↓ 0, it tends in the weak sense to

U(t) =
∫ 1

0
U(t, y)dy , U(t, y) = P−1(t + P (a(y))) (3.2)
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(here and henceforth, the overbar notation indicates the average with respect to
the periodic variable). Hence, U(t) is an average of a continuum of solutions of
the Riccati-type equation, {U(t, y)}y∈[0,1]. Our question about an existence of a
finite closure to the homogenized limit takes the following form in this case: can
we introduce a finite number of unknowns,

zi(t) =
∫ 1

0
fi(U(t, y))dy 1 ≤ i ≤ n , (3.3)

where f1 = id so that z1(t) = U(t), such that z(t) = (z1(t), ..., zn(t)) satisfies a
closed system of ODEs, the form of which does not depend on a(y)?

Note that it suffices to consider systems of the first order,

z′i = Fi(t, z) 1 ≤ i ≤ n , (3.4)

because all the derivatives of zi(t), (3.3), take a similar form of moments of U(t, y),
i.e.,

z
(r)
i (t) =

∫ 1

0
fi,r(U(t, y))dy .

For the sake of well posedness of the corresponding initial value problem, we must
assume that all Fi are continuous with respect to t and Lipschitz continuous with
respect to z. We may assume that {f ′i}1≤i≤n are linearly independent, because,
otherwise, we could extract a maximal linearly independent subset {f ′i}i∈I⊂{1,...,n}
and then write a closed system of ODEs for {zi}i∈I . Finally, we define

〈p〉 = Span{p′k}k∈N where p1 = id and pk = p′k−1 · p ∀k > 1 .

Theorem 3.1 Consider the initial value problem (3.1) whose homogenized weak
limit is given by (3.2). This homogenized limit has a finite closure, (3.3)-(3.4), if
and only if 〈p〉 is finite dimensional. Moreover, if dim〈p〉 = n < ∞, the minimal
finite closure is of dimension n as well.

Proof. Assume that dim〈p〉 = ∞ and that there is a closure of a finite dimension
n, (3.4). Then the equality in (3.4) takes the following form when t = 0, in view
of (3.2)–(3.3):

∫ 1

0
f ′i(a(y))·p(a(y))dy = Fi

(
0,

∫ 1

0
f(a(y))dy

)
1 ≤ i ≤ n where f = (fk)

n
k=1 .

(3.5)
Since f ′1 ≡ 1, equality (3.5) reads when i = 1

G
(∫ 1

0
f(a(y))dy,

∫ 1

0
fn+1(a(y))dy

)
= 0 ∀a ∈ L∞[0, 1] , (3.6)

where
fn+1 = p = p2 and G(z, zn+1) = F1(0, z)− zn+1 . (3.7)

Since ∂n+1G = −1, namely, the first order derivative ∂n+1G never vanishes, equal-
ity (3.6) can hold only if f ′1, ..., f

′
n, f ′n+1 = p′2 are linearly dependent, as implied
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by Theorem 2.1. But since the first n functions are linearly independent, we
conclude that

p′2 ∈ Span{f ′i}1≤i≤n . (3.8)

Assume that p′2 =
∑n

i=1 cif
′
i . Taking the corresponding linear combination of

equations (3.5), we get that

∫ 1

0
p′2(a(y)) · p(a(y))dy =

n∑

i=1

ciFi

(
0,

∫ 1

0
f(a(y))dy

)
, (3.9)

or, equivalently,

G
(∫ 1

0
f(a(y))dy,

∫ 1

0
fn+1(a(y))dy

)
= 0 ∀a ∈ L∞[0, 1] , (3.10)

where

fn+1 = p′2p = p3 and G(z, zn+1) =
n∑

i=1

ciFi(0, z)− zn+1 . (3.11)

Since ∂n+1G = −1, we conclude, arguing along the same lines as before, that

p′3 ∈ Span{f ′i}1≤i≤n . (3.12)

Repeating the above arguments, we arrive at the conclusion that all functions p′k
, k ∈ N , lie in the finite dimensional space Span{f ′i(x)}1≤i≤n. That contradicts
our assumption that dim〈p〉 = ∞.

