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Abstract

We study the degenerate parabolic equation ut +∇ · f = ∇ · (Q∇u) + g, where (x, t) ∈
RN ×R+, the flux ~f , the viscosity coefficient Q and the source term g depend on (x, t, u) and

Q is nonnegative definite. Due to the possible degeneracy, weak solutions are considered.

In general, these solutions are not uniquely determined by the initial data and, therefore,

additional conditions must be imposed in order to guarantee uniqueness. We consider here

the subclass of piecewise smooth weak solutions, i.e., continuous solutions which are C2-

smooth everywhere apart from a closed nowhere dense collection of smooth manifolds. We

show that the solution operator is L1-stable in this subclass and, consequently, that piecewise

smooth weak solutions are uniquely determined by the initial data.
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1 Introduction

Consider the equation

ut +∇ · f = ∇ · (Q∇u) + g, (x, t) = (~x, t) ∈ RN × R+, ∇ = ~∇ = ∂/∂~x , (1.1)

where f (the flux) denotes a vector field,

f = ~f(x, t, u) = (f1(x, t, u), ..., fN(x, t, u)) ,

g = g(x, t, u) is a scalar source term and Q = Q(x, t, u) = (Qi,j(x, t, u))N
i,j=1 (the viscosity

coefficient) is nonnegative definite, i.e.,

Q = QT and ξT Q(x, t, u)ξ ≥ 0 ∀(x, t, u) ∈ RN × R+ × R , ξ ∈ RN . (1.2)

fi (1 ≤ i ≤ N), Qi,j (1 ≤ i, j ≤ N) and g are assumed to be smooth functions of (x, t, u).

It is well known [3, Theorem 13] that if equation (1.1) is uniformly parabolic,

ξT Q(x, t, u)ξ ≥ ε > 0 ∀(x, t, u) ∈ RN × R+ × R and |ξ| = 1 ,

the corresponding Cauchy problem admits a unique classical solution. We, on the other

hand, are interested here in the case where Q(x, t, u) may become singular, (1.2). Such

equations are called degenerate parabolic and examples include the porous media equation,

ut = 4(|u|m−1u) , m > 2 ,

or hyperbolic conservation laws,

ut +∇ · f = g

(the reader who is interested in the theory of degenerate parabolic equations is referred to

[1] and the references therein). In this case, classical solutions usually do not exist and,

therefore, weak solutions are sought:
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Definition 1 A bounded function u(x, t) is a weak solution of (1.1), subject to the Cauchy

data

u(x, 0) = u0(x) ∈ L1(RN) ∩ L∞(RN) , (1.3)

if Q∇u exists in the sense of distributions and

∫ ∫

RN×R+
[uφt + f · ∇φ− (Q∇u) · ∇φ + gφ]dxdt = −

∫

RN
u0φ(·, 0)dx ∀φ ∈ C∞

0 (RN
x × Rt) .

(1.4)

Remark. For any domain D, C∞
0 (D) denotes the space of smooth functions which are

compactly supported in Do, the interior of D; i.e., φ ∈ C∞
0 (D) if φ ∈ C∞(D) and suppφ ⊂

Do.

It is well known that the Cauchy problem (1.1)–(1.3) admits weak solutions [4]. However,

due to the possible degeneracy, weak solutions are not always uniquely determined by the

initial data. In order to have uniqueness, further assumptions should be imposed on the weak

solution. In other words, uniqueness holds only in subclasses of the class of weak solutions.

Volpert and Hudjaev [4] proved uniqueness of weak solutions of the Cauchy problem

(1.1)–(1.3) in the subclass of generalized solutions:

Definition 2 A weak solution u(x, t) is a generalized (or entropy) solution if it has a bounded

variation, if Q
1
2∇u exists in the sense of distributions and is locally square integrable, and

if for any nonnegative φ ∈ C∞
0 (RN

x × R+
t ) and any constant c ∈ R the following inequality

holds:

∫ ∫

RN×R+
sgn(u−c)·

[
(u−c)φt+(g(x, t, u)−∇·f(x, t, c))φ+ (1.5)

(f(x, t, u)− f(x, t, c)) · ∇φ−Q(x, t, u)∇u · ∇φ
]
dxdt ≥ 0 .

