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Abstract 
A novel approach for teaching interpolation in the introductory course in numerical 

analysis is presented. The interpolation problem is viewed as a problem in linear 

algebra, whence the various forms of the interpolating polynomial are seen as 

different choices of a basis to the subspace of polynomials of the corresponding 

degree. This approach enables the instructor to relate this topic to the topic of 

numerical solution of linear algebraic systems and, consequently, to introduce the 

important notion of stability. Finally, it is proposed to spice up the discussion of 

interpolation by describing its usage in cryptography for secret sharing. 
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1 Introduction 
One of the fundamental topics in numerical analysis is function approximation. Given 

a metric linear space V  and a subspace U V⊂  of "simple" functions, the 

approximation problem takes the following form: given f V∈ , find P U∈  that best 

approximates f , in the sense that it minimizes ( , )d f P , where ( , )d ⋅ ⋅ is the underlying 

metric. Students of introductory courses in numerical analysis usually encounter three 

versions of this general approximation problem: 

 

Uniform approximation: 

V  is the space of bounded functions on some finite closed interval I ⊂ ; U  is the 

subspace of polynomials of degree less than or equal to k , for some k ∈ ; and 

(1) ( , ) max | ( ) ( ) |x Id f g f x g x∈= −  

 

Least squares approximation: 

V  is the space of square-integrable functions on some finite closed interval I ⊂ ; 

U  is the subspace of polynomials of degree less than or equal to k , for some k ∈ ; 

and 

(2) 2( , ) | ( ) ( ) |
x I

d f g f x g x dx
∈

= −∫  

 

Interpolation: 

V  is the space of continuous functions on some finite closed interval I ⊂ ; U  is the 

subspace of polynomials of degree less than or equal to k , for some k ∈ ; and 

(3) 
0

( , ) | ( ) ( ) |
k

j j
j

d f g f x g x
=

= −∑  

where jx I∈  for all 0 j k≤ ≤ . (Here d is only a semi-metric since ( , ) 0d f g = does 

not imply that f g=  in the interval I .) 

 

This paper concentrates on the interpolation problem and  describes a novel approach 

in teaching this topic. The structure of the paper is as follows. The common approach 

in which interpolation is taught is described in Section 2. Then, in Section 3, an 

equivalent linear algebraic approach is proposed for teaching this topic. Finally, an 
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interesting application of interpolation to cryptography is described in Section 4. Such 

an example could be very attractive, as it differs from the computational examples 

that are usually given in introductory numerical analysis courses. 

2 The common approach 
The interpolation problem is defined as follows in all textbooks, e.g. [1,3,4,5,7,8,9]: 

Given 1k + distinct points in , { } 0j j k
x

≤ ≤
, and a function f , find a polynomial of 

degree less than or equal to k that agrees with f  on these points. 

The first question that arises is whether that problem is well-posed. Namely, does a 

solution (an interpolating polynomial) exist and is it unique. Existence is usually 

demonstrated by the Lagrange polynomials. The Lagrange polynomials for { } 0j j k
x

≤ ≤
 

are defined as follows: 

(4) 
0 ,

( ) , 0i
j

j ii k i j

x xL x j kx x
≤ ≤ ≠

−
= ≤ ≤

−∏ . 

Since 

(5) ,( ) , 0 ,j i i jL x i j kδ= ≤ ≤ , 

where ,i jδ  is the Kronecker delta (namely, , 1i jδ =  if i j=  and , 0i jδ =  otherwise), 

the polynomial 

(6) 
0

( ) ( ) ( )
k

j j
j

P x f x L x
=

= ∑  

is a polynomial of degree at most k that satisfies ( ) ( )j jP x f x=  for all 0 j k≤ ≤ . As 

for uniqueness, assume that ( )Q x  is another interpolating polynomial of degree at 

most k . Then D P Q= −  is a polynomial of degree at most k  that vanishes in the 

1k + distinct points { } 0j j k
x

≤ ≤
. This is possible only if 0D ≡ , namely, if P  and Q  

are the same polynomial. 
 

The Lagrange polynomials, (4), provide a neat closed form formula for the 

interpolating polynomial, (6). However, this form of the interpolating polynomial 

suffers from two major disadvantages. First, the evaluation of the expression in 

(6) is inefficient as it involves a large number of multiplications and divisions. 