Assume next that dim〈p〉 is finite-dimensional, namely, there exists n such
that for all ` > n,

p` = c`
0 +

n∑

i=1

c`
ipi . (3.13)

It can be easily verified that by taking in (3.3) the same value of n as above and
fi = pi for 1 ≤ i ≤ n, we get that z(t) satisfies the following closed system:

z′i = zi+1 1 ≤ i < n and z′n = cn+1
0 +

n∑

i=1

cn+1
i zi . (3.14)

Moreover, if the actual dimension of 〈p〉 is k < n, the closure system (3.14) may
also be reduced to include k equations in k unknowns.

Hence, in the first part of the proof we saw that any closure of the system
must have a dimension greater than or equal to dim〈p〉. In the second part we
saw that when the latter is finite, there is at least one closure having the same
dimension. That concludes the proof. 2
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Examples.

1. When p(u) = Cur, the sequence of functions pk(u) is given by p1(u) = u
and pk(u) = Const · u(k−1)r−(k−2) for all k > 1. When r = (n− 1)/n for any
value of n ∈ N , pk becomes identically zero for all k ≥ n + 2. Hence, in
that case a finite closure exists. Another case when a finite closure exists
is r = 1, because then all pk are linear in u. Apart from those two cases,
equation (3.1) with p(u) = Cur has no finite closure. This includes the
regular Ricatti equation that corresponds to p(u) = −u2.

2. When p(u) =
√

C + u2, the sequence pk(u) becomes periodic as p3(u) =
p1(u) = u. Hence, there exists a closure of dimension 2 with z1 = U and
z2 = p(U).

3.2 The generalized Carleman equations

Consider the generalized Carleman equations

ut + ux + αu2 − βv2 = 0 , (3.15)

vt − vx + γv2 − δu2 = 0 , (3.16)

where α, β, γ, δ are nonnegative constants. The classical Carleman equations,
that serve as a simple model for the nonlinear discrete Boltzmann equations,
correspond to α = β = γ = δ = 1. Assume that u and v are subject to oscillatory
initial data,

u(x, 0) = u0(x,
x

ε
) , v(x, 0) = v0(x,

x

ε
) , (3.17)

where u0(x, y) and v0(x, y) are smooth, non-negative and 1-periodic with respect
to y. Then the following holds:

Theorem 3.2 Let u = u(x, t) and v = v(x, t) be the solution of (3.15)–(3.17)
and let U = U(x, y, t) and V = V (x, y, t) be the solution of the corresponding
homogenized equations

Ut + Ux + αU2 − β
∫ 1

0
V 2(x, y, t)dy = 0 , (3.18)

Vt − Vx + γV 2 − δ
∫ 1

0
U2(x, y, t)dy = 0 , (3.19)

subject to the initial data

U(x, y, 0) = u0(x, y) , V (x, y, 0) = v0(x, y) . (3.20)

Then
∣∣∣∣u(x, t)− U

(
x,

x− t

ε
, t

)∣∣∣∣ −→
ε→0

0 and
∣∣∣∣v(x, t)− V

(
x,

x + t

ε
, t

)∣∣∣∣ −→
ε→0

0 .
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Theorem 3.2 is a special case of Theorem 3.4 which we prove in the next
section. This theorem implies that in the weak W−1,∞-sense

u(·, t) ⇀ U(·, t) =
∫ 1

0
U(·, y, t)dy and v(·, t) ⇀ V (·, t) =

∫ 1

0
V (·, y, t)dy

when ε ↓ 0 (consult [7, Lemma 2.1]).

A finite closure to the system (3.15)-(3.17) is a collection of n ≥ 2 unknowns,

z = (z1, ..., zn) , zi = zi(x, t) =
∫ 1

0
fi(U, V )dy 1 ≤ i ≤ n , (3.21)

where f1(U, V ) = U and f2(U, V ) = V , so that z1 = U and z2 = V , that satisfy
a closed system of equations,

∂tzi = Fi(x, t, z, ∂xz, ∂
2
xz, ...) 1 ≤ i ≤ n , (3.22)

the form of which does not depend on u0(x, y) and v0(x, y). Our main result in
this case is as follows:

Theorem 3.3 The system (3.15)-(3.17) has a finite dimensional closure, (3.21)-
(3.22), if and only if α = γ = 0.