It seems to be a part of the folklore that if the weak solution is sufficiently regular, then it

is uniquely determined by its initial value. Our goal in this note is to show that by replacing
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the entropy condition (1.5) with a regularity condition, one may still prove uniqueness. To

this end, we define the following:

Definition 3 A function v(x, t) is called piecewise smooth if:

(a) v(x, t) ∈ C0(RN
x × Rt) ∩ C2((RN

x × R+
t ) \ Ω) where Ω, the irregular set, is a closed

nowhere dense collection of smooth manifolds;

(b) at irregular points (x, t) ∈ Ω where the normal space to Ω is defined, the one-sided

limits of ∇v along normal directions exist.

In most all physical applications, the solutions of equation (1.1) are piecewise smooth

in the sense of Definition 3. This is why it is this type of piecewise smoothness which is

assumed – sometime implicitly – in many finite-dimensional computations of such problems.

In the following section we prove uniqueness in the subclass of piecewise smooth weak

solutions by showing that the solution operator is L1-stable in that subclass.

2 Proof of main result

If u is a piecewise smooth weak solution of (1.1)–(1.3), we let Ω denote its irregular set,

i.e., the closed set in which u is not smooth. This set, by assumption (Definition 3), is

a nowhere dense collection of smooth manifolds. Hence, the tangent space is well-defined

almost everywhere in Ω (it is not defined only in points of intersection of different manifolds)

and, consequently, we can speak of normal directions to Ω. In the following proposition we

show that even though ∇u may be discontinuous along Ω, Q∇u is continuous in normal

directions to Ω:

Proposition 1 Define, for all t ≥ 0, Ω(t) := Ω∩ (RN × {t}) . Then, for almost all (x, t) in

Ω(t),

〈Q∇u〉(x, t) · n = 0 , (2.1)

where n = ~n(x, t) ∈ RN is a normal vector to Ω(t) and 〈 · 〉 denotes the jump in the direction

n, i.e., 〈v〉(x, t) = v(x + 0 · n, t)− v(x− 0 · n, t) .
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Remarks.

1. The meaning of ’for almost all (x, t) in Ω(t)’ is as follows: on each of the manifolds

which compose Ω(t), equality (2.1) holds Hk-almost everywhere where k is the dimension of

the manifold and Hk is the k-dimensional Hausdorff measure on the manifold.

2. If Ω(t) is locally of co-dimension N − k ≥ 1 in RN , equality (2.1) holds for all

n ∈ Nx(Ω(t)), where Nx(Ω(t)) is the N − k-dimensional local normal space to Ω(t) at the

point (x, t).

Proof. Let Γ be an N -dimensional manifold in Ω and let P be a point on Γ. Since Ω is

nowhere dense, there exists a closed ball B ⊂ RN × {t : t > 0}, centered at P , such that

B ∩ Ω = B ∩ Γ (unless P happens to be in an intersection of Γ with another manifold of

Ω, but the set of such points is of zero measure in Ω(t)). Therefore, Γ splits B into two

components, B1 and B2, in the interior of which u is smooth.

Let φ be a test function in C∞
0 (B). Then, by (1.4),

0 =
∫ ∫

B
[uφt + f · ∇φ− (Q∇u) · ∇φ + gφ]dxdt =

2∑

j=1

Ij , (2.2)

where

Ij =
∫ ∫

Bj

[uφt + f · ∇φ− (Q∇u) · ∇φ + gφ]dxdt ,

and j stands henceforth for j = 1, 2. Since u satisfies equation (1.1) in the strong sense in

Bo
j , we get that

Ij =
∫ ∫

Bj

[(uφ)t +∇ · ((f −Q∇u)φ)]dxdt . (2.3)

We introduce the following notations:

• ΓB = Γ ∩B is the inner boundary between B1 and B2.

• ~νj = ~νj(x, t) ∈ RN+1 is the outer unit normal to Bj at (x, t) ∈ ∂Bj.

• nj = ~nj ∈ RN and mj ∈ R are, respectively, the spatial and time components of ~νj ,
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~νj =

(
nj

mj

)
. (2.4)

Next, we define

Γj
B(εj) := ΓB − εj

(
nj(P )

0

)
.

