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Abstract
We study regularity properties of weak solutions of the degenerate parabolic equation

ut + f(u)x = K(u)xx, where Q(u) := K ′(u) > 0 for all u 6= 0 and Q(0) = 0 (e.g., the
porous media equation, K(u) = |u|m−1u, m > 1). We show that whenever the solution u
is nonnegative, Q(u(·, t)) is uniformly Lipschitz continuous and K(u(·, t)) is C1-smooth and
note that these global regularity results are optimal. Weak solutions with changing sign
are proved to possess a weaker regularity – K(u(·, t)), rather than Q(u(·, t)), is uniformly
Lipschitz continuous. This regularity is also optimal, as demonstrated by an example due
to Barenblatt and Zeldovich.

1 Introduction

Consider the nonlinear parabolic equation

ut + f(u)x = K(u)xx , (x, t) ∈ R× R+ , (1.1)

subject to the Cauchy data

u(x, 0) = u0(x) ∈ L1(R) ∩ L∞(R) , (1.2)

where f and K are smooth functions and K is strictly monotonic increasing. This equation
is usually called the nonlinear Fokker-Planck equation due to its resemblance to the Fokker-
Planck equation of statistical mechanics.

It is well known [8] that if (1.1) is uniformly parabolic, i.e., Q(u) := K ′(u) ≥ ε > 0, the
Cauchy problem (1.1)–(1.2) admits a unique classical solution. We, on the other hand, are
interested here in the degenerate case, where Q(u) may vanish for some value of u, say at
u = 0:

Q(u) > 0 ∀u 6= 0 and Q(0) = 0 . (1.3)

1Research supported by ONR Grant #N00014-92-J-1890.
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Such degenerate equations arise in the study of several diffusion-advection processes and the
simplest example is the porous media equation,

ut = (|u|m−1u)xx , m > 1 . (1.4)

In the degenerate case classical solutions usually do not exist and, therefore, weak solutions
in the sense of distributions are sought:

Definition 1.1 A bounded function u(x, t) is a weak solution of (1.1)–(1.2) if it satisfies
the following equality for every test function φ ∈ C∞

0 (R2):

∫ ∫

R×R+
[uφt + f(u)φx + K(u)φxx]dxdt = −

∫

R
u0φ(·, 0)dx (1.5)

The existence and uniqueness of weak solutions to the Cauchy problem (1.1)–(1.3), as
well as the properties of these solutions, were studied in numerous manuscripts, e.g. [3], [4]
and [11]. See also the summary paper of Kalashnikov, [6], and the references therein. In the
present study we concentrate on the question of regularity of weak solutions.

Since in most practical applications u is nonnegative, a large part of the study of equation
(1.1) concentrates on that case. The most recent results here are summarized below [4,
Theorems 1, 4 & 7]:

Theorem 1.1 (Gilding). Let f, K ∈ C[0,∞) ∩ C2+α(0,∞), α > 0, and u0 be nonnegative,
bounded and continuous. Then the Cauchy problem (1.1)-(1.3) admits a unique weak solu-
tion, u = u(x, t). Moreover, the derivative K(u)x exists, in the sense of distributions, and
is uniformly bounded in R × [τ, T ] for any 0 < τ < T ; if, in addition, K(u0) is uniformly
Lipschitz continuous, K(u)x is uniformly bounded in R× [0, T ] for any T > 0.

We note that the regularity result in Theorem 1.1 which states that2

K(u(·, t)) ∈ Lip ∀t > 0 (1.6)

is not sharp. Indeed, nonnegative weak solutions of the porous media equation, (1.4), were
proved by Aronson [1] to possess a better regularity, namely,

Q(u(·, t)) ∈ Lip and K(u(·, t)) ∈ C1 ∀t > 0 . (1.7)

The same type of regularity was established in [5] for nonnegative weak solutions of the
equation

ut − (un)x = (um)xx m,n > 1 , (1.8)

which arises in the theory of infiltration. In §2 we revisit the question of regularity of
nonnegative weak solutions of (1.1)+(1.3) and improve (1.6) to (1.7), under mild assumptions

2Lip denotes henceforth the space of functions which are uniformly Lipschitz continuous in Rx
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on Q(·). This global regularity is optimal in view of explicit examples of weak solutions given
in [1] and [5].