Proof. First, if α = γ = 0 we may take

z1 = U , z2 = V , z3 = U2 and z4 = V 2 ,

and find that these four unknown functions of (x, t), the first two of which are
the sought-after weak limits, satisfy a closed system of equations:

∂tz1 + ∂xz1 − βz4 = 0 ,

∂tz2 − ∂xz2 − δz3 = 0 ,

∂tz3 + ∂xz3 − 2βz1z4 = 0 ,

∂tz4 − ∂xz4 − 2δz2z3 = 0 .

Assume next that both α and γ are nonzero and that a finite closure of
the form (3.21)-(3.22) does exist (later on, we shall prove our statement also
in the case where only one of those two parameters is nonzero). To arrive at
contradiction, it suffices to concentrate on the following initial functions,

u0(x, y) = a(y) , v0(x, y) = b , (3.23)

where a(y) is 1-periodic and the constant b is selected so that

γ · b2 − δ · a(y)2 = 0 . (3.24)
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We evaluate the equality (3.22) at time t = 0:

zi

∣∣∣
t=0

=
∫ 1

0
fi(a(y), b)dy =

∫ 1

0
gi(a(y))dy where gi(·) := fi(·, b) . (3.25)

Since at t = 0 zi do not depend on x, all of their spatial derivatives are zero at
that time:

∂k
xzi

∣∣∣
t=0

= 0 ∀k ≥ 1 . (3.26)

In order to evaluate ∂tzi at t = 0 we first find, using (3.18)–(3.20) and (3.23),
that

Ut

∣∣∣
t=0

= −Ux − αU2 + βV 2
∣∣∣
t=0

= −α · a(y)2 + β · b2 , (3.27)

and, in view of (3.24),

Vt

∣∣∣
t=0

= Vx − γV 2 + δU2
∣∣∣
t=0

= −γ · b2 + δ · a(y)2 = 0 . (3.28)

The last two equalities imply that

∂tzi

∣∣∣
t=0

=
∫ 1

0
g′i(a(y)) · (−αa(y)2 + βb2)dy . (3.29)

Hence, in view of (3.25), (3.26) and (3.29), the equations of (3.22) read as follows
when t = 0:

∫ 1

0
g′i(a(y)) · (−αa(y)2 +βb2)dy = F̂i

(∫ 1

0
g1(a(y))dy, ...,

∫ 1

0
gn(a(y))dy

)
, (3.30)

where F̂i(z) = Fi(x, 0, z, 0, 0, ...) (x is viewed here as a parameter).
The proof from this point on goes along the lines of the proof of Theorem 3.1
and, therefore, we shall outline it briefly: Since g1 = id, (3.30) reads as follows
for i = 1,

∫ 1

0
(−αa(y)2 + βb2)dy = F̂1

(∫ 1

0
g1(a(y))dy, ...,

∫ 1

0
gn(a(y))dy

)
. (3.31)

As in the proof of Theorem 3.1, we may assume that the functions {g′i}1≤i≤n

are linearly independent. Hence, since a(y) is an arbitrary L∞[0, 1]-function, we
conclude by (3.31) that

(−αξ2 + βb2)′ ∈ Span{g′i(ξ)}1≤i≤n ,

or, equivalently, since α 6= 0,

ξ ∈ Span{g′i(ξ)}1≤i≤n . (3.32)

Consequently, using (3.32) and induction, we arrive at the absurd conclusion that

ξ` ∈ Span{g′i(ξ)}1≤i≤n ∀` ∈ N . (3.33)
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Finally, we handle the case where α 6= 0 and γ = 0. In the previous case, we
chose the initial data to be as in (3.23)+(3.24) in order to have

Vt

∣∣∣
t=0

= 0 . (3.34)

We can not make this choice in this case since γ = 0. However, we can still
arrange for (3.34) to hold by taking

u0(x, y) = a(y) and v0(x, y) = −δ · a(y)2 · x . (3.35)

With this choice, the initial values of Ut and Vt are:

Ut

∣∣∣
t=0

= −α · a(y)2 + β ·
(
δ · a(y)2 · x

)2
and Vt

∣∣∣
t=0

= 0 ,

and, hence, we may proceed with the proof as before. 2

3.3 A general model for the 1D discrete Boltzmann equa-
tions

In the Carleman model it is assumed that all particles move in the x-direction
with velocities ±1. In the Broadwell model, the possible velocities of the particles
are ±1 or 0. Letting u, v, w denote the density numbers of particles with velocity
1,−1, 0, respectively, we obtain the following equations, [2]:

ut + ux + uv − w2 = 0 , (3.36)

vt − vx + uv − w2 = 0 , (3.37)

wt − uv + w2 = 0 . (3.38)

We would like to consider here a general 1D setting that includes both the Car-
leman and the Broadwell models. Assume that all particles are moving in the
x-direction with velocities that may take one of the values {ci}1≤i≤m. Denoting
the corresponding density numbers by ui = ui(x, t), the resulting equations will
be of the form

∂tui + ci∂xui = Qi(u) , (3.39)

where u = (u1, ..., um) and Qi(u) = u ·Qiu, Qi being a symmetric collision matrix
[8].

We would like to derive the homogenized equations that describe the weak
limit of solutions of (3.39) which are subject to oscillatory initial data. To this
end, we define the following:

Definition 3.1 Let a = (a1, ..., am) be a vector in Rm. Then:
(D1) M(a) denotes the Z-module of vectors in Zm that are orthogonal to a, i.e.,

M(a) =

{
(k1, ..., km) ∈ Zm :

∑

i

kiai = 0

}
;
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(D2) MR(a) denotes the R-subspace of Rm spanned by the vectors of M(a) and
MR(a)⊥ is its orthogonal complement in Rm;
(D3) PMR(a)⊥ is the projection modulo 1 of MR(a)⊥ on the m-dimensional
unit torus Tm.

Since MR(a) has a base of vectors in Zm, so does MR(a)⊥. Let {v`}1≤`≤k ⊂
Zm be such a base. Then the projection modulo 1 of MR(a)⊥ on the m-
dimensional unit torus Tm is:

PMR(a)⊥ =

{
k∑

`=1

s`v
` : s = (s1, . . . , sk) ∈ T k

}
.

Next, let c = (c1, ..., cm) denote the vector of velocities and let ci be defined as
follows,

ci = (ci − c1, ci − c2, ..., ci − cm) . (3.40)

In Theorem 3.4 below, a main role is reserved for the manifolds PMR(ci)⊥,
1 ≤ i ≤ m. We let ki denote the dimension of PMR(ci)⊥ and {vi,`}1≤`≤ki denote
the corresponding base, i.e.,

PMR(ci)⊥ =



zi(s) =

ki∑

`=1

s`v
i,` : s = (s1, . . . , ski) ∈ T ki



 . (3.41)

With these definitions and notations, we may state the following generalization
of Theorem 3.2 and [3, Theorem 2.1]:

Theorem 3.4 Let u = u(x, t) be the solution of (3.39) subject to the oscillatory
initial data

u(x, 0) = u0(x,
x

ε
) , (3.42)

where u0(x, y) is smooth, non-negative and 1-periodic in y. Let U = U(x, y, t),
U = (U1, ..., Um), be the solution of the corresponding homogenized equations

∂tUi + ci∂xUi =
∫

T ki
Qi(wi)ds where wi

j = Uj(x, y + zi
j(s), t) 1 ≤ j ≤ m ,

(3.43)
U(x, y, 0) = u0(x, y) , (3.44)

where ki and zi(s) are as in (3.41). Then

E(x, t) :=
m∑

i=1

∣∣∣∣ui(x, t)− Ui

(
x,

x− cit

ε
, t

)∣∣∣∣ ≤ ν(ε) −→
ε→0

0 . (3.45)

Remarks.

1. We assume that both (3.39)+(3.42) and (3.43)+(3.44) have a smooth and
bounded solution up to some time T . Under this assumption, (3.45) holds
for all t ≤ T .
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2. The order of magnitude of ν(ε) depends on ci, 1 ≤ i ≤ m; more specifically,
it depends on some measure of their linear dependence over the integers.
When ci are all rational it turns out that ν(ε) = O(ε). In general, ν(ε) ≥
O(ε). The reader is referred to [10] for more details.