Moreover, having the value of the interpolating polynomial to f  on the set of points 
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{ } 0j j k
x

≤ ≤
, denoted kP , at some intermediate point ξ , it is impossible to use ( )kP ξ  

in order to compute the value of a higher degree interpolating polynomial to f  at ξ , 

1( )kP ξ+ , once we are given the value of f  in an additional point 1kx + . A new 

computation that begins from scratch is inevitable. 
 

In view of these disadvantages, the Lagrange form of the interpolating polynomial is 

considered to be mainly of a theoretical value. The alternative Newton form is more 

practical. The Newton form of the polynomial is 

 
1

0 0
( ) ( )

jk

j i
j i

P x a x x
−

= =

= −∑ ∏  . 

The coefficients in this representation are the so-called divided differences of f , 

 0[ , , ]j ja f x x= …  , 0 j k≤ ≤ , 

where the divided differences of a function f are defined recursively as follows: 

(7)1 1 0 1
0

0

[ , , ] [ , , ]
[ , , ] j j

j
j

f x x f x x
f x x x x

−−
=

−
… …

…  , 

(7)2 [ ] ( )i if x f x= . 

This form of the interpolating polynomial is much more practical than that of the 

Lagrange form. It may be efficiently evaluated using Horner's method, and when 

given the value of f  at a new sampling point, 1kx + , all we have to do is to compute 

the ( 1k + )-th order divided difference 0 1[ , , ]kf x x +… , using (7) and the k -th order 

divided differences, and then add to ( )kP x  the value of the last term only, namely, 

1 0 1
0

( ) ( ) ( ) [ , , ] ( )
k

k k k k i
i

P x P x P x f x x x x+ +
=

= + ⋅ −∏…  . 

3 A linear algebraic approach 
The interpolation problem is nothing but a problem of solving a system of linear 

equations. It is proposed to present the interpolation problem as such, and then present 

the various forms of the interpolating polynomial as different choices of a basis to the 

subspace of polynomials. We begin by reformulating the interpolation problem in a 

way that ignores the approximating origin of the problem (i.e., we do not care that the 

given data are samples of some function f ) and focuses on the main issue in hand: 
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finding a vector in a given finite-dimensional space that satisfies a number of linear 

equalities. 
 

The interpolation problem: Given 1k +  points in 2 , { } 0
( , )j j j k
x y

≤ ≤
, find the 

polynomial [ ]kP x∈ , where [ ]k x  is the linear space of real univariate 

polynomials of degree at most k , such that ( )j jP x y=  for all 0 j k≤ ≤ . 

 

The standard basis for [ ]k x   is { } 0
j

j k
x

≤ ≤
. Seeking the solution for the interpolation 

problem in its representation with respect to this basis, 
0

( )
k

j
j

j
P x a x

=

= ∑ , we need to 

solve a full system of linear equations, 

(8) V =a y , 

where V  is the Vandermonde matrix over { } 0j j k
x

≤ ≤
, namely, ,

j
i j iV x= , 0 ,i j k≤ ≤ , 

0( , , ) T
ka a=a …  is the vector of unknown coefficients, and 0( , , ) T

ky y=y …  is the 

vector of required polynomial values. As done in several textbooks [1,3,7,8], the 

linear system (8) may be shown to have a unique solution, since 

(9) 
0

det ( ) 0j i
i j k

V x x
≤ < ≤

= − ≠∏ . 

This provides a unified and a beautiful proof of the existence as well as uniqueness of 

the interpolating polynomial. We believe that this proof must be presented alongside 

the two separate proofs of existence and uniqueness that were described in Section 2 

because of the importance of the Vandermonde matrix, the beauty of the proof of (9), 

and, most importantly, because existence of a solution of a square linear system is 

equivalent to uniqueness, and, therefore, it is wrong to discuss these two questions as 

though they are not related. 
 