The case of solutions with changing sign is essentially different from the case of one-signed
solutions in more than one aspect. First, if one-signed solutions are uniquely determined
by their initial data, Theorem 1.1, it is not known to be true for solutions with changing
sign. To this end, entropy conditions are invoked in order to guarantee uniqueness [11]. The
two cases differ also in the issue of regularity. In §3 we show that solutions with changing
sign are regular in the sense of (1.6). An example due to Barenblatt and Zeldovich [2]
demonstrates the sharpness of this regularity result, as well as the difference between the
cases of one-signed and two-signed weak solutions.

2 Nonnegative solutions

Our objective in this section is to obtain improved and, in fact, optimal regularity for non-
negative weak solutions of (1.1)+(1.3). We assume here that f ∈ C2 and Q ∈ C3 for u > 0.

We start with the following Lemma which we prove by using a well known technique due
to Bernstein (e.g. [8]). In this Lemma we make the distinction between two cases:
• Case 1: Q′(u) ↓ 0 when u ↓ 0.
• Case 2: Q′(u) ≥ Const > 0 when u ↓ 0.

When Q(u) behaves like a power for u ↓ 0, i.e. Q(u) ∼ up, p > 0, Case 1 corresponds to
p > 1 and Case 2 corresponds to 0 < p ≤ 1.

Lemma 2.1 Let u = u(x, t) be a smooth positive classical solution of (1.1) in R = (a, b)×
(0, T ]. Assume that for all u ∈ (0, µ], µ = maxR u,

Q′(u) > 0 , (2.1)

α ≤ G(u) :=

(
Q(u)

Q′(u)

)′
≤ β , for some constants 0 < α ≤ β, (2.2)

and

G′(u) ≤ θ ·





α
µ

in Case 1

1+α
2Q(µ)

·Q′(u) in Case 2
, for some constant θ ∈ [0, 1) . (2.3)

Then for any proper subrectangle of R, R∗ = (a1, b1)× (τ, T ],

|Q(u)x| ≤ C in R∗ , (2.4)

where the constant C depends on f(·), Q(·), µ, a1 − a, b − b1, τ and is independent of the
lower bound of u. If, in addition, M := max[a,b] |Q(u0)x| < ∞, then (2.4) holds for R∗ =
(a1, b1)× (0, T ], where C depends on M instead of τ .
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Proof. We first make the change of variables u 7→ v = Q(u). Due to assumption (2.1),
this transformation is invertible and u = q(v), q = Q−1. Equation (1.1) therefore translates
to

vt + f ′(q(v))vx =

(
q′′(v)

q′(v)
v + 1

)
v2

x + vvxx . (2.5)

Let h(s) be defined as follows for 0 < s ≤ ν := Q(µ),

h(s) =

{
q′(s) in Case 1

1 in Case 2
, (2.6)

and H(s) :=
∫ s
0 h(σ)dσ. Since, in view of (2.1),

h(s) > 0 ∀s > 0 , (2.7)

H(s) is positive and monotonically increasing for s > 0. Next, we define the function
r = r(ψ) by

r =
∫ ψ

0
(2H(ν)−H(s))−1ds , 0 ≤ ψ ≤ ν .

Since dr
dψ

= (2H(ν)−H(ψ))−1 ≥ (2H(ν))−1 > 0, the inverse function ψ = ψ(r) exists and is

smooth and monotonically increasing for r ∈ [0, r(ν)],

H(ν) ≤ dψ

dr
= 2H(ν)−H(ψ) ≤ 2H(ν) , 0 ≤ ψ ≤ ν . (2.8)

Hence, since 0 < v ≤ ν, the equation v = ψ(w) defines a smooth function w = w(x, t) which
takes values in the interval (0, r(ν)]. Substituting v = ψ(w) in (2.5) yields the following
equation for w:

wt + f ′(q)wx =

(
q′′

q′
ψ + 1

)
ψ′w2

x + ψ
ψ′′

ψ′
w2

x + ψwxx . (2.9)

Here, q(i) = q(i)(ψ(w)) and ψ(i) = ψ(i)(w), 0 ≤ i ≤ 2. Differentiating (2.9) with respect to x
and multiplying by p = wx, we arrive at

1

2
(p2)t − ψppxx = F1 · p4 + F2 · p2px − (f ′′(q)q′ψ′p3 + f ′(q)ppx) , (2.10)

where

F1 = (ψ′)2 ·
[(

q′′

q′

)′
ψ +

q′′

q′

]
+ ψ′′ ·

[
2 +

q′′

q′
ψ

]
+ ψ ·

(
ψ′′

ψ′

)′
, (2.11)

and

F2 = ψ′ ·
[
3 + 2

q′′

q′
ψ

]
+ 2ψ

ψ′′

ψ′
. (2.12)