Γj
B(εj) is, therefore, a translation of ΓB along the normal direction to ΓB ∩ (RN × {t}) at

P , towards the interior of Bj. ΓB is the internal part of ∂Bj (the external part of ∂Bj is

∂Bj ∩ ∂B); by replacing ΓB with Γj
B(εj), Bj shrinks into a new domain, denoted Bj(εj).

We now consider the integrals

Ij(εj) =
∫ ∫

Bj(εj)
[(uφ)t +∇ · ((f −Q∇u)φ)]dxdt . (2.5)

Applying The Divergence Theorem in (2.5), we get that

Ij(εj) =
∫

∂Bj(εj)

{[(
f −Q∇u

u

)
· ~νεj

j

]
φ

}
(x, t)dS(x, t) , (2.6)

where ~ν
εj

j (x, t) ∈ RN+1 is the outer unit normal to Bj(εj) at (x, t) ∈ ∂Bj(εj). Since φ

vanishes on ∂B, we get that

Ij(εj) =
∫

ΓB(εj)

{[(
f −Q∇u

u

)
· ~νεj

j

]
φ

}
(x, t)dS(x, t) , (2.7)

or, after the changes of variables x 7→ x− εjnj(P ),

Ij(εj) =
∫

ΓB

{[(
f −Q∇u

u

)
· ~νεj

j

]
φ

}
(x− εjnj(P ), t)dS(x, t) . (2.8)

We now let εj → 0. Since u, f(u) and φ are continuous and ~ν
εj

j (x − εjnj(P ), t) = ~νj(x, t),

we conclude that

Ij = lim
εj→0

Ij(εj) =
∫

ΓB

[(
f(u(x, t))− (Q∇u)(x− 0 · nj(P ), t)

u(x, t)

)
· ~νj(x, t)

]
φ(x, t)dS(x, t) .

(2.9)

Since ~ν1 = −~ν2 on ΓB, we get, using (2.9), (2.2) and (2.4), that

∫

ΓB

{
[ (Q∇u)(x+0 ·n1(P ), t)−(Q∇u)(x−0 ·n1(P ), t) ] ·n1(x, t)

}
φ(x, t)dS(x, t) = 0 . (2.10)
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Note that since ~ν1 is a normal vector to Ω in RN+1, n1 is a normal vector to Ω(t) in RN .

Finally, by letting suppφ shrink to P we conclude that (2.1) holds at P .

Let us now consider manifolds Γ ⊂ Ω of dimension k < N . Let P be a point in Γ(t) =

Γ ∩ (RN × {t}) and ~n ∈ RN be any normal vector to Γ(t) at P . Then, there exists an

N -dimensional manifold, Γ̃ ⊂ RN+1, such that Γ ⊂ Γ̃ and ~n is the normal vector to Γ̃(t) =

Γ̃∩ (RN ×{t}) at P . Repeating our arguments, as before, for Γ̃, we conclude that (2.1) holds

in this case as well. ¤

A consequence of Proposition 1 is that the solution operator of (1.1) is L1-stable in

the class of piecewise smooth weak solutions. Before proving that, we state and prove the

following lemma:

Lemma 1 Let D be a bounded domain in RN and w = w(x) be a smooth function such that

w
∣∣∣
D
≥ 0 and w

∣∣∣
∂D

= 0 . (2.11)

Let Q = Q(x) be a N ×N nonnegative definite matrix function. Then if n is the outer unit

normal to ∂D,

(Q(x)∇w) · n
∣∣∣
∂D
≤ 0 . (2.12)

Proof. Let x0 be a point in ∂D. We make the change of variables, x 7→ x̃ = Px, where

P is an orthogonal diagonalizer for Q(x0), i.e.,

PQ(x0)P
T = Λ = diag{λ1, ..., λN} , λi ≥ 0 , 1 ≤ i ≤ N . (2.13)

Denoting the gradient with respect to the new variables by ∇̃ = ∂/∂x̃ and the new outer

unit normal vector to ∂D by ñ, we have that

∇̃ = P∇ and ñ = Pn . (2.14)