Proof. Integrating (3.39) along the characteristic curve

Ci = { (xi(τ), τ) : 0 ≤ τ ≤ t , where xi(τ) = x− ci(t− τ) and t ≤ T } , (3.46)

we get

ui(x, t)− ui(x− cit, 0) =
∫

Ci

Qi(u)dτ . (3.47)

We do the same for the homogenized equation: in view of (3.43), the function

Ũi(x, t) = Ui

(
x,

x− cit

ε
, t

)
(3.48)

satisfies

∂tŨi+ci∂xŨi =
∫

T ki
Qi(w̃i)ds where w̃i

j = Uj

(
x,

x− cit

ε
+ zi

j(s), t
)

1 ≤ j ≤ m .

(3.49)
Integrating (3.49) along Ci we get

Ũi(x, t)− Ũi(x− cit, 0) =
∫

Ci

∫

T ki
Qi(w̃i)dsdτ . (3.50)

Subtracting (3.50) from (3.47) and denoting Ũ = (Ũ1, ..., Ũm) we get that

ui(x, t)−Ũi(x, t) =
∫

Ci

(
Qi(u)−Qi(Ũ)

)
dτ+

∫

Ci

(
Qi(Ũ)−

∫

T ki
Qi(w̃i)ds

)
dτ = E1+E2 .

(3.51)
By the boundedness of ui and Ũi, 1 ≤ i ≤ m, there exists a constant K such that

|E1| ≤ K ·
∫

Ci

Edτ , (3.52)

where E is as in (3.45). As for E2, we define the following function of m + 1
variables:

Gi(τ, ξj) = Qi(Uj(xi(τ), ξj, τ)) where 1 ≤ j ≤ m . (3.53)

In (3.53) and henceforth we adopt a notation agreement where a j-indexed term
stands for a vector of dimension m whose jth component equals the given term.
With those notation agreements, we note, using (3.46), that

∫

Ci

Qi(Ũ)dτ =
∫ t

0
Gi

(
τ,

(ci − cj)τ

ε
+

x− cit

ε

)
dτ , (3.54)

and ∫

Ci

∫

T ki
Qi(w̃i)dsdτ =

∫ t

0

∫

T ki
Gi

(
τ, zi

j(s) +
x− cit

ε

)
dsdτ . (3.55)
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As Uj(x, y, t) are 1-periodic in y, Gi is 1-periodic with respect to ξj, 1 ≤ j ≤ m.
Hence, by [10, Theorem 3.5],

Gi
(
τ,

(ci − cj)τ

ε
+

x− cit

ε

)
⇀
ε→0

∫

T ki
Gi

(
τ, zi

j(s) +
x− cit

ε

)
ds in W−1,∞ , (3.56)

where the W−1,∞ rate of convergence, ν(ε), is determined by a measure of the
linear dependence of ci over the integers. Therefore, in view of (3.54)-(3.56),

|E2| ≤ ν(ε) −→
ε→0

0 . (3.57)

Using (3.52) and (3.57) in (3.51) and taking the sum with respect to 1 ≤ i ≤ m,
we arrive at the conclusion that

E(x, t) ≤ K ·
m∑

i=1

∫

Ci

Edτ + ν(ε) . (3.58)

This implies that Ê(t) := sup E(·, t) satisfies

Ê(t) ≤ mK
∫ t

0
Ê(τ)dτ + ν(ε) . (3.59)

Since by (3.42), (3.44) and (3.48) Ê(0) = 0, (3.59) and Gronwall’s inequality
imply (3.45). 2

Example. If all the velocities, ci, are commensurate over the integers, we take
them to be integral by rescaling x. This is the situation in both the Carleman
and the Broadwell models. In this case, the linear manifold in the torus Tm over
which the quadratic form Qi is integrated, (3.43), is a one-dimensional curve:

PMR(ci)⊥ = {cis : s ∈ T 1 = [0, 1)} .

Hence, the homogenized equations (3.43) read in this case

∂tUi + ci∂xUi =
∫ 1

0
Qi(wi)ds where wi

j = Uj(x, y + (ci − cj)s, t) 1 ≤ j ≤ m .