Let η = η(x, t) be a C2(R) function such that η = 1 on R∗, η = 0 in a neighborhood of
x = a, x = b and t = 0, and 0 ≤ η ≤ 1. Set z = η2p2 and let (x0, t0) ∈ R be the point in
R where z attains its maximal value. Since zx = 0, zxx ≤ 0 and zt ≥ 0 in that point, we
conclude that

ηpx = −ηxp
∣∣∣
(x0,t0)

, (2.13)
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and (recall that ψ ≥ 0)

ψzxx − zt ≤ 0
∣∣∣
(x0,t0)

. (2.14)

Substituting z = η2p2 into (2.14) and rearranging, we get that

η2
{

1

2
(p2)t − ψppxx

}
≥ ψη2p2

x + 4ψηηxppx + ψη2
xp

2 + ψηηxxp
2 − ηηtp

2 . (2.15)

Since |4ψηηxppx| ≤ ψη2p2
x + 4ψη2

xp
2, (2.15) implies that

η2
{

1

2
(p2)t − ψppxx

}
≥ −3ψη2

xp
2 + ψηηxxp

2 − ηηtp
2 . (2.16)

We may now conclude, in view of (2.10), (2.13) and (2.16), that the following inequality
holds at (x0, t0):

−F1η
2p4 ≤ −{F2ηx + f ′′(q)q′ψ′η}p3η + {3ψη2

x − ψηηxx + ηηt + f ′(q)ηηx}p2 . (2.17)

Since (2.8) and (2.7) imply that

ψ′′ = −h(ψ)ψ′ < 0 , (2.18)

we may divide inequality (2.17) by (−ψ′′) and get

F̃1η
2p4 ≤

{
F̃2ηx − f ′′(q)q′η

h(ψ)

}
p3η − 1

ψ′′
{
3ψη2

x − ψηηxx + ηηt + f ′(q)ηηx

}
p2 , (2.19)

where F̃i = Fi/ψ
′′, i = 1, 2.

Our next step is estimating the coefficients in this inequality. We start with some straight-
forward identities: since q′(v) = 1/Q′(u) and q′′(v)/q′(v) = −Q′′(u)/Q′(u)2, we conclude,
using the definition of G(u), (2.2), that

1 +
q′′

q′
ψ = 1 +

q′′(v)

q′(v)
v = 1− Q′′(u)

Q′(u)2
Q(u) = G(u) (2.20)

and
(

q′′

q′

)′
ψ +

q′′

q′
=

(
q′′(v)

q′(v)
v

)′
=

d

dv

(
−Q′′(u)Q(u)

Q′(u)2

)
=

d

dv
(G(u)− 1) =

G′(u)

Q′(u)
. (2.21)

Furthermore, equality (2.18) implies that

(
ψ′′

ψ′

)′
= ψ′′ · h′

h
. (2.22)

Hence, in view of (2.11) and equalities (2.18), (2.21) and (2.22), we conclude that

F̃1 =
F1

ψ′′
= −ψ′

h
· G′(u)

Q′(u)
+ 2 +

(
q′′

q′
+

h′

h

)
ψ . (2.23)
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In Case 1, h = q′ and therefore, by (2.23) and (2.20),

F̃1 = −ψ′G′(u) + 2 ·
(

1 +
q′′

q′
ψ

)
= −ψ′G′(u) + 2G(u) . (2.24)

Using (2.3) and (2.8) to lower bound the first term on the right hand side of (2.24) (note
that H(ν) = q(Q(µ)) = µ) and (2.2) to lower bound the second term, we conclude that

F̃1 ≥ 2α(1− θ) (2.25)

in this case. In Case 2, h = 1 and therefore, by (2.23) and (2.20),

F̃1 = −ψ′G′(u)

Q′(u)
+ 2 +

q′′

q′
ψ = −ψ′G′(u)

Q′(u)
+ 1 + G(u) . (2.26)

Using (2.3) and (2.8) to lower bound the first term on the right hand side of (2.26) (note
that H(ν) = ν = Q(µ)) and (2.2) to lower bound the last term, we conclude that

F̃1 ≥ (1 + α)(1− θ) (2.27)

in this case. Hence, we may summarize (2.25) and (2.27) as follows:

F̃1 ≥ γ := (1− θ) ·min(2α, 1 + α) > 0 . (2.28)

We now turn to estimate F̃2. By (2.12) and (2.20),

|F̃2| =
∣∣∣∣∣
F2

ψ′′

∣∣∣∣∣ ≤
∣∣∣∣∣
ψ′

ψ′′

∣∣∣∣∣ · (1 + 2G(u)) + 2
ψ

ψ′
.