Using (2.13)–(2.14) we get that

(Q∇w) · n
∣∣∣
x=x0

= (Λ∇̃w) · ñ
∣∣∣
x̃=Px0

=
N∑

i=1

λi
∂w

∂x̃i

ñi

∣∣∣
x̃=Px0

. (2.15)
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However, assumption (2.11) implies that

∂w

∂x̃i

ñi ≤ 0 1 ≤ i ≤ N , (2.16)

at x̃ = Px0. Hence, since the eigenvalues λi are nonnegative, (2.13), we get by (2.15)–(2.16)

that inequality (2.12) holds at x = x0. ¤

Theorem 1 (L1-Stability). Let u and v be two piecewise smooth weak solutions of (1.1)–

(1.2). Let M±
T be such that

M−
T ≤ u(x, t), v(x, t) ≤ M+

T ∀(x, t) ∈ RN × [0, T ] , (2.17)

and assume that

u(·, t)− v(·, t) ∈ L1(RN) ∀t ∈ [0, T ] . (2.18)

Then

‖u(·, t)− v(·, t)‖L1 ≤ eγt‖u(·, 0)− v(·, 0)‖L1 ∀t ∈ [0, T ] , (2.19)

where

γ = γ(T ) := sup
RN×[0,T ]×[M−

T ,M+
T ]

gu(x, t, u) . (2.20)

The proof of this theorem is motivated by the classical proof of P.D. Lax [2, p. 14]

of uniqueness of L1 piecewise smooth entropy solutions of hyperbolic conservation laws,

ut + f(u)x = 0.

Proof. For every t ≥ 0, we divide the space RN to sub-domains, RN = ·∪k Dk(t), so that

σk[u(·, t)− v(·, t)]
∣∣∣
Dk(t)

≥ 0 ∀k (2.21)

where σk = ±1 is a signature coefficient and

u(·, t) = v(·, t)
∣∣∣
∂Dk(t)

∀k . (2.22)

Using (2.21) and (2.22) we conclude that

d

dt
‖u(·, t)− v(·, t)‖L1 = (2.23)
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=
d

dt

∑

k

σk

∫

Dk(t)
[u(x, t)− v(x, t)]dx =

∑

k

σk

∫

Dk(t)
[ut(x, t)− vt(x, t)]dx :=

∑

k

Ik .

We show below that all the terms in the last sum in (2.23) are nonpositive. We concentrate on

terms Ik which correspond to bounded sub-domains Dk(t). The modification for unbounded

sub-domains is straightforward.

First, let us assume that both u(·, t) and v(·, t) are smooth in Dk(t)
o. Therefore, both u

and v satisfy equation (1.1) in the strong sense there and we conclude that

Ik = −σk

∫

Dk(t)
∇ · [f(x, t, u)− f(x, t, v)]dx + (2.24)

σk

∫

Dk(t)
∇ · [Q(x, t, u)∇u−Q(x, t, v)∇v]dx+

σk

∫

Dk(t)
[g(x, t, u)− g(x, t, v)]dx := I1

k + I2
k + I3

k .

The first term on the right hand side of (2.24) is zero, due to The Divergence Theorem and

equality (2.22):

I1
k = −σk

∫

∂Dk(t)
[f(s, t, u)− f(s, t, v)] · nds = 0 ; (2.25)

n ∈ RN denotes here and henceforth the outer unit normal to Dk(t). As for the second term,

it equals, by The Divergence Theorem, to

I2
k = σk

∫

∂Dk(t)
[Q(s, t, u)∇u−Q(s, t, v)∇v] · nds .

Since u = v on ∂Dk(t), (2.22), it may be written as

I2
k =

∫

∂Dk(t)
[Q̃(s, t)∇w] · nds ,

where Q̃(s, t) = Q(s, t, u = u(s, t)) and w = σk(u − v). Since, by (2.21)–(2.22), w is

nonnegative in Dk(t) and vanishes on ∂Dk(t), and Q̃(s, t) ≥ 0, Lemma 1 implies that

I2
k ≤ 0 . (2.26)

Using The Mid-value Theorem, (2.21) and (2.20) for the last term on the right hand side of

(2.24), we get that

I3
k ≤ γ

∫

Dk(t)
|u− v|dx ∀t ∈ [0, T ] . (2.27)
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Combining (2.24)–(2.27) we conclude that

Ik ≤ γ
∫

Dk(t)
|u− v|dx ∀t ∈ [0, T ] . (2.28)

Next, we handle those sub-domains, Dk(t), in the interior of which u or v are not smooth.