(3.60)

Next, we aim at showing that the weak limit

u ⇀ U =
∫ 1

0
U(x, y, t)dy (3.61)

can not be described by a closed system in the unknowns

zi(x, t) =
∫ 1

0
fi(U(x, y, t))dy 1 ≤ i ≤ n , n ≥ m , (3.62)

where
fi(U) = Ui 1 ≤ i ≤ m . (3.63)

To avoid cumbersome notations we restrict ourselves to the above mentioned case
where all the velocities are integral. Similar results may be obtained for the more
general case.
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Theorem 3.5 Consider the system (3.39) subject to the oscillatory initial data
(3.42). Assume that at least one of the equations has a self nonlinear term,
namely,

Qi
i,i 6= 0 for some 1 ≤ i ≤ m . (3.64)

Then the homogenized weak limit (3.61) does not have a finite closure (3.62)-
(3.63) that satisfies a closed system (3.22).

Before proving this theorem, we note that both the generalized Carleman
equations, (3.15)–(3.16), with |α|+ |γ| > 0, and the Broadwell equations, (3.36)–
(3.38), satisfy condition (3.64).

Proof. Without loss of generality we may assume that condition (3.64) holds for
k = m. We assume the existence of a finite closure and arrive at a contradiction,
using similar techniques to those presented in previous sections. Let a(y) be an
arbitrary 1-periodic function and assume that we may find constants {bi}1≤i≤m−1

that satisfy

m−1∑

j,k=1

Qi
j,kbjbk + 2a

m−1∑

j=1

Qi
j,mbj + a2Qi

m,m = 0 , 1 ≤ i ≤ m− 1 . (3.65)

Then, taking the initial value

u0(x, y) = (b1, ..., bm−1, a(y)) , (3.66)

we find that:

zi

∣∣∣
t=0

=
∫ 1

0
gi(a(y))dy where gi(·) := fi(b1, ..., bm−1, ·) , (3.67)

and
∂k

xzi

∣∣∣
t=0

= 0 ∀k ≥ 1 . (3.68)

In order to evaluate ∂tzi at t = 0 we compute ∂tUi(x, y, 0). Using (3.43), we get
that

∂tUi

∣∣∣
t=0

=
∫

T ki
Qi

(
b1, ..., bm−1, a(y + zi

m(s))
)
ds . (3.69)

Let us now distinguish between two cases. If i = m, then the manifold of inte-
gration, PMR(cm)⊥, (3.41), is embedded in Tm−1 × {0}, since the mth entry in
cm is zero, see (3.40). Therefore, zm

m(s) = 0 and, hence, the integrand in (3.69)
does not depend on the integration variables s. Consequently,

∂tUm

∣∣∣
t=0

= Qm
m,ma(y)2 + q1a(y) + q2 (3.70)

where q1, q2 are some constants and Qm
m,m is nonzero as assumed. If, on the other

hand, i 6= m, then by (3.41),

zi
m(s) =

ki∑

`=1

vi,`
m s`
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where all of the coefficients vi,`
m are integers and at least one of them is nonzero

(this is because the mth entry in ci is nonzero). Consequently, as a(·) is 1-
periodic, it may be easily verified that the ki-dimensional integral in (3.69) boils
down to a one-dimensional integral,

∂tUi

∣∣∣
t=0

=
∫ 1

0
Qi

(
b1, ..., bm−1, a(y + s)

)
ds 1 ≤ i ≤ m− 1 , (3.71)

and, in view of (3.65), it vanishes,

∂tUi

∣∣∣
t=0

= 0 1 ≤ i ≤ m− 1 . (3.72)

Finally, by (3.62), (3.67), (3.70) and (3.72), we get that

∂tzi

∣∣∣
t=0

=
∫ 1

0
g′i(a(y)) · (Qm

m,ma(y)2 + q1a(y) + q2)dy . (3.73)

The proof proceeds from this point on along the same lines as in the proofs
presented previously.