By (2.18) and (2.7), ∣∣∣∣∣
ψ′

ψ′′

∣∣∣∣∣ =
1

h(ψ)
;

hence, since definition (2.6) implies that

1

h(ψ)
=

{
1

q′(v)
= Q′(u) in Case 1

1 in Case 2
,

we get that ∣∣∣∣∣
ψ′

ψ′′

∣∣∣∣∣ =
1

h(ψ)
≤ κ :=

{
sup0<u≤µ Q′(u) < ∞ in Case 1

1 in Case 2
. (2.29)

Moreover, by (2.8),

0 <
ψ

ψ′
≤ ν

H(ν)
.

Hence, using (2.2) and the above inequalities we conclude that

|F̃2| ≤ κ · (1 + 2β) +
2ν

H(ν)
. (2.30)
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The last coefficient in (2.19) which needs special consideration is

f ′′(q)q′η
h(ψ)

. (2.31)

Once again, we consider separately the two cases in (2.6) and show that the term in (2.31)
is uniformly bounded by a constant which depends on f , Q and µ, i.e.,

∣∣∣∣∣
f ′′(q)q′η

h(ψ)

∣∣∣∣∣ ≤ Constf,Q,µ . (2.32)

Indeed, in Case 1 h = q′ and, therefore,
∣∣∣f ′′(q)q′η

h(ψ)

∣∣∣ = |f ′′(q)η| is uniformly bounded by

sup0<u≤µ |f ′′(u)|; in Case 2 q′ is uniformly bounded for 0 < v ≤ ν, h ≡ 1 and, therefore,
(2.32) holds in this case as well.

The rest of the coefficients in (2.19) are also uniformly bounded since, by (2.18), (2.8)
and (2.29), ∣∣∣∣∣

1

ψ′′

∣∣∣∣∣ =
1

h(ψ)ψ′
≤ κ

H(ν)
. (2.33)

Hence, returning to (2.19), we conclude by (2.28), (2.30), (2.32) and (2.33) that

γη2p2 ≤ C1 + ηC2|p| (2.34)

at (x0, t0), where C1 and C2 depend on f, Q, µ, a1−a, b−b1 and τ . Using the simple quadratic
inequality

2ηC2

γ
|p| ≤ η2p2 +

C2
2

γ2
,

we conclude by (2.34) that

max
R

z(x, t) = η2p2
∣∣∣
(x0,t0)

≤ C3 :=
2C1

γ
+

C2
2

γ2
.

Hence, maxR∗ |wx| ≤ C
1
2
3 , and since vx = ψ′(w)wx and |ψ′| ≤ 2H(ν) , we arrive at (2.4) with

C = 2H(ν)C
1
2
3 .

This proves the first assertion of the Lemma. In order to prove the second assertion we
take η = η(x) to be a C2

0 [a, b]-function such that η = 1 on [a1, b1] and 0 ≤ η ≤ 1, and proceed
in the same manner. ¤

Since the local bound on |Q(u)x|, given in Lemma 2.1, is independent of the lower bound
of u, we may conclude the same for nonnegative weak solutions of (1.1)–(1.3) as well. To
this end, we first state and prove the following:

Lemma 2.2 Assume that Q(u) vanishes algebraically fast when u ↓ 0,

Q(u) = cup + r(u) where c > 0 , p > 0 and r(u) = o(up) , (2.35)

and that
r(u)

up+min(p,1)
≥ Const when u ↓ 0 . (2.36)

Then there exists µ > 0 such that (2.1)-(2.3) hold for u ∈ (0, µ].
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Remarks.

1. Q(u) = mum−1, the viscosity coefficient of the porous media equations (1.4) and (1.8),
satisfy the conditions of the Lemma with p = m− 1 and r(u) = 0.

2. The above conditions are satisfied by any Q(u) of the form Q(u) = usQA(u) where
0 ≤ s < 1 and QA(u) is a real analytic function at u = 0.