Let Ωu and Ωv denote the irregular sets of u and v, respectively. Assume that Dk(t)
o is

intersected by one of the manifolds of Ωu, Γ,

Dk(t)
o ∩ Ωu = Dk(t)

o ∩ Γ 6= ∅ (2.29)

and that

Dk(t)
o ∩ Ωv = ∅ . (2.30)

The case where Dk(t)
o is intersected by more than one manifold of either of the two irregular

sets, is treated in a similar manner, as we explain later on.

If the dimension of Γ is less than N , we embed it in a N -dimensional manifold, still

denoted by Γ. Therefore, S := Γ ∩ Dk(t), splits Dk(t) into two components, D1
k(t) and

D2
k(t), and in view of (2.29)–(2.30) u and v satisfy equation (1.1) in the strong sense in

Dj
k(t)

o, j = 1, 2. Therefore,

Ik = σk

∫

Dk(t)
[ut(x, t)− vt(x, t)]dx =

2∑

j=1

{
σk

∫

Dj
k
(t)
∇ · [f(x, t, v)− f(x, t, u)]dx+ (2.31)

σk

∫

Dj
k
(t)
∇ · [Q(x, t, u)∇u−Q(x, t, v)∇v]dx + σk

∫

Dj
k
(t)

[g(x, t, u)− g(x, t, v)]dx

}
.

Let nj denote the outer unit normal to Dj
k(t). Note that on S, the interface between D1

k(t)

and D2
k(t), n1 = −n2, and that on ∂Dj

k(t) \ S, nj coincides with n, the outer unit normal to

Dk(t). Therefore, using The Divergence Theorem and equality (2.22), the first term on the

right hand side of (2.31) vanishes:

2∑

j=1

σk

∫

Dj
k
(t)
∇ · [f(x, t, v)− f(x, t, u)]dx =

2∑

j=1

σk

∫

∂Dj
k
(t)

[f(s, t, v)− f(s, t, u)] · njds =

σk

{∫

S
[f(s, t, v)− f(s, t, u)] · (n1 + n2)ds +

∫

∂Dk(t)
[f(s, t, v)− f(s, t, u)] · nds

}
= 0 .
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As for the second term, it is nonpositive:

2∑

j=1

σk

∫

Dj
k
(t)
∇ · [Q(x, t, u)∇u−Q(x, t, v)∇v]dx = (2.32)

2∑

j=1

σk

∫

∂Dj
k
(t)

[Q(s, t, u)∇u−Q(s, t, v)∇v] · njds =

∫

∂Dk(t)
[Q̃(s, t)∇w] · nds + σk

∫

S
〈Q(s, t, u)∇u〉 · n1ds− σk

∫

S
〈Q(s, t, v)∇v〉 · n1ds ,

where, as before, Q̃(s, t) = Q(s, t, u = u(s, t)), w = σk(u − v) and 〈 · 〉 denotes the jump

across S in the normal direction, n1. The first term on the right hand side of (2.32) is

nonpositive, in light of Lemma 1, while the other two terms vanish in view of Proposition 1.

Since the last term on the right hand side of (2.31) may be bounded as in (2.27), we

conclude that inequality (2.28) holds in such sub-domains as well.

If Dk(t) is intersected by any number of manifolds from either Ωu or Ωv, it may be

decomposed into Dk(t) = ·∪j∈J Dj
k(t), so that both u and v are smooth in Dj

k(t)
o, j ∈ J , and

the proof goes along the same lines as before.

To summarize all of the above, inequality (2.28) holds for all k. Hence, we get from (2.23)

that

d

dt
‖u(·, t)− v(·, t)‖L1 ≤ γ · ‖u(·, t)− v(·, t)‖L1 ∀t ∈ [0, T ] ,

which implies (2.19). ¤

Corollary 1 (Uniqueness). The Cauchy problem for equation (1.1)–(1.2) admits at most

one L1(RN) piecewise smooth weak solution.
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