It may happen that the coefficient matrices will be such that we could not
make a selection of constant parameters {bi}1≤i≤m−1 so that (3.65) holds. This
was the case, for example, with the generalized Carleman equations when γ = 0.
In that case, we could select initial values that depend on x in order to have all
the temporal derivatives vanish at t = 0 for 1 ≤ i ≤ m− 1, (3.72), while the mth
temporal derivative is quadratic in the periodic function a(y), (3.70), just as we
did in the proof of Theorem 3.3. We omit further details. That completes the
proof.2

Theorem 3.5 provides a necessary condition for the existence of a finite closure:
there should be no self-nonlinear terms, namely, the evolution equation for ui must
not include the term u2

i , for all 1 ≤ i ≤ m. It is desirable to derive also a sufficient
condition for the existence of a finite closure for systems of the form (3.39). The
following proposition provides such a sufficient condition.

Proposition 3.1 Assume that the coefficient matrices Qi satisfy:

Qi
i,i = 0 ∀i (3.74)

and

Qi
j,k = 0 ∀i, j, k such that i 6= j , j 6= k and k 6= i . (3.75)

In other words, all entries of Qi outside the diagonal and outside its ith row and

ith column are zero, and also the term Qi
i,i is zero. Then the system (3.39) has

the finite closure z = (z1, . . . , zm, ζ1, . . . , ζm) where zi =
∫ 1
0 Uidy and ζi =

∫ 1
0 U2

i dy,
1 ≤ i ≤ m.
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Proof. By averaging equation (3.43) with respect to y we get an evolution
equation for zi. By multiplying (3.43) by Ui and then integrating it with respect
to y, we get an evolution equation for ζi. It may be easily verified that the above
assumptions about the coefficient matrices guarantee that those 2m equations
are closed, in the sense that their right hand sides include only the terms zi and
ζi. 2

Let us summarize: according to Theorem 3.5, (3.74) is a necessary condition
for the existence of a finite closure; according to Proposition 3.1, the conjunction
of (3.74) and (3.75) is a sufficient condition for a finite closure to exist. It is
desirable to close the gap between the necessary condition and the sufficient one,
namely, to determine what happens with systems that satisfy (3.74) but violate
(3.75). An example for such a system is the following one,

ut = vw , vt − vx = 0 , wt + wx = 0 . (3.76)

In view of Theorem 3.5, this system could have a finite closure, but it is not
determined by Proposition 3.1. The homogenized solution in this case is given
by averages of the following equations, see (3.60),

Ut =
∫ 1

0
V (x, y+s, t)W (x, y−s, t)ds , Vt−Vx = 0 , Wt +Wx = 0 . (3.77)

Denoting the weak limits by z1 = U , z2 = V and z3 = W , we see, using com-
pensated compactness, that they satisfy a closed set of equations (no additional
functions are necessary):

∂tz1 = z2z3 , ∂tz2 − ∂xz2 = 0 , ∂tz3 + ∂xz3 = 0 .

This example shows that the sufficient condition of Proposition 3.1 could be re-
laxed in order to include systems like (3.76). Another possibility that should be in-
vestigated is whether the necessary condition of Theorem 3.5 could be strengthen.

4 Equations of Fluid Dynamics

Here, we address the question of a finite closure in the context of the equations
of fluid dynamics. We concentrate on the three-dimensional inviscid and incom-
pressible Euler equations

∂tu + (u · ∇)u +∇p = 0 , ∇ · u = 0 (x, t) ∈ R3 ×R+ . (4.1)

We consider solutions of (4.1) which are subject to initial oscillations,

u(x, 0) = u0(x,
x

ε
) , (4.2)

u0(x,y) being 1-periodic in yi, 1 ≤ i ≤ 3. We prove that v(x, t), the homogenized
weak limit,

u(x, t) ⇀
ε→0

v(x, t) ,
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does not have a finite closure, i.e., it cannot be augmented into a vector of n > 3
unknowns, z ∈ Rn, that satisfies a well-posed problem of the following form:

z(x, 0) =
∫

T 3
f(u0(x,y))dy , (4.3)

F(t,x, ∂t,∇x)z = 0 . (4.4)

In this problem, z is determined initially by moments of u0(x, ·), (4.3), and then
it evolves according to (4.4). This form is much more general than the one
considered previously for semilinear systems: all we assume about the equations
of evolution, (4.4), is that they do not depend on u0 and that the corresponding
initial value problem is well posed; no other assumption is made regarding the
order of the equations or even their nature – they can be differential equations,
integro-differential or even functional-differential equations. Problem (4.3)+(4.4)
is more general than problem (3.62)+(3.22) which we considered in the previous
section for the semilinear hyperbolic equations in another respect as well: if there
we assumed that zi equal moments of the fluctuating field for all t ≥ 0, (3.62),
here we assume this relation only at t = 0, (4.3).