Proof. Condition (2.1) is clearly satisfied by Q(u) in (2.35) for sufficiently small u > 0.
Since

G(u) =

(
Q(u)

Q′(u)

)′
= 1− Q(u)Q′′(u)

Q′(u)2
= 1− c2p(p− 1)u2p−2 + o(u2p−2)

c2p2u2p−2 + o(u2p−2)
,

limu↓0 G(u) = 1/p and, therefore, (2.2) holds near u = 0 with any 0 < α < 1/p < β . Hence,
it remains to prove (2.3). For the sake of simplicity, we assume that r(u) takes an algebraic
form, namely r(u) = duq + o(uq) where q > p. Then, by a simple calculation,

G′(u) = −(q − p)2(q − p + 1)

p2
· d

c
· uq−p−1 + o(uq−p−1) . (2.37)

Assume that d > 0. Then (2.37) implies that G′(u) < 0 when u ↓ 0 and, therefore,
condition (2.3) is satisfied for small u > 0 with θ = 0. If, on the other hand, d < 0, we deal
separately with the two cases which we introduced earlier:

In Case 1 p > 1. Therefore, by (2.36), duq−p−1 is bounded from below for u ↓ 0. As d is
negative, we conclude that q − p− 1 ≥ 0. Hence, in view of (2.37), G′(u) remains bounded
when u ↓ 0. Since the bound on the right hand side of (2.3) tends to infinity when µ ↓ 0, we
may choose µ > 0 sufficiently small so that (2.3) holds for all u ∈ (0, µ].

In Case 2 0 < p ≤ 1. Since, by (2.36), duq−2p is lower bounded for u ↓ 0 and d < 0,
we conclude that q − 2p ≥ 0. Therefore, in view of (2.35) and (2.37), G′(u)/Q′(u) ∼ uq−2p

remains bounded when u ↓ 0. Hence, a sufficiently small µ > 0 may be chosen so that (2.3)
will hold for all u ∈ (0, µ] in this case as well. ¤

We may now state and prove the main result of this section:

Theorem 2.1 Assume that Q(u) satisfies the assumptions of Lemma 2.2 and let u = u(x, t)
be the weak solution of (1.1)–(1.3), where u0(x) is bounded and nonnegative. Then:
(1) u(x, t) is C∞-smooth in the neighborhood of points in R× (0,∞) where it is positive;
(2) Q(u(·, t)) is locally Lipschitz continuous for all t > 0;
(3) The derivative K(u)x exists and is continuous as a function of x for all t > 0; moreover,
K(u)x = 0 whenever u = 0.

Proof. As in [9], we let uδ(x, t) denote the (classical) solution of (1.1)–(1.3) with the
uniformly positive Cauchy data uδ(x, 0) = u0(x)+ δ, δ > 0. By the maximum principle, this
sequence of functions is uniformly lower and upper bounded,

0 < δ ≤ uδ(x, t) ≤ 1 + sup
R

u0 δ ↓ 0 , (x, t) ∈ R× R+ .
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Since this sequence of smooth functions is also monotonically decreasing, Dini’s Theorem
implies that it converges uniformly on compact domains to a continuous function u(x, t),
which is the weak solution of (1.1)–(1.3).

(1) Since, as argued above, u is continuous in R × (0,∞), each point (x, t), t > 0, in
which u(x, t) > 0 has a neighborhood where u > 0 and hence Q > 0. In this neighborhood,
equation (1.1) becomes uniformly parabolic and, therefore, u is C∞-smooth there.

In view of Part (1) of the theorem, we restrict our attention in the proof of Parts (2) and
(3) to points (x, t), t > 0, where the parabolic equation degenerates, i.e. u(x, t) = 0.

(2) In view of Lemma 2.2, there exists µ > 0 such that (2.1)–(2.3) hold for all u ∈ (0, µ].
Let (x0, t0), t0 > 0, be a point where u = 0. Since u is continuous, there exists a rectangle
R ⊂ R×R+, such that (x0, t0) ∈ R and maxR u ≤ µ/2. Hence, thanks to the locally uniform
convergence of uδ to u, we conclude that 0 < uδ(x, t) ≤ µ in R for sufficiently small δ, say
δ ≤ δ0. Applying Lemma 2.1 to uδ, we conclude that for any proper subrectangle R∗ ⊂ R
there exists a constant C, which depends on µ but is independent of δ, such that

max
R∗

|Q(uδ)x| ≤ C ∀δ ≤ δ0 . (2.38)

Letting δ ↓ 0, we find that Q(u(·, t)) is Lipschitz continuous in (x0, t0) with a local Lipschitz
constant less than or equal to C.

(3) Let µ, (x0, t0), R, δ0 and R∗ be as above. We fix 0 < δ ≤ δ0. For any two points
(x1, t0) and (x2, t0) in R∗, it holds

K(uδ(x2, t0))−K(uδ(x1, t0))

x2 − x1

=
K(uδ(x2, t0))−K(uδ(x1, t0))

Q(uδ(x2, t0))−Q(uδ(x1, t0))
·Q(uδ(x2, t0))−Q(uδ(x1, t0))

x2 − x1

.