There is another advantage for beginning the discussion of the interpolation problem 

by presenting the linear system (8). One of the most important notions in 

mathematical analysis is the notion of well-posedness. Loosely speaking, a 

mathematical problem is well-posed if it has a solution, the solution is unique, and its 

dependence on the problem parameters is stable. Stability, the last ingredient, is of 

paramount importance especially in numerical analysis since it is important to 
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consider the effect of small rounding, measurement and truncation errors on the 

solution of the problem. For some reason, the question of stability is usually not 

addressed in the context of the interpolation problem. Assuming that the students have 

already learnt the subject of numerical solutions to linear systems, equality (8) implies 

that 

 1V −≤ ⋅a y  , 

for any vector norm ⋅  and the corresponding induced matrix norm (denoted also by 

⋅ ). Hence, the maximal error in the value of the coefficients of the polynomial is 

bounded by the l∞ -norm of 1V −  times the maximal error in the data. This establishes 

the stability of the interpolation problem, whence, together with existence and 

uniqueness, it is a well posed problem. In our opinion, a first course in numerical 

analysis must introduce the terms of stability and well-posedness, even informally, 

and then the interpolation problem provides an excellent framework in which those 

terms may be exemplified. 
 

The next step is to discuss the linear system (8) from a numerical point of view. This 

is a full system that needs to be solved, and, in addition, the Vandermonde matrices 

are often ill-conditioned [6]. While the analysis of the condition number of 

Vandermonde matrices is beyond the scope of an introductory course, it is important 

to state this and exemplify it, as a good example for the theory of numerical solution 

of linear systems. Having said that, the standard basis proves to be of theoretical 

importance only, whence we proceed to seek an alternative basis of [ ]k x . 

 

As our next choice of a basis of [ ]k x , we consider the basis of Lagrange 

polynomials, (4). The instructor may ask the students to show their linear 

independence and conclude that they form a basis of [ ]k x . Then, looking for our 

interpolating polynomial in its representation with respect to this basis, we find out, 

thanks to (5), that the matrix of coefficients is the identity matrix. Hence, this basis 

seems like the best that one may hope for, as it replaces a full ill-conditioned system 

with the trivial system. However, due to the problems that were discussed before, this 

is still not the basis of choice. 
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Finally, we arrive at the most suitable choice of a basis of [ ]k x , i.e., the Newton 

basis: 

 
1

0
( ) ( )

j

j i
i

N x x x
−

=

= −∏ ,  0 j k≤ ≤  . 

Once again, it is a good exercise to prove that this set of polynomials is linearly 

independent, and, consequently, a basis of  [ ]k x . Trying to find the representation 

of the interpolating polynomial with respect to this basis, we get a triangular system 

of equations, since ( ) 0j iN x =  for all 0 1i j≤ ≤ − . A triangular system is definitely 

better than a full system, as in (8), since its cost of solution is 2( )O k  rather than 

3( )O k . On the other hand, it is inferior to the trivial system, where the solution is 

given for free. However, the advantages that were discussed before make the Newton 

basis the basis of choice. 
 

To summarize, a linear algebraic approach to the problem of interpolation enables to 

introduce the three forms of the interpolating polynomial as representations with 

respect to three different bases of the subspace of polynomials of degree at most k ; it 

conveys the important message that having identified a problem as a problem in linear 

algebra is not enough - a good choice of a basis is of paramount importance. This 

approach highlights the advantages and disadvantages of those three forms; it enables 

to relate this discussion to the topic of numerical solution of linear systems that is 

usually also taught in introductory courses of numerical analysis; and it provides an 

appropriate stage for the introduction of the important notion of stability. 
 

4 Secret sharing 
It is not a secret that the introductory course in numerical analysis is not considered an 

attractive course. Students, as well as some instructors whose areas of interest do not 

include numerical analysis and scientific computing, tend to consider it a dull course 

that deals with "errors" and "number crunching", and the main reason for studying it 

is the simple fact that in many programs in both mathematics and computer science it 

is a mandatory course. However, we believe that by highlighting the theoretical 

foundations of numerical analysis (namely, focusing more on the analysis and less on 

the numerical aspects), may make this course more attractive. This is one of the main 
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incentives behind the linear algebraic approach that we proposed herein and, from our 

classroom experience, this approach indeed caught the attention and interest of the 

students. 
 

Another way of spicing up the course is by providing more refreshing examples than 

the ones that are usually given. The typical examples of interpolation revolve around 

the computation of some function in intermediate points based on some samples of 

that function. We found that giving the following usage of interpolation fascinated the 

students and contributed a lot to their enthusiasm in class. 
 

The topic of secret sharing was introduced, independently, by Blakley and Shamir in 

their seminal works [2,10]. It deals with the safe sharing of a secret among a group of 

people. For example, assume that Interpolania is a country that has nuclear missiles. 