On the other hand, we do need to make here one restriction that was not
necessary before. We must assume that the functions f = (f1, ..., fn) in (4.3) are
separable functions of (u0

1, u
0
2, u

0
3) in the sense that they take the form

fi(u
0
1, u

0
2, u

0
3) =

mi∑

j=1

f j
i,1(u

0
1)f

j
i,2(u

0
2)f

j
i,3(u

0
3) 1 ≤ i ≤ n (4.5)

(e.g., polynomials).

Our proof in this quasi-linear setting is entirely different from the proofs pre-
sented for semilinear equations: instead of relying on Theorem 2.1, we arrive at
our conclusion using Theorems 2.2 and 2.3. The key ingredient in our proof is the
fact that the following is a solution of the Euler equations (4.1), with p ≡ Const,
for any choice of C1-functions a and b,

ua,b(x, t) =
(

a
(

x2

ε

)
, 0 , b

(
x1 − ta

(
x2

ε

)) )
. (4.6)

This solution equals initially to

ua,b(x, 0) = u0
a,b

(
x,

x

ε

)
where u0

a,b(x,y) = ( a(y2) , 0 , b(x1) ) , (4.7)

and, when ε ↓ 0, it tends weakly to

va,b(x, t) =
∫ 1

0
( a(y2) , 0 , b(x1 − ta(y2)) )dy2 . (4.8)

Assume that a closure of the form (4.3)+(4.4) did exist. Then, by (4.3) and (4.7),
the initial value of z would be in this case

za,b(x, 0) =
∫ 1

0
f(a(y), 0, b(x1))dy . (4.9)
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By Theorem 2.2, we may find two distinct and monotonically increasing functions
of y ∈ [0, 1], a1(y) and a2(y), such that

∫ 1

0
f j

i,1(a1(y))dy =
∫ 1

0
f j

i,1(a2(y))dy for 1 ≤ i ≤ n , 1 ≤ j ≤ mi (4.10)

and consequently, by (4.5) and (4.9),

za1,b(x, 0) = za2,b(x, 0) .

Hence, by the well posedness of the problem and the independence of (4.4) of the
initial data,

za1,b(x, t) = za2,b(x, t) ∀t ≥ 0 . (4.11)

Since z = (v, z4, ..., zn), we conclude by (4.11) and (4.8) that

∫ 1

0
b(x1 − ta1(y))dy =

∫ 1

0
b(x1 − ta2(y))dy

for all choices of b and for all x1 and t. However, this is impossible in view of The-
orem 2.3. That concludes the proof that a finite closure of the form (4.3)+(4.4)
does not exist. 2

In [5], McLaughlin et al. considered oscillatory solutions of (4.1)+(4.2) and
aimed at obtaining effective equations for the weak limit v using an asymptotic
method. In order to obtain a closed system for v, it was augmented into z =
(v, θ, q, r), where the three new unknown functions were:

• θ, the Lagrangian coordinate associated with the mean flow (see [5, (3.8)]);

• q, the mean kinetic energy (see (3.28) there); and

• r, the mean helicity (see (3.29) there).

Then, they considered an Euler-like equation in an unknown field w̃, depending
on a temporal variable τ and the periodic variable y, [5, (3.17)], and looked for
solutions of it that have kinetic energy q, helicity r and mean zero, see (3.30) there.
If such solutions exist, they derived a closed system of equations for z = (v, θ, q, r),
[5, (3.34)-(3.38)], without proving it. That system, however, is not a genuine finite
dimensional closure, since the coefficients of its equations depend on averages of w̃
and those averages are determined by the evolution equations for w̃ that involve
the periodic variable y.
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