By (2.38), ∣∣∣∣∣
Q(uδ(x2, t0))−Q(uδ(x1, t0))

x2 − x1

∣∣∣∣∣ ≤ C ,

where C is independent of δ. Assumption (2.35) implies that

∣∣∣∣∣
K(uδ(x2, t0))−K(uδ(x1, t0))

Q(uδ(x2, t0))−Q(uδ(x1, t0))

∣∣∣∣∣ ≤ C̃ · (uδ(x1, t0) + uδ(x2, t0)) ,

where the constant C̃ depends only on the function K. Hence, we conclude in view of the
above that

∣∣∣∣∣
K(uδ(x2, t0))−K(uδ(x1, t0))

x2 − x1

∣∣∣∣∣ ≤ Const · (uδ(x1, t0) + uδ(x2, t0)) ,

for all (x1, t0), (x2, t0) ∈ R∗ and 0 < δ ≤ δ0 . Letting δ ↓ 0, we conclude that the limit
function u satisfies

∣∣∣∣∣
K(u(x2, t0))−K(u(x1, t0))

x2 − x1

∣∣∣∣∣ ≤ Const · sup
R∗

u ∀(x1, t0), (x2, t0) ∈ R∗ . (2.39)
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Since, by the continuity of u, supR∗ u ↓ 0 when R∗ shrinks to the point (x0, t0), inequality
(2.39) implies that K(u)x exists and equals zero at (x0, t0). Moreover, since (2.39) holds for
every two points in R∗, we get that

|K(u)x| ≤ Const · sup
R∗

u ∀(x, t) ∈ R∗

which implies that K(u)x is a continuous function of x at (x0, t0). This concludes the proof.
¤

Remarks.

1. The Lipschitz continuity of Q(u(·, t)) implies, in view of (2.35), that u(·, t) is Hölder
continuous with exponent min{1

p
, 1}.

2. If p < 1, ux exists and is continuous as a function of x for all t > 0 and ux = 0 whenever
u = 0. In order to show this, we observe that (2.38) implies that |(uδ)x| ≤ C ·(Q′(uδ))

−1

in R∗ for δ ≤ δ0. Since Q′(u)−1 ∼ u1−p ↓ 0 for u ↓ 0, we may proceed along the lines
of the proof of Part (3) in order to prove our assertion.

3. As in [5], the regularity of u(x, t) with respect to x implies also regularity with respect
to t. We omit further details.

In Theorem 2.1 we established local Lipschitz continuity for Q(u(·, t)). In order to obtain
a uniform estimate, Q(u) must satisfy the conditions of Lemma 2.1 for all values of u and
not only for small ones:

Theorem 2.2 Let u = u(x, t) be the weak solution of (1.1)–(1.3), where u0(x) is bounded
and nonnegative. Assume that there exists µ+ > µ := max u0 such that (2.1)–(2.3) are
satisfied for all u ∈ (0, µ+]. Then Q(u(·, t)) is uniformly Lipschitz continuous in any domain
R × [τ, T ], 0 < τ < T . If, in addition, Q(u0) ∈ Lip then Q(u(·, t)) is uniformly Lipschitz
continuous in R× [0, T ].

Proof. We consider the sequence of classical solutions uδ, defined in the proof of Theorem
2.1, which converges to the weak solution u as δ tends to 0. The maximum principle implies
that for δ ≤ µ+− µ, δ ≤ uδ ≤ µ+. Therefore, according to Lemma 2.1, for these values of δ,
Q(uδ(·, t)) are uniformly Lipschitz continuous in R× [τ, T ], 0 < τ < T (or in R× [0, T ] under
the further assumption), with a Lipschitz constant which is independent of δ. By letting δ
go to 0 we obtain the uniform Lipschitz continuity of Q(u(·, t)). ¤

Example. Consider the general convective porous media equation,

ut + f(u)x = (um)xx m > 1 . (2.40)

Equations (1.4) and (1.8), which are special cases of that equation, were studied in [1] and
[5]. It was shown there that nonnegative solutions of those equations are uniformly Hölder
continuous (with respect to x) with exponent min{ 1

m−1
, 1} in every strip R×[τ, T ], 0 < τ < T ;
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moreover, if u0 is Hölder continuous with the same exponent, then u(·, t) is uniformly Hölder
continuous in R × [0, T ], T > 0. In addition, um(·, t) was shown to be C1-smooth for all
t > 0.