In order to launch those missiles, a secret password must be introduced. This 

password should be given to the president, the prime minister, the minister of defense, 

and the chief of staff only. However, providing the password to each of these persons 

gives each one of them the power to launch the missiles. This is a very risky situation. 

Instead, as a security measure, we would like to give each one of them a piece of 

information that, on its own, reveals nothing on the actual secret, but any two of these 

pieces enable the reconstruction of the secret. This way, at least two of the above 

mentioned persons must collaborate in order to launch the missiles. 
 

More generally, let S  be a secret and let U  be a group of n  participants. We would 

like to give each of these participants a piece of information, called a share, so that 

any k n≤  shares enable the reconstruction of S , while any lesser number of shares 

reveal no information about S . 
 

The solution that was proposed by Shamir is extremely elegant. The secret S  in his 

method is presented as an element in a large finite field F . Every participant u U∈  is 

identified with some distinct field element, ux F∈ , where 0ux ≠ . Next, the dealer 

(the party that generates the secret S  and deals to each participant her or his share) 

generates 1k −  random field elements ia F∈ , and creates the polynomial 

1

1
( )

k
i

i
i

P x S a x
−

=

= + ∑ . Then, each participant u U∈  receives the share ( )uP x . 
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Obviously, every k  participants from U  may recover P  by means of interpolation 

and then deduce the value of (0)S P= . On the other hand, any lesser number of 

participants may learn no information on S , even if they pool together all of their 

shares, since any 'k k<  point values of P  at points 0ux ≠  still allow (0)P  to equal 

any value in the field F  (this is a consequence of the existence of a solution to the 

interpolation problem). 

 

To illustrate this method, assume a bank that has a safe that must be opened every 

working day by punching an 8-digit password on its panel. That password is to be 

shared among the employees of the bank so that any three of them may open the safe, 

while any lesser number of employees cannot. To that end, we think of the password 

as an element in a finite field that contains all possible 8-digit passwords. The finite 

field pF  of the prime order 100, 000, 007p =  is an adequate choice in this case. 

Assume that the secret password is 12345678S = . Next, the bank generates a random 

quadratic polynomial with S  being its free coefficient. Such a polynomial takes the 

form 2
1 2( )P x S a x a x= + +  where 1a  and 2a  are two random and independent 

numbers from pF . Then, each employee is identified with some field element x  and 

receives the secret share ( )P x . For example, if Alice is identified with the field 

element 2x = , her secret share will be ( )Alice 1 22 4 modS S a a p= + + . Finally, every 

three employees can find the value of S  by recovering ( )P x  by means of 

interpolation and then substituting ( 0)S P x= = . On the other hand, any two 

employees posses an under-determined system of two linear equations in the three 

unknown coefficients of the polynomial, where the subspace of possible solutions of 

that system includes a solution 1 2( , , )S a a  for each possible value pS F∈ . Hence, the 

shares of any two employees do not reveal any information on the value of the secret 

S .   

It should be made clear that all of the formulas of both Lagrange and Newton 

interpolation work also above finite fields, when all of the arithmetic operations are 

interpreted in the sense of modulo p . While addition, subtraction and multiplication 

modulo p  are straightforward, the operation of division requires to compute an 

inverse modulo p . More specifically, the fraction a
b  is meaningful if and only if b  is 
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invertible modulo p , namely, when gcd( , ) 1b p = , and then the fraction equals 

1 modab p− .  

 

Secret sharing is a very good example of a possible usage of interpolation since it is 

different from the typical examples from engineering or physics and since it is a 

discrete example: numerical analysis, by definition, deals with the approximate 

solution of problems of continuous nature. Hence, the underlying field is usually  

(or  in some cases). Here, the underlying field is a finite one. Nevertheless, the 

theory of interpolation is indifferent to the underlying field. 
 

In this context, the following exercises may be very illustrative: 

1. To show that the secret S  may be the coefficient of the highest power 1kx −  

(as opposed to the original suggestion to use the coefficient of 0x  as the 

secret). To that end, the students need to show that every k  participants may 

deduce the value of S  while any lesser number of participants cannot reveal 

anything about its value. 

2. To show that apart from the two extreme coefficients, none of the intermediate 

coefficients can serve for that matter. 
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