Our analysis implies that the same type of regularity is shared by nonnegative weak
solutions of the more general equation (2.40). Indeed, for that equation G(u) ≡ (m − 1)−1

and, therefore, conditions (2.1)–(2.3) are satisfied for all u > 0. Hence, by Theorem 2.2,
Q(u(·, t)) = mu(·, t)m−1 is uniformly Lipschitz continuous (for 0 < τ ≤ t ≤ T or for 0 ≤ t ≤
T if Q(u0) ∈ Lip) and that implies the same type of Hölder continuity for u(·, t) as above.
Moreover, by Theorem 2.1, K(u(·, t)) = um(·, t) is C1-smooth for all t > 0.

We refer the reader to [1] and [5] for examples of explicit solutions of (1.4) and (1.8)
which demonstrate the sharpness of the above regularity results.

3 Solutions with changing sign

Here, we deal with weak solutions of (1.1) without any restriction on their sign; i.e., the weak
solution may have a changing sign. When the nonnegativity assumption is removed, it is not
known whether weak solutions of (1.1)+(1.3) are uniquely determined by their initial data.
Hence, we consider the unique physically relevant weak solutions – these are the solutions
which may be realized as a vanishing viscosity solution, u = limε↓0 uε,

uε
t + f(uε)x = Kε(uε)xx, Kε(uε) := K(uε) + εuε , (3.1)

uε(x, 0) = u(x, 0) = u0(x) . (3.2)

These admissible or entropy solutions are uniquely determined by their initial data (consult
[11], where an alternative definition of these entropy solutions is presented). Our goal is to
prove that the entropy solutions of (1.1)–(1.2) are regular in the sense of (1.6). In fact, to
this end there is no need in the assumption on the mild nature of the degeneracy of the
equation, (1.3); instead, we assume just that the viscosity coefficient is nonnegative,

Q(u) ≥ 0 , (3.3)

thus extending the class of equations under consideration.

The main ingredient in proving the uniform Lipschitz continuity of K(u(·, t)) is the
following lemma, due to E. Tadmor [10]:

Lemma 3.1 (Tadmor). Consider the uniformly parabolic equation,

ut + f(u)x = K(u)xx, Q(u) = K ′(u) ≥ ε > 0 , (3.4)

subject to the initial data

u(x, 0) = u0(x) ∈ L1(R) ∩ L∞(R) . (3.5)

Then if K(u0)x is uniformly bounded, there exists a constant C, independent of ε, such that

‖K(u)x‖L∞(R×R+) ≤ C . (3.6)
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Proof. We first recall that, thanks to the uniform parabolicity, (3.4)–(3.5) admits a
unique classical solution. After differentiation of (3.4) with respect to t and integration with
respect to x, we find that w(x, t) :=

∫ x
−∞ ut(ξ, t)dξ satisfies

wt + f ′(u)wx = (Q(u)wx)x . (3.7)

This is a uniformly parabolic linear equation in w and, therefore, by the maximum principle,

‖w‖L∞(R×R+) ≤ ‖w(·, 0)‖L∞(R) . (3.8)

But, since equation (3.4) and the definition of w imply that w = K(u)x− f(u), we conclude
by (3.8) and the maximum principle for (3.4) that (3.6) holds with

C = 2 max
|u|≤‖u0‖L∞

|f(u)|+ ‖K(u0)x‖L∞ . (3.9)

¤

Since estimate (3.6) is independent of ε, a similar estimate may be obtained in the
degenerate case as well:

Theorem 3.1 Let u be the unique entropy solution of (1.1)–(1.3), where u0 ∈ W 1,∞ ∩BV .
Then the derivative K(u)x exists in the sense of distributions and it is uniformly bounded in
R× R+.

Remark. This theorem generalizes the regularity result of Theorem 1.1 in three aspects:
(i) removing the restriction on the sign of the solution; (ii) allowing a more general type of
degeneracy, i.e., (3.3) instead of (1.3); (iii) obtaining a uniform bound, independent of t, for
|K(u)x|.

Proof. Let {uε(x, t)}ε>0 be the family of classical solutions of the corresponding uniformly
parabolic problem (3.1)–(3.2). According to Lemma 3.1,

‖Kε(uε)x‖L∞(R×R+) ≤ Cε ,

where
Cε = 2 max

|u|≤‖u0‖L∞
|f(u)|+ ‖Kε(u0)x‖L∞ .

Since u0 ∈ W 1,∞,

‖Kε(u0)x‖L∞ ≤ ‖K(u0)x‖L∞ + ε‖(u0)x‖L∞ ≤ ‖K(u0)x‖L∞ + |u0|W 1,∞ ∀ε ∈ (0, 1] .

Therefore, for ε ∈ (0, 1],

‖Kε(uε(·, t))x‖L∞(R) ≤ C ∀t ≥ 0 , (3.10)

where C is independent of ε and is given by

C = 2 max
|u|≤‖u0‖L∞

|f(u)|+ ‖K(u0)x‖L∞ + |u0|W 1,∞ .
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Inequality (3.10) implies that

sup
φ∈Φ

∣∣∣∣
∫

R
Kε(uε)φxdx

∣∣∣∣ ≤ C ∀t ≥ 0 , (3.11)

where
Φ = {φ ∈ C∞

0 (R) : ‖φ‖L1 = 1} .

However, since uε(·, t) converges in L1
loc(Rx), when ε ↓ 0, to u(·, t) for all t > 0, [11], it follows

that
∣∣∣∣
∫

R
Kε(uε)φxdx−

∫

R
K(u)φxdx

∣∣∣∣ ≤
∣∣∣∣
∫

R
(K(uε)−K(u))φxdx

∣∣∣∣ +
∣∣∣∣
∫

R
εuεφxdx

∣∣∣∣ ≤ (3.12)

≤ ‖φx‖L∞ · max
|u|≤‖u0‖L∞

|Q(u)| · ‖uε(·, t)− u(·, t)‖L1(Suppφ) + ε‖u0‖L∞‖φx‖L1 −→
ε→0

0 .

Hence, by (3.11) and (3.12),

sup
φ∈Φ

∣∣∣∣
∫

K(u)φxdx

∣∣∣∣ ≤ C ∀t ≥ 0 ,

and, therefore, the derivative K(u)x exists in the sense of distributions and is uniformly
bounded in R× R+. ¤

Example. Consider the porous media equation, (1.4), subject to a compactly supported
initial data, u(x, 0) = u0(x). Assume that

∫

R
u0(x)dx = 0 and P := −

∫

R
xu0(x)dx > 0 .

In [7] it is shown that

t
1
m‖u(·, t)− z(·, t)‖L∞ −→

t→∞
0 ,

where z(x, t) is the solution of (1.4) which takes a dipole as initial data, z(x, 0) = δ′(x). This
solution, which was published by Barenblatt and Zeldovich [2], is given by

z(x, t) = −dt−
1
m |ξ| 1

m sgn(ξ) · (C − q|ξ|m+1
m )

1
m−1
+ , (·)+ = max(·, 0) ,

where ξ = xt−
1

2m and d, C, q are some constants which depend on m and P .
Equation (1.4) degenerates, for this dipole solution, at x = 0 (where z changes its sign)

and at the tips of the compact support, x = x±(t) = ±(C/q)
m

m+1 t
1

2m . Along x = 0, z(x, t) is
Hölder continuous with exponent 1

m
. This demonstrates the sharpness of our estimate that

K(z)x = (|z|m−1z)x is bounded. Note that, on the other hand, along the interfaces x±(t)
the solution is Hölder continuous with exponent min{ 1

m−1
, 1}. Hence, in the neighborhood

of these interfaces, where the solution is one-signed, our estimate from §2 holds, namely,
Q(z)x = (m|z|m−1)x is locally bounded.

13



References

[1] D.G. Aronson, Regularity properties of flows through porous media, Siam J. Appl.
Math., Vol. 17, 2 (1969), pp. 461-467.

[2] G.I. Barenblatt and Y.B. Zeldovich, On dipole-type solutions in problems of non-
stationary filtration of gas under polytropic regime, Prikl. Mat. Mekh., Vol. 21 (1957),
pp. 718-720.

[3] J.I. Diaz and R. Kersner, On a nonlinear degenerate parabolic equation in infiltra-
tion or evaporation through a porous medium, J. of Diff. Equations, Vol. 69, 3 (1987),
pp. 368-403.

[4] B.H. Gilding, Improved theory for a nonlinear degenerate parabolic equation, Ann.
Scuola Norm. Sup. Pisa Cl. Sci., Vol. 16 (1989), pp. 165-224.

[5] B.H. Gilding and L.A. Peletier, The Cauchy problem for an equation in the theory
of infiltration, Arch. Rat. Mech. Anal., Vol. 61 (1976), pp. 127-140

[6] A.S. Kalashnikov, Some problems of the qualitative theory of non-linear degenerate
second-order parabolic equations, Russian Math. Surveys, Vol. 42, 2 (1987), pp. 169-222.

[7] S. Kamin and J.L. Vazquez, Asymptotic behaviour of solutions of the porous medium
equation with changing sign, Siam J. Math. Anal., Vol. 22, 1 (1991), pp. 34-45.
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